| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3bitr4g | Unicode version | ||
| Description: More general version of 3bitr4i 212. Useful for converting definitions in a formula. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| 3bitr4g.1 |
|
| 3bitr4g.2 |
|
| 3bitr4g.3 |
|
| Ref | Expression |
|---|---|
| 3bitr4g |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3bitr4g.2 |
. . 3
| |
| 2 | 3bitr4g.1 |
. . 3
| |
| 3 | 1, 2 | bitrid 192 |
. 2
|
| 4 | 3bitr4g.3 |
. 2
| |
| 5 | 3, 4 | bitr4di 198 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: bibi1d 233 pm5.32rd 451 orbi1d 793 stbid 834 dcbid 840 pm4.14dc 892 orbididc 956 3orbi123d 1324 3anbi123d 1325 xorbi2d 1400 xorbi1d 1401 nfbidf 1563 drnf1 1757 drnf2 1758 drsb1 1823 sbal2 2049 eubidh 2061 eubid 2062 mobidh 2089 mobid 2090 eqeq1 2214 eqeq2 2217 eleq1w 2268 eleq2w 2269 eleq1 2270 eleq2 2271 cbvabw 2330 eqabdv 2336 nfceqdf 2349 drnfc1 2367 drnfc2 2368 neeq1 2391 neeq2 2392 neleq1 2477 neleq2 2478 dfrex2dc 2499 ralbida 2502 rexbida 2503 ralbidv2 2510 rexbidv2 2511 ralbid2 2512 rexbid2 2513 r19.21t 2583 r19.23t 2615 reubida 2690 rmobida 2696 raleqf 2701 rexeqf 2702 reueq1f 2703 rmoeq1f 2704 cbvraldva2 2749 cbvrexdva2 2750 dfsbcq 3007 sbceqbid 3012 sbcbi2 3056 sbcbid 3063 eqsbc2 3066 sbcabel 3088 sbnfc2 3162 ssconb 3314 uneq1 3328 ineq1 3375 difin2 3443 reuun2 3464 reldisj 3520 undif4 3531 disjssun 3532 sbcssg 3577 eltpg 3688 raltpg 3696 rextpg 3697 r19.12sn 3709 opeq1 3833 opeq2 3834 intmin4 3927 dfiun2g 3973 iindif2m 4009 iinin2m 4010 breq 4061 breq1 4062 breq2 4063 treq 4164 opthg2 4301 poeq1 4364 soeq1 4380 frforeq1 4408 freq1 4409 frforeq2 4410 freq2 4411 frforeq3 4412 weeq1 4421 weeq2 4422 ordeq 4437 limeq 4442 rabxfrd 4534 iunpw 4545 opthprc 4744 releq 4775 sbcrel 4779 eqrel 4782 eqrelrel 4794 xpiindim 4833 brcnvg 4877 brresg 4986 resieq 4988 xpcanm 5141 xpcan2m 5142 dmsnopg 5173 dfco2a 5202 cnvpom 5244 cnvsom 5245 iotaeq 5259 sniota 5281 sbcfung 5314 fneq1 5381 fneq2 5382 feq1 5428 feq2 5429 feq3 5430 sbcfng 5443 sbcfg 5444 f1eq1 5498 f1eq2 5499 f1eq3 5500 foeq1 5516 foeq2 5517 foeq3 5518 f1oeq1 5532 f1oeq2 5533 f1oeq3 5534 fun11iun 5565 mpteqb 5693 dffo3 5750 fmptco 5769 dff13 5860 f1imaeq 5867 f1eqcocnv 5883 fliftcnv 5887 isoeq1 5893 isoeq2 5894 isoeq3 5895 isoeq4 5896 isoeq5 5897 isocnv2 5904 acexmid 5966 fnotovb 6011 mpoeq123 6027 ottposg 6364 dmtpos 6365 smoeq 6399 nnacan 6621 nnmcan 6628 ereq1 6650 ereq2 6651 elecg 6683 ereldm 6688 ixpiinm 6834 enfi 6996 elfi2 7100 fipwssg 7107 ctssdccl 7239 tapeq1 7399 tapeq2 7400 creur 9067 eqreznegel 9770 ltxr 9932 icoshftf1o 10148 elfzm11 10248 elfzomelpfzo 10397 nn0ennn 10615 nnesq 10841 rexfiuz 11415 cau4 11542 sumeq2 11785 fisumcom2 11864 fprodcom2fi 12052 dvdsflip 12277 bitsmod 12382 bitscmp 12384 divgcdcoprm0 12538 hashdvds 12658 4sqlem12 12840 imasaddfnlemg 13261 issgrpv 13351 issgrpn0 13352 mndpropd 13387 ismhm 13408 mhmpropd 13413 issubm2 13420 grppropd 13464 grpinvcnv 13515 conjghm 13727 conjnmzb 13731 ghmpropd 13734 cmnpropd 13746 ablpropd 13747 eqgabl 13781 rngpropd 13832 issrg 13842 ringpropd 13915 crngpropd 13916 opprnzrbg 14062 subrngpropd 14093 resrhm2b 14126 subrgpropd 14130 rhmpropd 14131 opprdomnbg 14151 lmodprop2d 14225 islssm 14234 islssmg 14235 lsspropdg 14308 df2idl2rng 14385 tpspropd 14623 tgss2 14666 lmbr2 14801 txcnmpt 14860 txhmeo 14906 blininf 15011 blres 15021 xmeterval 15022 xmspropd 15064 mspropd 15065 metequiv 15082 xmetxpbl 15095 limcdifap 15249 lgsquadlem1 15669 lgsquadlem2 15670 cbvrald 15924 bj-indeq 16064 |
| Copyright terms: Public domain | W3C validator |