| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3bitr4g | Unicode version | ||
| Description: More general version of 3bitr4i 212. Useful for converting definitions in a formula. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| 3bitr4g.1 |
|
| 3bitr4g.2 |
|
| 3bitr4g.3 |
|
| Ref | Expression |
|---|---|
| 3bitr4g |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3bitr4g.2 |
. . 3
| |
| 2 | 3bitr4g.1 |
. . 3
| |
| 3 | 1, 2 | bitrid 192 |
. 2
|
| 4 | 3bitr4g.3 |
. 2
| |
| 5 | 3, 4 | bitr4di 198 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: bibi1d 233 pm5.32rd 451 orbi1d 796 stbid 837 dcbid 843 pm4.14dc 895 orbididc 959 ifpbi123d 998 3orbi123d 1345 3anbi123d 1346 xorbi2d 1422 xorbi1d 1423 nfbidf 1585 drnf1 1779 drnf2 1780 drsb1 1845 sbal2 2071 eubidh 2083 eubid 2084 mobidh 2111 mobid 2112 eqeq1 2236 eqeq2 2239 eleq1w 2290 eleq2w 2291 eleq1 2292 eleq2 2293 cbvabw 2352 eqabdv 2358 nfceqdf 2371 drnfc1 2389 drnfc2 2390 neeq1 2413 neeq2 2414 neleq1 2499 neleq2 2500 dfrex2dc 2521 ralbida 2524 rexbida 2525 ralbidv2 2532 rexbidv2 2533 ralbid2 2534 rexbid2 2535 r19.21t 2605 r19.23t 2638 reubida 2713 rmobida 2719 raleqf 2724 rexeqf 2725 reueq1f 2726 rmoeq1f 2727 cbvraldva2 2772 cbvrexdva2 2773 dfsbcq 3030 sbceqbid 3035 sbcbi2 3079 sbcbid 3086 eqsbc2 3089 sbcabel 3111 sbnfc2 3185 ssconb 3337 uneq1 3351 ineq1 3398 difin2 3466 reuun2 3487 reldisj 3543 undif4 3554 disjssun 3555 sbcssg 3600 eltpg 3711 raltpg 3719 rextpg 3720 r19.12sn 3732 opeq1 3857 opeq2 3858 intmin4 3951 dfiun2g 3997 iindif2m 4033 iinin2m 4034 breq 4085 breq1 4086 breq2 4087 treq 4188 opthg2 4325 poeq1 4390 soeq1 4406 frforeq1 4434 freq1 4435 frforeq2 4436 freq2 4437 frforeq3 4438 weeq1 4447 weeq2 4448 ordeq 4463 limeq 4468 rabxfrd 4560 iunpw 4571 opthprc 4770 releq 4801 sbcrel 4805 eqrel 4808 eqrelrel 4820 xpiindim 4859 brcnvg 4903 brresg 5013 resieq 5015 xpcanm 5168 xpcan2m 5169 dmsnopg 5200 dfco2a 5229 cnvpom 5271 cnvsom 5272 iotaeq 5287 sniota 5309 sbcfung 5342 fneq1 5409 fneq2 5410 feq1 5456 feq2 5457 feq3 5458 sbcfng 5471 sbcfg 5472 f1eq1 5526 f1eq2 5527 f1eq3 5528 foeq1 5544 foeq2 5545 foeq3 5546 f1oeq1 5560 f1oeq2 5561 f1oeq3 5562 fun11iun 5593 mpteqb 5725 dffo3 5782 fmptco 5801 dff13 5892 f1imaeq 5899 f1eqcocnv 5915 fliftcnv 5919 isoeq1 5925 isoeq2 5926 isoeq3 5927 isoeq4 5928 isoeq5 5929 isocnv2 5936 acexmid 6000 fnotovb 6047 mpoeq123 6063 ottposg 6401 dmtpos 6402 smoeq 6436 nnacan 6658 nnmcan 6665 ereq1 6687 ereq2 6688 elecg 6720 ereldm 6725 ixpiinm 6871 enfi 7035 elfi2 7139 fipwssg 7146 ctssdccl 7278 tapeq1 7438 tapeq2 7439 creur 9106 eqreznegel 9809 ltxr 9971 icoshftf1o 10187 elfzm11 10287 elfzomelpfzo 10437 nn0ennn 10655 nnesq 10881 rexfiuz 11500 cau4 11627 sumeq2 11870 fisumcom2 11949 fprodcom2fi 12137 dvdsflip 12362 bitsmod 12467 bitscmp 12469 divgcdcoprm0 12623 hashdvds 12743 4sqlem12 12925 imasaddfnlemg 13347 issgrpv 13437 issgrpn0 13438 mndpropd 13473 ismhm 13494 mhmpropd 13499 issubm2 13506 grppropd 13550 grpinvcnv 13601 conjghm 13813 conjnmzb 13817 ghmpropd 13820 cmnpropd 13832 ablpropd 13833 eqgabl 13867 rngpropd 13918 issrg 13928 ringpropd 14001 crngpropd 14002 opprnzrbg 14149 subrngpropd 14180 resrhm2b 14213 subrgpropd 14217 rhmpropd 14218 opprdomnbg 14238 lmodprop2d 14312 islssm 14321 islssmg 14322 lsspropdg 14395 df2idl2rng 14472 tpspropd 14710 tgss2 14753 lmbr2 14888 txcnmpt 14947 txhmeo 14993 blininf 15098 blres 15108 xmeterval 15109 xmspropd 15151 mspropd 15152 metequiv 15169 xmetxpbl 15182 limcdifap 15336 lgsquadlem1 15756 lgsquadlem2 15757 ushgredgedg 16024 ushgredgedgloop 16026 upgriswlkdc 16071 cbvrald 16152 bj-indeq 16292 |
| Copyright terms: Public domain | W3C validator |