Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > bi3ant | GIF version |
Description: Construct a biconditional in antecedent position. (Contributed by Wolf Lammen, 14-May-2013.) |
Ref | Expression |
---|---|
bi3ant.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
bi3ant | ⊢ (((𝜃 → 𝜏) → 𝜑) → (((𝜏 → 𝜃) → 𝜓) → ((𝜃 ↔ 𝜏) → 𝜒))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | biimp 117 | . . 3 ⊢ ((𝜃 ↔ 𝜏) → (𝜃 → 𝜏)) | |
2 | 1 | imim1i 60 | . 2 ⊢ (((𝜃 → 𝜏) → 𝜑) → ((𝜃 ↔ 𝜏) → 𝜑)) |
3 | biimpr 129 | . . 3 ⊢ ((𝜃 ↔ 𝜏) → (𝜏 → 𝜃)) | |
4 | 3 | imim1i 60 | . 2 ⊢ (((𝜏 → 𝜃) → 𝜓) → ((𝜃 ↔ 𝜏) → 𝜓)) |
5 | bi3ant.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
6 | 5 | imim3i 61 | . 2 ⊢ (((𝜃 ↔ 𝜏) → 𝜑) → (((𝜃 ↔ 𝜏) → 𝜓) → ((𝜃 ↔ 𝜏) → 𝜒))) |
7 | 2, 4, 6 | syl2im 38 | 1 ⊢ (((𝜃 → 𝜏) → 𝜑) → (((𝜏 → 𝜃) → 𝜓) → ((𝜃 ↔ 𝜏) → 𝜒))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: bisym 224 |
Copyright terms: Public domain | W3C validator |