ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  axi12 Unicode version

Theorem axi12 1507
Description: Proof that ax-i12 1500 follows from ax-bndl 1502. So that we can track which theorems rely on ax-bndl 1502, proofs should reference ax12or 1501 rather than this theorem. (Contributed by Jim Kingdon, 17-Aug-2018.) (New usage is discouraged). (Proof modification is discouraged.)
Assertion
Ref Expression
axi12  |-  ( A. z  z  =  x  \/  ( A. z  z  =  y  \/  A. z ( x  =  y  ->  A. z  x  =  y )
) )

Proof of Theorem axi12
StepHypRef Expression
1 ax-bndl 1502 . 2  |-  ( A. z  z  =  x  \/  ( A. z  z  =  y  \/  A. x A. z ( x  =  y  ->  A. z  x  =  y )
) )
2 sp 1504 . . . 4  |-  ( A. x A. z ( x  =  y  ->  A. z  x  =  y )  ->  A. z ( x  =  y  ->  A. z  x  =  y )
)
32orim2i 756 . . 3  |-  ( ( A. z  z  =  y  \/  A. x A. z ( x  =  y  ->  A. z  x  =  y )
)  ->  ( A. z  z  =  y  \/  A. z ( x  =  y  ->  A. z  x  =  y )
) )
43orim2i 756 . 2  |-  ( ( A. z  z  =  x  \/  ( A. z  z  =  y  \/  A. x A. z
( x  =  y  ->  A. z  x  =  y ) ) )  ->  ( A. z 
z  =  x  \/  ( A. z  z  =  y  \/  A. z ( x  =  y  ->  A. z  x  =  y )
) ) )
51, 4ax-mp 5 1  |-  ( A. z  z  =  x  \/  ( A. z  z  =  y  \/  A. z ( x  =  y  ->  A. z  x  =  y )
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    \/ wo 703   A.wal 1346    = wceq 1348
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-bndl 1502  ax-4 1503
This theorem depends on definitions:  df-bi 116
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator