| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfabdw | Unicode version | ||
| Description: Bound-variable hypothesis builder for a class abstraction. Version of nfabd 2370 with a disjoint variable condition. (Contributed by Mario Carneiro, 8-Oct-2016.) (Revised by GG, 10-Jan-2024.) |
| Ref | Expression |
|---|---|
| nfabdw.1 |
|
| nfabdw.2 |
|
| Ref | Expression |
|---|---|
| nfabdw |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1552 |
. 2
| |
| 2 | df-clab 2194 |
. . 3
| |
| 3 | nfabdw.1 |
. . . . 5
| |
| 4 | nfabdw.2 |
. . . . 5
| |
| 5 | 3, 4 | alrimi 1546 |
. . . 4
|
| 6 | nfa1 1565 |
. . . . . . . . 9
| |
| 7 | sb6 1911 |
. . . . . . . . . . . 12
| |
| 8 | 7 | a1i 9 |
. . . . . . . . . . 11
|
| 9 | 7 | biimpri 133 |
. . . . . . . . . . . 12
|
| 10 | 9 | axc4i 1566 |
. . . . . . . . . . 11
|
| 11 | 8, 10 | biimtrdi 163 |
. . . . . . . . . 10
|
| 12 | 6, 11 | nf5d 2054 |
. . . . . . . . 9
|
| 13 | 6, 12 | nfim1 1595 |
. . . . . . . 8
|
| 14 | sbequ12 1795 |
. . . . . . . . 9
| |
| 15 | 14 | imbi2d 230 |
. . . . . . . 8
|
| 16 | 13, 15 | equsalv 1817 |
. . . . . . 7
|
| 17 | 16 | bicomi 132 |
. . . . . 6
|
| 18 | nfv 1552 |
. . . . . . . 8
| |
| 19 | nfnf1 1568 |
. . . . . . . . . 10
| |
| 20 | 19 | nfal 1600 |
. . . . . . . . 9
|
| 21 | sp 1535 |
. . . . . . . . 9
| |
| 22 | 20, 21 | nfim1 1595 |
. . . . . . . 8
|
| 23 | 18, 22 | nfim 1596 |
. . . . . . 7
|
| 24 | 23 | nfal 1600 |
. . . . . 6
|
| 25 | 17, 24 | nfxfr 1498 |
. . . . 5
|
| 26 | pm5.5 242 |
. . . . . 6
| |
| 27 | 20, 26 | nfbidf 1563 |
. . . . 5
|
| 28 | 25, 27 | mpbii 148 |
. . . 4
|
| 29 | 5, 28 | syl 14 |
. . 3
|
| 30 | 2, 29 | nfxfrd 1499 |
. 2
|
| 31 | 1, 30 | nfcd 2345 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-11 1530 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 df-sb 1787 df-clab 2194 df-nfc 2339 |
| This theorem is referenced by: nfsbcdw 3135 nfcsbw 3138 |
| Copyright terms: Public domain | W3C validator |