| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3bitr4g | Unicode version | ||
| Description: More general version of 3bitr4i 212. Useful for converting definitions in a formula. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| 3bitr4g.1 |
|
| 3bitr4g.2 |
|
| 3bitr4g.3 |
|
| Ref | Expression |
|---|---|
| 3bitr4g |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3bitr4g.2 |
. . 3
| |
| 2 | 3bitr4g.1 |
. . 3
| |
| 3 | 1, 2 | bitrid 192 |
. 2
|
| 4 | 3bitr4g.3 |
. 2
| |
| 5 | 3, 4 | bitr4di 198 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: bibi1d 233 pm5.32rd 451 orbi1d 793 stbid 834 dcbid 840 pm4.14dc 892 orbididc 956 3orbi123d 1324 3anbi123d 1325 xorbi2d 1400 xorbi1d 1401 nfbidf 1562 drnf1 1756 drnf2 1757 drsb1 1822 sbal2 2048 eubidh 2060 eubid 2061 mobidh 2088 mobid 2089 eqeq1 2212 eqeq2 2215 eleq1w 2266 eleq2w 2267 eleq1 2268 eleq2 2269 cbvabw 2328 eqabdv 2334 nfceqdf 2347 drnfc1 2365 drnfc2 2366 neeq1 2389 neeq2 2390 neleq1 2475 neleq2 2476 dfrex2dc 2497 ralbida 2500 rexbida 2501 ralbidv2 2508 rexbidv2 2509 ralbid2 2510 rexbid2 2511 r19.21t 2581 r19.23t 2613 reubida 2688 rmobida 2693 raleqf 2698 rexeqf 2699 reueq1f 2700 rmoeq1f 2701 cbvraldva2 2745 cbvrexdva2 2746 dfsbcq 3000 sbceqbid 3005 sbcbi2 3049 sbcbid 3056 eqsbc2 3059 sbcabel 3080 sbnfc2 3154 ssconb 3306 uneq1 3320 ineq1 3367 difin2 3435 reuun2 3456 reldisj 3512 undif4 3523 disjssun 3524 sbcssg 3569 eltpg 3678 raltpg 3686 rextpg 3687 r19.12sn 3699 opeq1 3819 opeq2 3820 intmin4 3913 dfiun2g 3959 iindif2m 3995 iinin2m 3996 breq 4047 breq1 4048 breq2 4049 treq 4149 opthg2 4284 poeq1 4347 soeq1 4363 frforeq1 4391 freq1 4392 frforeq2 4393 freq2 4394 frforeq3 4395 weeq1 4404 weeq2 4405 ordeq 4420 limeq 4425 rabxfrd 4517 iunpw 4528 opthprc 4727 releq 4758 sbcrel 4762 eqrel 4765 eqrelrel 4777 xpiindim 4816 brcnvg 4860 brresg 4968 resieq 4970 xpcanm 5123 xpcan2m 5124 dmsnopg 5155 dfco2a 5184 cnvpom 5226 cnvsom 5227 iotaeq 5241 sniota 5263 sbcfung 5296 fneq1 5363 fneq2 5364 feq1 5410 feq2 5411 feq3 5412 sbcfng 5425 sbcfg 5426 f1eq1 5478 f1eq2 5479 f1eq3 5480 foeq1 5496 foeq2 5497 foeq3 5498 f1oeq1 5512 f1oeq2 5513 f1oeq3 5514 fun11iun 5545 mpteqb 5672 dffo3 5729 fmptco 5748 dff13 5839 f1imaeq 5846 f1eqcocnv 5862 fliftcnv 5866 isoeq1 5872 isoeq2 5873 isoeq3 5874 isoeq4 5875 isoeq5 5876 isocnv2 5883 acexmid 5945 fnotovb 5990 mpoeq123 6006 ottposg 6343 dmtpos 6344 smoeq 6378 nnacan 6600 nnmcan 6607 ereq1 6629 ereq2 6630 elecg 6662 ereldm 6667 ixpiinm 6813 enfi 6972 elfi2 7076 fipwssg 7083 ctssdccl 7215 tapeq1 7366 tapeq2 7367 creur 9034 eqreznegel 9737 ltxr 9899 icoshftf1o 10115 elfzm11 10215 elfzomelpfzo 10362 nn0ennn 10580 nnesq 10806 rexfiuz 11333 cau4 11460 sumeq2 11703 fisumcom2 11782 fprodcom2fi 11970 dvdsflip 12195 bitsmod 12300 bitscmp 12302 divgcdcoprm0 12456 hashdvds 12576 4sqlem12 12758 imasaddfnlemg 13179 issgrpv 13269 issgrpn0 13270 mndpropd 13305 ismhm 13326 mhmpropd 13331 issubm2 13338 grppropd 13382 grpinvcnv 13433 conjghm 13645 conjnmzb 13649 ghmpropd 13652 cmnpropd 13664 ablpropd 13665 eqgabl 13699 rngpropd 13750 issrg 13760 ringpropd 13833 crngpropd 13834 opprnzrbg 13980 subrngpropd 14011 resrhm2b 14044 subrgpropd 14048 rhmpropd 14049 opprdomnbg 14069 lmodprop2d 14143 islssm 14152 islssmg 14153 lsspropdg 14226 df2idl2rng 14303 tpspropd 14541 tgss2 14584 lmbr2 14719 txcnmpt 14778 txhmeo 14824 blininf 14929 blres 14939 xmeterval 14940 xmspropd 14982 mspropd 14983 metequiv 15000 xmetxpbl 15013 limcdifap 15167 lgsquadlem1 15587 lgsquadlem2 15588 cbvrald 15761 bj-indeq 15902 |
| Copyright terms: Public domain | W3C validator |