| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > biimpr | Unicode version | ||
| Description: Property of the biconditional connective. (Contributed by NM, 11-May-1999.) (Proof shortened by Wolf Lammen, 11-Nov-2012.) | 
| Ref | Expression | 
|---|---|
| biimpr | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df-bi 117 | 
. . 3
 | |
| 2 | 1 | simpli 111 | 
. 2
 | 
| 3 | 2 | simprd 114 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 | 
| This theorem depends on definitions: df-bi 117 | 
| This theorem is referenced by: bicom1 131 pm5.74 179 bi3ant 224 pm5.32d 450 notbi 667 nbn2 698 pm4.72 828 con4biddc 858 con1biimdc 874 bijadc 883 pclem6 1385 exbir 1447 simplbi2comg 1454 albi 1482 exbi 1618 equsexd 1743 cbv2h 1762 cbv2w 1764 sbiedh 1801 ceqsalt 2789 spcegft 2843 elab3gf 2914 euind 2951 reu6 2953 reuind 2969 sbciegft 3020 iota4 5238 fv3 5581 algcvgblem 12217 bj-inf2vnlem1 15616 | 
| Copyright terms: Public domain | W3C validator |