![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 3bitr4g | Unicode version |
Description: More general version of 3bitr4i 212. Useful for converting definitions in a formula. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
3bitr4g.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3bitr4g.2 |
![]() ![]() ![]() ![]() ![]() ![]() |
3bitr4g.3 |
![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
3bitr4g |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3bitr4g.2 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 3bitr4g.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | bitrid 192 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4 | 3bitr4g.3 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() | |
5 | 3, 4 | bitr4di 198 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: bibi1d 233 pm5.32rd 451 orbi1d 791 stbid 832 dcbid 838 pm4.14dc 890 orbididc 953 3orbi123d 1311 3anbi123d 1312 xorbi2d 1380 xorbi1d 1381 nfbidf 1539 drnf1 1733 drnf2 1734 drsb1 1799 sbal2 2020 eubidh 2032 eubid 2033 mobidh 2060 mobid 2061 eqeq1 2184 eqeq2 2187 eleq1w 2238 eleq2w 2239 eleq1 2240 eleq2 2241 cbvabw 2300 nfceqdf 2318 drnfc1 2336 drnfc2 2337 neeq1 2360 neeq2 2361 neleq1 2446 neleq2 2447 dfrex2dc 2468 ralbida 2471 rexbida 2472 ralbidv2 2479 rexbidv2 2480 ralbid2 2481 rexbid2 2482 r19.21t 2552 r19.23t 2584 reubida 2658 rmobida 2663 raleqf 2668 rexeqf 2669 reueq1f 2670 rmoeq1f 2671 cbvraldva2 2710 cbvrexdva2 2711 dfsbcq 2964 sbceqbid 2969 sbcbi2 3013 sbcbid 3020 eqsbc2 3023 sbcabel 3044 sbnfc2 3117 ssconb 3268 uneq1 3282 ineq1 3329 difin2 3397 reuun2 3418 reldisj 3474 undif4 3485 disjssun 3486 sbcssg 3532 eltpg 3637 raltpg 3645 rextpg 3646 r19.12sn 3658 opeq1 3778 opeq2 3779 intmin4 3872 dfiun2g 3918 iindif2m 3954 iinin2m 3955 breq 4005 breq1 4006 breq2 4007 treq 4107 opthg2 4239 poeq1 4299 soeq1 4315 frforeq1 4343 freq1 4344 frforeq2 4345 freq2 4346 frforeq3 4347 weeq1 4356 weeq2 4357 ordeq 4372 limeq 4377 rabxfrd 4469 iunpw 4480 opthprc 4677 releq 4708 sbcrel 4712 eqrel 4715 eqrelrel 4727 xpiindim 4764 brcnvg 4808 brresg 4915 resieq 4917 xpcanm 5068 xpcan2m 5069 dmsnopg 5100 dfco2a 5129 cnvpom 5171 cnvsom 5172 iotaeq 5186 sniota 5207 sbcfung 5240 fneq1 5304 fneq2 5305 feq1 5348 feq2 5349 feq3 5350 sbcfng 5363 sbcfg 5364 f1eq1 5416 f1eq2 5417 f1eq3 5418 foeq1 5434 foeq2 5435 foeq3 5436 f1oeq1 5449 f1oeq2 5450 f1oeq3 5451 fun11iun 5482 mpteqb 5606 dffo3 5663 fmptco 5682 dff13 5768 f1imaeq 5775 f1eqcocnv 5791 fliftcnv 5795 isoeq1 5801 isoeq2 5802 isoeq3 5803 isoeq4 5804 isoeq5 5805 isocnv2 5812 acexmid 5873 fnotovb 5917 mpoeq123 5933 ottposg 6255 dmtpos 6256 smoeq 6290 nnacan 6512 nnmcan 6519 ereq1 6541 ereq2 6542 elecg 6572 ereldm 6577 ixpiinm 6723 enfi 6872 elfi2 6970 fipwssg 6977 ctssdccl 7109 tapeq1 7250 tapeq2 7251 creur 8915 eqreznegel 9613 ltxr 9774 icoshftf1o 9990 elfzm11 10090 elfzomelpfzo 10230 nn0ennn 10432 nnesq 10639 rexfiuz 10997 cau4 11124 sumeq2 11366 fisumcom2 11445 fprodcom2fi 11633 dvdsflip 11856 divgcdcoprm0 12100 hashdvds 12220 imasaddfnlemg 12734 issgrpv 12809 issgrpn0 12810 mndpropd 12840 ismhm 12852 mhmpropd 12856 issubm2 12863 grppropd 12892 grpinvcnv 12937 cmnpropd 13096 ablpropd 13097 issrg 13146 ringpropd 13215 crngpropd 13216 subrgpropd 13367 tpspropd 13506 tgss2 13549 lmbr2 13684 txcnmpt 13743 txhmeo 13789 blininf 13894 blres 13904 xmeterval 13905 xmspropd 13947 mspropd 13948 metequiv 13965 xmetxpbl 13978 limcdifap 14101 cbvrald 14510 bj-indeq 14651 |
Copyright terms: Public domain | W3C validator |