| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > biadanii | Unicode version | ||
| Description: Inference associated with biadani 612. Add a conjunction to an equivalence. (Contributed by Jeff Madsen, 20-Jun-2011.) (Proof shortened by BJ, 4-Mar-2023.) | 
| Ref | Expression | 
|---|---|
| biadani.1 | 
 | 
| biadanii.2 | 
 | 
| Ref | Expression | 
|---|---|
| biadanii | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | biadanii.2 | 
. 2
 | |
| 2 | biadani.1 | 
. . 3
 | |
| 3 | 2 | biadani 612 | 
. 2
 | 
| 4 | 1, 3 | mpbi 145 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 | 
| This theorem depends on definitions: df-bi 117 | 
| This theorem is referenced by: bitsval 12108 ismhm 13093 isghm 13373 ghmpropd 13413 isrhm 13714 iscn2 14436 elply 14970 | 
| Copyright terms: Public domain | W3C validator |