| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > biimpr | Unicode version | ||
| Description: Property of the biconditional connective. (Contributed by NM, 11-May-1999.) (Proof shortened by Wolf Lammen, 11-Nov-2012.) |
| Ref | Expression |
|---|---|
| biimpr |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-bi 117 |
. . 3
| |
| 2 | 1 | simpli 111 |
. 2
|
| 3 | 2 | simprd 114 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: bicom1 131 pm5.74 179 bi3ant 224 pm5.32d 450 notbi 668 nbn2 699 pm4.72 829 con4biddc 859 con1biimdc 875 bijadc 884 pclem6 1394 exbir 1457 simplbi2comg 1464 albi 1492 exbi 1628 equsexd 1753 cbv2h 1772 cbv2w 1774 sbiedh 1811 ceqsalt 2803 spcegft 2859 elab3gf 2930 euind 2967 reu6 2969 reuind 2985 sbciegft 3036 iota4 5270 fv3 5622 algcvgblem 12486 bj-inf2vnlem1 16105 |
| Copyright terms: Public domain | W3C validator |