| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > bi3ant | Unicode version | ||
| Description: Construct a biconditional in antecedent position. (Contributed by Wolf Lammen, 14-May-2013.) |
| Ref | Expression |
|---|---|
| bi3ant.1 |
|
| Ref | Expression |
|---|---|
| bi3ant |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | biimp 118 |
. . 3
| |
| 2 | 1 | imim1i 60 |
. 2
|
| 3 | biimpr 130 |
. . 3
| |
| 4 | 3 | imim1i 60 |
. 2
|
| 5 | bi3ant.1 |
. . 3
| |
| 6 | 5 | imim3i 61 |
. 2
|
| 7 | 2, 4, 6 | syl2im 38 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: bisym 225 |
| Copyright terms: Public domain | W3C validator |