![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 3bitr4g | Unicode version |
Description: More general version of 3bitr4i 212. Useful for converting definitions in a formula. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
3bitr4g.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3bitr4g.2 |
![]() ![]() ![]() ![]() ![]() ![]() |
3bitr4g.3 |
![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
3bitr4g |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3bitr4g.2 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 3bitr4g.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | bitrid 192 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4 | 3bitr4g.3 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() | |
5 | 3, 4 | bitr4di 198 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: bibi1d 233 pm5.32rd 451 orbi1d 792 stbid 833 dcbid 839 pm4.14dc 891 orbididc 955 3orbi123d 1322 3anbi123d 1323 xorbi2d 1391 xorbi1d 1392 nfbidf 1550 drnf1 1744 drnf2 1745 drsb1 1810 sbal2 2036 eubidh 2048 eubid 2049 mobidh 2076 mobid 2077 eqeq1 2200 eqeq2 2203 eleq1w 2254 eleq2w 2255 eleq1 2256 eleq2 2257 cbvabw 2316 eqabdv 2322 nfceqdf 2335 drnfc1 2353 drnfc2 2354 neeq1 2377 neeq2 2378 neleq1 2463 neleq2 2464 dfrex2dc 2485 ralbida 2488 rexbida 2489 ralbidv2 2496 rexbidv2 2497 ralbid2 2498 rexbid2 2499 r19.21t 2569 r19.23t 2601 reubida 2676 rmobida 2681 raleqf 2686 rexeqf 2687 reueq1f 2688 rmoeq1f 2689 cbvraldva2 2733 cbvrexdva2 2734 dfsbcq 2988 sbceqbid 2993 sbcbi2 3037 sbcbid 3044 eqsbc2 3047 sbcabel 3068 sbnfc2 3142 ssconb 3293 uneq1 3307 ineq1 3354 difin2 3422 reuun2 3443 reldisj 3499 undif4 3510 disjssun 3511 sbcssg 3556 eltpg 3664 raltpg 3672 rextpg 3673 r19.12sn 3685 opeq1 3805 opeq2 3806 intmin4 3899 dfiun2g 3945 iindif2m 3981 iinin2m 3982 breq 4032 breq1 4033 breq2 4034 treq 4134 opthg2 4269 poeq1 4331 soeq1 4347 frforeq1 4375 freq1 4376 frforeq2 4377 freq2 4378 frforeq3 4379 weeq1 4388 weeq2 4389 ordeq 4404 limeq 4409 rabxfrd 4501 iunpw 4512 opthprc 4711 releq 4742 sbcrel 4746 eqrel 4749 eqrelrel 4761 xpiindim 4800 brcnvg 4844 brresg 4951 resieq 4953 xpcanm 5106 xpcan2m 5107 dmsnopg 5138 dfco2a 5167 cnvpom 5209 cnvsom 5210 iotaeq 5224 sniota 5246 sbcfung 5279 fneq1 5343 fneq2 5344 feq1 5387 feq2 5388 feq3 5389 sbcfng 5402 sbcfg 5403 f1eq1 5455 f1eq2 5456 f1eq3 5457 foeq1 5473 foeq2 5474 foeq3 5475 f1oeq1 5489 f1oeq2 5490 f1oeq3 5491 fun11iun 5522 mpteqb 5649 dffo3 5706 fmptco 5725 dff13 5812 f1imaeq 5819 f1eqcocnv 5835 fliftcnv 5839 isoeq1 5845 isoeq2 5846 isoeq3 5847 isoeq4 5848 isoeq5 5849 isocnv2 5856 acexmid 5918 fnotovb 5962 mpoeq123 5978 ottposg 6310 dmtpos 6311 smoeq 6345 nnacan 6567 nnmcan 6574 ereq1 6596 ereq2 6597 elecg 6629 ereldm 6634 ixpiinm 6780 enfi 6931 elfi2 7033 fipwssg 7040 ctssdccl 7172 tapeq1 7314 tapeq2 7315 creur 8980 eqreznegel 9682 ltxr 9844 icoshftf1o 10060 elfzm11 10160 elfzomelpfzo 10301 nn0ennn 10507 nnesq 10733 rexfiuz 11136 cau4 11263 sumeq2 11505 fisumcom2 11584 fprodcom2fi 11772 dvdsflip 11996 divgcdcoprm0 12242 hashdvds 12362 4sqlem12 12543 imasaddfnlemg 12900 issgrpv 12990 issgrpn0 12991 mndpropd 13024 ismhm 13036 mhmpropd 13041 issubm2 13048 grppropd 13092 grpinvcnv 13143 conjghm 13349 conjnmzb 13353 ghmpropd 13356 cmnpropd 13368 ablpropd 13369 eqgabl 13403 rngpropd 13454 issrg 13464 ringpropd 13537 crngpropd 13538 opprnzrbg 13684 subrngpropd 13715 resrhm2b 13748 subrgpropd 13752 rhmpropd 13753 opprdomnbg 13773 lmodprop2d 13847 islssm 13856 islssmg 13857 lsspropdg 13930 df2idl2rng 14007 tpspropd 14215 tgss2 14258 lmbr2 14393 txcnmpt 14452 txhmeo 14498 blininf 14603 blres 14613 xmeterval 14614 xmspropd 14656 mspropd 14657 metequiv 14674 xmetxpbl 14687 limcdifap 14841 lgsquadlem1 15234 lgsquadlem2 15235 cbvrald 15350 bj-indeq 15491 |
Copyright terms: Public domain | W3C validator |