Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdnth Unicode version

Theorem bdnth 13869
Description: A falsity is a bounded formula. (Contributed by BJ, 6-Oct-2019.)
Hypothesis
Ref Expression
bdnth.1  |-  -.  ph
Assertion
Ref Expression
bdnth  |- BOUNDED  ph

Proof of Theorem bdnth
StepHypRef Expression
1 bdfal 13868 . 2  |- BOUNDED F.
2 fal 1355 . . 3  |-  -. F.
3 bdnth.1 . . 3  |-  -.  ph
42, 32false 696 . 2  |-  ( F.  <->  ph )
51, 4bd0 13859 1  |- BOUNDED  ph
Colors of variables: wff set class
Syntax hints:   -. wn 3   F. wfal 1353  BOUNDED wbd 13847
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-bd0 13848  ax-bdim 13849  ax-bdn 13852  ax-bdeq 13855
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-fal 1354
This theorem is referenced by:  bdcnul  13900
  Copyright terms: Public domain W3C validator