ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  biadanii Unicode version

Theorem biadanii 603
Description: Inference associated with biadani 602. Add a conjunction to an equivalence. (Contributed by Jeff Madsen, 20-Jun-2011.) (Proof shortened by BJ, 4-Mar-2023.)
Hypotheses
Ref Expression
biadani.1  |-  ( ph  ->  ps )
biadanii.2  |-  ( ps 
->  ( ph  <->  ch )
)
Assertion
Ref Expression
biadanii  |-  ( ph  <->  ( ps  /\  ch )
)

Proof of Theorem biadanii
StepHypRef Expression
1 biadanii.2 . 2  |-  ( ps 
->  ( ph  <->  ch )
)
2 biadani.1 . . 3  |-  ( ph  ->  ps )
32biadani 602 . 2  |-  ( ( ps  ->  ( ph  <->  ch ) )  <->  ( ph  <->  ( ps  /\  ch )
) )
41, 3mpbi 144 1  |-  ( ph  <->  ( ps  /\  ch )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  iscn2  12800
  Copyright terms: Public domain W3C validator