| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > 3bitr4g | Unicode version | ||
| Description: More general version of 3bitr4i 212. Useful for converting definitions in a formula. (Contributed by NM, 5-Aug-1993.) | 
| Ref | Expression | 
|---|---|
| 3bitr4g.1 | 
 | 
| 3bitr4g.2 | 
 | 
| 3bitr4g.3 | 
 | 
| Ref | Expression | 
|---|---|
| 3bitr4g | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | 3bitr4g.2 | 
. . 3
 | |
| 2 | 3bitr4g.1 | 
. . 3
 | |
| 3 | 1, 2 | bitrid 192 | 
. 2
 | 
| 4 | 3bitr4g.3 | 
. 2
 | |
| 5 | 3, 4 | bitr4di 198 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 | 
| This theorem depends on definitions: df-bi 117 | 
| This theorem is referenced by: bibi1d 233 pm5.32rd 451 orbi1d 792 stbid 833 dcbid 839 pm4.14dc 891 orbididc 955 3orbi123d 1322 3anbi123d 1323 xorbi2d 1391 xorbi1d 1392 nfbidf 1553 drnf1 1747 drnf2 1748 drsb1 1813 sbal2 2039 eubidh 2051 eubid 2052 mobidh 2079 mobid 2080 eqeq1 2203 eqeq2 2206 eleq1w 2257 eleq2w 2258 eleq1 2259 eleq2 2260 cbvabw 2319 eqabdv 2325 nfceqdf 2338 drnfc1 2356 drnfc2 2357 neeq1 2380 neeq2 2381 neleq1 2466 neleq2 2467 dfrex2dc 2488 ralbida 2491 rexbida 2492 ralbidv2 2499 rexbidv2 2500 ralbid2 2501 rexbid2 2502 r19.21t 2572 r19.23t 2604 reubida 2679 rmobida 2684 raleqf 2689 rexeqf 2690 reueq1f 2691 rmoeq1f 2692 cbvraldva2 2736 cbvrexdva2 2737 dfsbcq 2991 sbceqbid 2996 sbcbi2 3040 sbcbid 3047 eqsbc2 3050 sbcabel 3071 sbnfc2 3145 ssconb 3296 uneq1 3310 ineq1 3357 difin2 3425 reuun2 3446 reldisj 3502 undif4 3513 disjssun 3514 sbcssg 3559 eltpg 3667 raltpg 3675 rextpg 3676 r19.12sn 3688 opeq1 3808 opeq2 3809 intmin4 3902 dfiun2g 3948 iindif2m 3984 iinin2m 3985 breq 4035 breq1 4036 breq2 4037 treq 4137 opthg2 4272 poeq1 4334 soeq1 4350 frforeq1 4378 freq1 4379 frforeq2 4380 freq2 4381 frforeq3 4382 weeq1 4391 weeq2 4392 ordeq 4407 limeq 4412 rabxfrd 4504 iunpw 4515 opthprc 4714 releq 4745 sbcrel 4749 eqrel 4752 eqrelrel 4764 xpiindim 4803 brcnvg 4847 brresg 4954 resieq 4956 xpcanm 5109 xpcan2m 5110 dmsnopg 5141 dfco2a 5170 cnvpom 5212 cnvsom 5213 iotaeq 5227 sniota 5249 sbcfung 5282 fneq1 5346 fneq2 5347 feq1 5390 feq2 5391 feq3 5392 sbcfng 5405 sbcfg 5406 f1eq1 5458 f1eq2 5459 f1eq3 5460 foeq1 5476 foeq2 5477 foeq3 5478 f1oeq1 5492 f1oeq2 5493 f1oeq3 5494 fun11iun 5525 mpteqb 5652 dffo3 5709 fmptco 5728 dff13 5815 f1imaeq 5822 f1eqcocnv 5838 fliftcnv 5842 isoeq1 5848 isoeq2 5849 isoeq3 5850 isoeq4 5851 isoeq5 5852 isocnv2 5859 acexmid 5921 fnotovb 5965 mpoeq123 5981 ottposg 6313 dmtpos 6314 smoeq 6348 nnacan 6570 nnmcan 6577 ereq1 6599 ereq2 6600 elecg 6632 ereldm 6637 ixpiinm 6783 enfi 6934 elfi2 7038 fipwssg 7045 ctssdccl 7177 tapeq1 7319 tapeq2 7320 creur 8986 eqreznegel 9688 ltxr 9850 icoshftf1o 10066 elfzm11 10166 elfzomelpfzo 10307 nn0ennn 10525 nnesq 10751 rexfiuz 11154 cau4 11281 sumeq2 11524 fisumcom2 11603 fprodcom2fi 11791 dvdsflip 12016 divgcdcoprm0 12269 hashdvds 12389 4sqlem12 12571 imasaddfnlemg 12957 issgrpv 13047 issgrpn0 13048 mndpropd 13081 ismhm 13093 mhmpropd 13098 issubm2 13105 grppropd 13149 grpinvcnv 13200 conjghm 13406 conjnmzb 13410 ghmpropd 13413 cmnpropd 13425 ablpropd 13426 eqgabl 13460 rngpropd 13511 issrg 13521 ringpropd 13594 crngpropd 13595 opprnzrbg 13741 subrngpropd 13772 resrhm2b 13805 subrgpropd 13809 rhmpropd 13810 opprdomnbg 13830 lmodprop2d 13904 islssm 13913 islssmg 13914 lsspropdg 13987 df2idl2rng 14064 tpspropd 14272 tgss2 14315 lmbr2 14450 txcnmpt 14509 txhmeo 14555 blininf 14660 blres 14670 xmeterval 14671 xmspropd 14713 mspropd 14714 metequiv 14731 xmetxpbl 14744 limcdifap 14898 lgsquadlem1 15318 lgsquadlem2 15319 cbvrald 15434 bj-indeq 15575 | 
| Copyright terms: Public domain | W3C validator |