| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ismhm | Unicode version | ||
| Description: Property of a monoid homomorphism. (Contributed by Mario Carneiro, 7-Mar-2015.) |
| Ref | Expression |
|---|---|
| ismhm.b |
|
| ismhm.c |
|
| ismhm.p |
|
| ismhm.q |
|
| ismhm.z |
|
| ismhm.y |
|
| Ref | Expression |
|---|---|
| ismhm |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-mhm 13161 |
. . 3
| |
| 2 | 1 | elmpocl 6122 |
. 2
|
| 3 | fnmap 6723 |
. . . . . . 7
| |
| 4 | ismhm.c |
. . . . . . . 8
| |
| 5 | basfn 12761 |
. . . . . . . . 9
| |
| 6 | simpr 110 |
. . . . . . . . . 10
| |
| 7 | 6 | elexd 2776 |
. . . . . . . . 9
|
| 8 | funfvex 5578 |
. . . . . . . . . 10
| |
| 9 | 8 | funfni 5361 |
. . . . . . . . 9
|
| 10 | 5, 7, 9 | sylancr 414 |
. . . . . . . 8
|
| 11 | 4, 10 | eqeltrid 2283 |
. . . . . . 7
|
| 12 | ismhm.b |
. . . . . . . 8
| |
| 13 | simpl 109 |
. . . . . . . . . 10
| |
| 14 | 13 | elexd 2776 |
. . . . . . . . 9
|
| 15 | funfvex 5578 |
. . . . . . . . . 10
| |
| 16 | 15 | funfni 5361 |
. . . . . . . . 9
|
| 17 | 5, 14, 16 | sylancr 414 |
. . . . . . . 8
|
| 18 | 12, 17 | eqeltrid 2283 |
. . . . . . 7
|
| 19 | fnovex 5958 |
. . . . . . 7
| |
| 20 | 3, 11, 18, 19 | mp3an2i 1353 |
. . . . . 6
|
| 21 | rabexg 4177 |
. . . . . 6
| |
| 22 | 20, 21 | syl 14 |
. . . . 5
|
| 23 | fveq2 5561 |
. . . . . . . . 9
| |
| 24 | 23, 4 | eqtr4di 2247 |
. . . . . . . 8
|
| 25 | fveq2 5561 |
. . . . . . . . 9
| |
| 26 | 25, 12 | eqtr4di 2247 |
. . . . . . . 8
|
| 27 | 24, 26 | oveqan12rd 5945 |
. . . . . . 7
|
| 28 | 26 | adantr 276 |
. . . . . . . . 9
|
| 29 | fveq2 5561 |
. . . . . . . . . . . . . 14
| |
| 30 | ismhm.p |
. . . . . . . . . . . . . 14
| |
| 31 | 29, 30 | eqtr4di 2247 |
. . . . . . . . . . . . 13
|
| 32 | 31 | oveqd 5942 |
. . . . . . . . . . . 12
|
| 33 | 32 | fveq2d 5565 |
. . . . . . . . . . 11
|
| 34 | fveq2 5561 |
. . . . . . . . . . . . 13
| |
| 35 | ismhm.q |
. . . . . . . . . . . . 13
| |
| 36 | 34, 35 | eqtr4di 2247 |
. . . . . . . . . . . 12
|
| 37 | 36 | oveqd 5942 |
. . . . . . . . . . 11
|
| 38 | 33, 37 | eqeqan12d 2212 |
. . . . . . . . . 10
|
| 39 | 28, 38 | raleqbidv 2709 |
. . . . . . . . 9
|
| 40 | 28, 39 | raleqbidv 2709 |
. . . . . . . 8
|
| 41 | fveq2 5561 |
. . . . . . . . . . 11
| |
| 42 | ismhm.z |
. . . . . . . . . . 11
| |
| 43 | 41, 42 | eqtr4di 2247 |
. . . . . . . . . 10
|
| 44 | 43 | fveq2d 5565 |
. . . . . . . . 9
|
| 45 | fveq2 5561 |
. . . . . . . . . 10
| |
| 46 | ismhm.y |
. . . . . . . . . 10
| |
| 47 | 45, 46 | eqtr4di 2247 |
. . . . . . . . 9
|
| 48 | 44, 47 | eqeqan12d 2212 |
. . . . . . . 8
|
| 49 | 40, 48 | anbi12d 473 |
. . . . . . 7
|
| 50 | 27, 49 | rabeqbidv 2758 |
. . . . . 6
|
| 51 | 50, 1 | ovmpoga 6056 |
. . . . 5
|
| 52 | 22, 51 | mpd3an3 1349 |
. . . 4
|
| 53 | 52 | eleq2d 2266 |
. . 3
|
| 54 | 11, 18 | elmapd 6730 |
. . . . 5
|
| 55 | 54 | anbi1d 465 |
. . . 4
|
| 56 | fveq1 5560 |
. . . . . . . 8
| |
| 57 | fveq1 5560 |
. . . . . . . . 9
| |
| 58 | fveq1 5560 |
. . . . . . . . 9
| |
| 59 | 57, 58 | oveq12d 5943 |
. . . . . . . 8
|
| 60 | 56, 59 | eqeq12d 2211 |
. . . . . . 7
|
| 61 | 60 | 2ralbidv 2521 |
. . . . . 6
|
| 62 | fveq1 5560 |
. . . . . . 7
| |
| 63 | 62 | eqeq1d 2205 |
. . . . . 6
|
| 64 | 61, 63 | anbi12d 473 |
. . . . 5
|
| 65 | 64 | elrab 2920 |
. . . 4
|
| 66 | 3anass 984 |
. . . 4
| |
| 67 | 55, 65, 66 | 3bitr4g 223 |
. . 3
|
| 68 | 53, 67 | bitrd 188 |
. 2
|
| 69 | 2, 68 | biadanii 613 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-cnex 7987 ax-resscn 7988 ax-1re 7990 ax-addrcl 7993 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-fv 5267 df-ov 5928 df-oprab 5929 df-mpo 5930 df-1st 6207 df-2nd 6208 df-map 6718 df-inn 9008 df-ndx 12706 df-slot 12707 df-base 12709 df-mhm 13161 |
| This theorem is referenced by: mhmf 13167 mhmpropd 13168 mhmlin 13169 mhm0 13170 idmhm 13171 mhmf1o 13172 0mhm 13188 resmhm 13189 resmhm2 13190 resmhm2b 13191 mhmco 13192 mhmfmhm 13323 ghmmhm 13459 srglmhm 13625 srgrmhm 13626 dfrhm2 13786 isrhm2d 13797 |
| Copyright terms: Public domain | W3C validator |