Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > biimpr | Unicode version |
Description: Property of the biconditional connective. (Contributed by NM, 11-May-1999.) (Proof shortened by Wolf Lammen, 11-Nov-2012.) |
Ref | Expression |
---|---|
biimpr |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-bi 116 | . . 3 | |
2 | 1 | simpli 110 | . 2 |
3 | 2 | simprd 113 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: bicom1 130 pm5.74 178 bi3ant 223 pm5.32d 446 notbi 656 nbn2 687 pm4.72 813 con4biddc 843 con1biimdc 859 bijadc 868 pclem6 1356 exbir 1416 simplbi2comg 1423 albi 1448 exbi 1584 equsexd 1709 cbv2h 1728 cbv2w 1730 sbiedh 1767 ceqsalt 2738 spcegft 2791 elab3gf 2862 euind 2899 reu6 2901 reuind 2917 sbciegft 2967 iota4 5154 fv3 5492 algcvgblem 11930 bj-inf2vnlem1 13587 |
Copyright terms: Public domain | W3C validator |