![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 3bitr4g | Unicode version |
Description: More general version of 3bitr4i 212. Useful for converting definitions in a formula. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
3bitr4g.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3bitr4g.2 |
![]() ![]() ![]() ![]() ![]() ![]() |
3bitr4g.3 |
![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
3bitr4g |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3bitr4g.2 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 3bitr4g.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | bitrid 192 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4 | 3bitr4g.3 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() | |
5 | 3, 4 | bitr4di 198 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: bibi1d 233 pm5.32rd 451 orbi1d 792 stbid 833 dcbid 839 pm4.14dc 891 orbididc 955 3orbi123d 1322 3anbi123d 1323 xorbi2d 1391 xorbi1d 1392 nfbidf 1550 drnf1 1744 drnf2 1745 drsb1 1810 sbal2 2036 eubidh 2048 eubid 2049 mobidh 2076 mobid 2077 eqeq1 2200 eqeq2 2203 eleq1w 2254 eleq2w 2255 eleq1 2256 eleq2 2257 cbvabw 2316 eqabdv 2322 nfceqdf 2335 drnfc1 2353 drnfc2 2354 neeq1 2377 neeq2 2378 neleq1 2463 neleq2 2464 dfrex2dc 2485 ralbida 2488 rexbida 2489 ralbidv2 2496 rexbidv2 2497 ralbid2 2498 rexbid2 2499 r19.21t 2569 r19.23t 2601 reubida 2676 rmobida 2681 raleqf 2686 rexeqf 2687 reueq1f 2688 rmoeq1f 2689 cbvraldva2 2733 cbvrexdva2 2734 dfsbcq 2987 sbceqbid 2992 sbcbi2 3036 sbcbid 3043 eqsbc2 3046 sbcabel 3067 sbnfc2 3141 ssconb 3292 uneq1 3306 ineq1 3353 difin2 3421 reuun2 3442 reldisj 3498 undif4 3509 disjssun 3510 sbcssg 3555 eltpg 3663 raltpg 3671 rextpg 3672 r19.12sn 3684 opeq1 3804 opeq2 3805 intmin4 3898 dfiun2g 3944 iindif2m 3980 iinin2m 3981 breq 4031 breq1 4032 breq2 4033 treq 4133 opthg2 4268 poeq1 4330 soeq1 4346 frforeq1 4374 freq1 4375 frforeq2 4376 freq2 4377 frforeq3 4378 weeq1 4387 weeq2 4388 ordeq 4403 limeq 4408 rabxfrd 4500 iunpw 4511 opthprc 4710 releq 4741 sbcrel 4745 eqrel 4748 eqrelrel 4760 xpiindim 4799 brcnvg 4843 brresg 4950 resieq 4952 xpcanm 5105 xpcan2m 5106 dmsnopg 5137 dfco2a 5166 cnvpom 5208 cnvsom 5209 iotaeq 5223 sniota 5245 sbcfung 5278 fneq1 5342 fneq2 5343 feq1 5386 feq2 5387 feq3 5388 sbcfng 5401 sbcfg 5402 f1eq1 5454 f1eq2 5455 f1eq3 5456 foeq1 5472 foeq2 5473 foeq3 5474 f1oeq1 5488 f1oeq2 5489 f1oeq3 5490 fun11iun 5521 mpteqb 5648 dffo3 5705 fmptco 5724 dff13 5811 f1imaeq 5818 f1eqcocnv 5834 fliftcnv 5838 isoeq1 5844 isoeq2 5845 isoeq3 5846 isoeq4 5847 isoeq5 5848 isocnv2 5855 acexmid 5917 fnotovb 5961 mpoeq123 5977 ottposg 6308 dmtpos 6309 smoeq 6343 nnacan 6565 nnmcan 6572 ereq1 6594 ereq2 6595 elecg 6627 ereldm 6632 ixpiinm 6778 enfi 6929 elfi2 7031 fipwssg 7038 ctssdccl 7170 tapeq1 7312 tapeq2 7313 creur 8978 eqreznegel 9679 ltxr 9841 icoshftf1o 10057 elfzm11 10157 elfzomelpfzo 10298 nn0ennn 10504 nnesq 10730 rexfiuz 11133 cau4 11260 sumeq2 11502 fisumcom2 11581 fprodcom2fi 11769 dvdsflip 11993 divgcdcoprm0 12239 hashdvds 12359 4sqlem12 12540 imasaddfnlemg 12897 issgrpv 12987 issgrpn0 12988 mndpropd 13021 ismhm 13033 mhmpropd 13038 issubm2 13045 grppropd 13089 grpinvcnv 13140 conjghm 13346 conjnmzb 13350 ghmpropd 13353 cmnpropd 13365 ablpropd 13366 eqgabl 13400 rngpropd 13451 issrg 13461 ringpropd 13534 crngpropd 13535 opprnzrbg 13681 subrngpropd 13712 resrhm2b 13745 subrgpropd 13749 rhmpropd 13750 opprdomnbg 13770 lmodprop2d 13844 islssm 13853 islssmg 13854 lsspropdg 13927 df2idl2rng 14004 tpspropd 14204 tgss2 14247 lmbr2 14382 txcnmpt 14441 txhmeo 14487 blininf 14592 blres 14602 xmeterval 14603 xmspropd 14645 mspropd 14646 metequiv 14663 xmetxpbl 14676 limcdifap 14816 lgsquadlem1 15191 cbvrald 15280 bj-indeq 15421 |
Copyright terms: Public domain | W3C validator |