| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3bitr4g | Unicode version | ||
| Description: More general version of 3bitr4i 212. Useful for converting definitions in a formula. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| 3bitr4g.1 |
|
| 3bitr4g.2 |
|
| 3bitr4g.3 |
|
| Ref | Expression |
|---|---|
| 3bitr4g |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3bitr4g.2 |
. . 3
| |
| 2 | 3bitr4g.1 |
. . 3
| |
| 3 | 1, 2 | bitrid 192 |
. 2
|
| 4 | 3bitr4g.3 |
. 2
| |
| 5 | 3, 4 | bitr4di 198 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: bibi1d 233 pm5.32rd 451 orbi1d 792 stbid 833 dcbid 839 pm4.14dc 891 orbididc 955 3orbi123d 1322 3anbi123d 1323 xorbi2d 1391 xorbi1d 1392 nfbidf 1553 drnf1 1747 drnf2 1748 drsb1 1813 sbal2 2039 eubidh 2051 eubid 2052 mobidh 2079 mobid 2080 eqeq1 2203 eqeq2 2206 eleq1w 2257 eleq2w 2258 eleq1 2259 eleq2 2260 cbvabw 2319 eqabdv 2325 nfceqdf 2338 drnfc1 2356 drnfc2 2357 neeq1 2380 neeq2 2381 neleq1 2466 neleq2 2467 dfrex2dc 2488 ralbida 2491 rexbida 2492 ralbidv2 2499 rexbidv2 2500 ralbid2 2501 rexbid2 2502 r19.21t 2572 r19.23t 2604 reubida 2679 rmobida 2684 raleqf 2689 rexeqf 2690 reueq1f 2691 rmoeq1f 2692 cbvraldva2 2736 cbvrexdva2 2737 dfsbcq 2991 sbceqbid 2996 sbcbi2 3040 sbcbid 3047 eqsbc2 3050 sbcabel 3071 sbnfc2 3145 ssconb 3297 uneq1 3311 ineq1 3358 difin2 3426 reuun2 3447 reldisj 3503 undif4 3514 disjssun 3515 sbcssg 3560 eltpg 3668 raltpg 3676 rextpg 3677 r19.12sn 3689 opeq1 3809 opeq2 3810 intmin4 3903 dfiun2g 3949 iindif2m 3985 iinin2m 3986 breq 4036 breq1 4037 breq2 4038 treq 4138 opthg2 4273 poeq1 4335 soeq1 4351 frforeq1 4379 freq1 4380 frforeq2 4381 freq2 4382 frforeq3 4383 weeq1 4392 weeq2 4393 ordeq 4408 limeq 4413 rabxfrd 4505 iunpw 4516 opthprc 4715 releq 4746 sbcrel 4750 eqrel 4753 eqrelrel 4765 xpiindim 4804 brcnvg 4848 brresg 4955 resieq 4957 xpcanm 5110 xpcan2m 5111 dmsnopg 5142 dfco2a 5171 cnvpom 5213 cnvsom 5214 iotaeq 5228 sniota 5250 sbcfung 5283 fneq1 5347 fneq2 5348 feq1 5393 feq2 5394 feq3 5395 sbcfng 5408 sbcfg 5409 f1eq1 5461 f1eq2 5462 f1eq3 5463 foeq1 5479 foeq2 5480 foeq3 5481 f1oeq1 5495 f1oeq2 5496 f1oeq3 5497 fun11iun 5528 mpteqb 5655 dffo3 5712 fmptco 5731 dff13 5818 f1imaeq 5825 f1eqcocnv 5841 fliftcnv 5845 isoeq1 5851 isoeq2 5852 isoeq3 5853 isoeq4 5854 isoeq5 5855 isocnv2 5862 acexmid 5924 fnotovb 5969 mpoeq123 5985 ottposg 6322 dmtpos 6323 smoeq 6357 nnacan 6579 nnmcan 6586 ereq1 6608 ereq2 6609 elecg 6641 ereldm 6646 ixpiinm 6792 enfi 6943 elfi2 7047 fipwssg 7054 ctssdccl 7186 tapeq1 7335 tapeq2 7336 creur 9003 eqreznegel 9705 ltxr 9867 icoshftf1o 10083 elfzm11 10183 elfzomelpfzo 10324 nn0ennn 10542 nnesq 10768 rexfiuz 11171 cau4 11298 sumeq2 11541 fisumcom2 11620 fprodcom2fi 11808 dvdsflip 12033 bitsmod 12138 bitscmp 12140 divgcdcoprm0 12294 hashdvds 12414 4sqlem12 12596 imasaddfnlemg 13016 issgrpv 13106 issgrpn0 13107 mndpropd 13142 ismhm 13163 mhmpropd 13168 issubm2 13175 grppropd 13219 grpinvcnv 13270 conjghm 13482 conjnmzb 13486 ghmpropd 13489 cmnpropd 13501 ablpropd 13502 eqgabl 13536 rngpropd 13587 issrg 13597 ringpropd 13670 crngpropd 13671 opprnzrbg 13817 subrngpropd 13848 resrhm2b 13881 subrgpropd 13885 rhmpropd 13886 opprdomnbg 13906 lmodprop2d 13980 islssm 13989 islssmg 13990 lsspropdg 14063 df2idl2rng 14140 tpspropd 14356 tgss2 14399 lmbr2 14534 txcnmpt 14593 txhmeo 14639 blininf 14744 blres 14754 xmeterval 14755 xmspropd 14797 mspropd 14798 metequiv 14815 xmetxpbl 14828 limcdifap 14982 lgsquadlem1 15402 lgsquadlem2 15403 cbvrald 15518 bj-indeq 15659 |
| Copyright terms: Public domain | W3C validator |