Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > bi3ant | Unicode version |
Description: Construct a biconditional in antecedent position. (Contributed by Wolf Lammen, 14-May-2013.) |
Ref | Expression |
---|---|
bi3ant.1 |
Ref | Expression |
---|---|
bi3ant |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | biimp 117 | . . 3 | |
2 | 1 | imim1i 60 | . 2 |
3 | biimpr 129 | . . 3 | |
4 | 3 | imim1i 60 | . 2 |
5 | bi3ant.1 | . . 3 | |
6 | 5 | imim3i 61 | . 2 |
7 | 2, 4, 6 | syl2im 38 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: bisym 224 |
Copyright terms: Public domain | W3C validator |