| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ismhm | Unicode version | ||
| Description: Property of a monoid homomorphism. (Contributed by Mario Carneiro, 7-Mar-2015.) |
| Ref | Expression |
|---|---|
| ismhm.b |
|
| ismhm.c |
|
| ismhm.p |
|
| ismhm.q |
|
| ismhm.z |
|
| ismhm.y |
|
| Ref | Expression |
|---|---|
| ismhm |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-mhm 13406 |
. . 3
| |
| 2 | 1 | elmpocl 6164 |
. 2
|
| 3 | fnmap 6765 |
. . . . . . 7
| |
| 4 | ismhm.c |
. . . . . . . 8
| |
| 5 | basfn 13005 |
. . . . . . . . 9
| |
| 6 | simpr 110 |
. . . . . . . . . 10
| |
| 7 | 6 | elexd 2790 |
. . . . . . . . 9
|
| 8 | funfvex 5616 |
. . . . . . . . . 10
| |
| 9 | 8 | funfni 5395 |
. . . . . . . . 9
|
| 10 | 5, 7, 9 | sylancr 414 |
. . . . . . . 8
|
| 11 | 4, 10 | eqeltrid 2294 |
. . . . . . 7
|
| 12 | ismhm.b |
. . . . . . . 8
| |
| 13 | simpl 109 |
. . . . . . . . . 10
| |
| 14 | 13 | elexd 2790 |
. . . . . . . . 9
|
| 15 | funfvex 5616 |
. . . . . . . . . 10
| |
| 16 | 15 | funfni 5395 |
. . . . . . . . 9
|
| 17 | 5, 14, 16 | sylancr 414 |
. . . . . . . 8
|
| 18 | 12, 17 | eqeltrid 2294 |
. . . . . . 7
|
| 19 | fnovex 6000 |
. . . . . . 7
| |
| 20 | 3, 11, 18, 19 | mp3an2i 1355 |
. . . . . 6
|
| 21 | rabexg 4203 |
. . . . . 6
| |
| 22 | 20, 21 | syl 14 |
. . . . 5
|
| 23 | fveq2 5599 |
. . . . . . . . 9
| |
| 24 | 23, 4 | eqtr4di 2258 |
. . . . . . . 8
|
| 25 | fveq2 5599 |
. . . . . . . . 9
| |
| 26 | 25, 12 | eqtr4di 2258 |
. . . . . . . 8
|
| 27 | 24, 26 | oveqan12rd 5987 |
. . . . . . 7
|
| 28 | 26 | adantr 276 |
. . . . . . . . 9
|
| 29 | fveq2 5599 |
. . . . . . . . . . . . . 14
| |
| 30 | ismhm.p |
. . . . . . . . . . . . . 14
| |
| 31 | 29, 30 | eqtr4di 2258 |
. . . . . . . . . . . . 13
|
| 32 | 31 | oveqd 5984 |
. . . . . . . . . . . 12
|
| 33 | 32 | fveq2d 5603 |
. . . . . . . . . . 11
|
| 34 | fveq2 5599 |
. . . . . . . . . . . . 13
| |
| 35 | ismhm.q |
. . . . . . . . . . . . 13
| |
| 36 | 34, 35 | eqtr4di 2258 |
. . . . . . . . . . . 12
|
| 37 | 36 | oveqd 5984 |
. . . . . . . . . . 11
|
| 38 | 33, 37 | eqeqan12d 2223 |
. . . . . . . . . 10
|
| 39 | 28, 38 | raleqbidv 2721 |
. . . . . . . . 9
|
| 40 | 28, 39 | raleqbidv 2721 |
. . . . . . . 8
|
| 41 | fveq2 5599 |
. . . . . . . . . . 11
| |
| 42 | ismhm.z |
. . . . . . . . . . 11
| |
| 43 | 41, 42 | eqtr4di 2258 |
. . . . . . . . . 10
|
| 44 | 43 | fveq2d 5603 |
. . . . . . . . 9
|
| 45 | fveq2 5599 |
. . . . . . . . . 10
| |
| 46 | ismhm.y |
. . . . . . . . . 10
| |
| 47 | 45, 46 | eqtr4di 2258 |
. . . . . . . . 9
|
| 48 | 44, 47 | eqeqan12d 2223 |
. . . . . . . 8
|
| 49 | 40, 48 | anbi12d 473 |
. . . . . . 7
|
| 50 | 27, 49 | rabeqbidv 2771 |
. . . . . 6
|
| 51 | 50, 1 | ovmpoga 6098 |
. . . . 5
|
| 52 | 22, 51 | mpd3an3 1351 |
. . . 4
|
| 53 | 52 | eleq2d 2277 |
. . 3
|
| 54 | 11, 18 | elmapd 6772 |
. . . . 5
|
| 55 | 54 | anbi1d 465 |
. . . 4
|
| 56 | fveq1 5598 |
. . . . . . . 8
| |
| 57 | fveq1 5598 |
. . . . . . . . 9
| |
| 58 | fveq1 5598 |
. . . . . . . . 9
| |
| 59 | 57, 58 | oveq12d 5985 |
. . . . . . . 8
|
| 60 | 56, 59 | eqeq12d 2222 |
. . . . . . 7
|
| 61 | 60 | 2ralbidv 2532 |
. . . . . 6
|
| 62 | fveq1 5598 |
. . . . . . 7
| |
| 63 | 62 | eqeq1d 2216 |
. . . . . 6
|
| 64 | 61, 63 | anbi12d 473 |
. . . . 5
|
| 65 | 64 | elrab 2936 |
. . . 4
|
| 66 | 3anass 985 |
. . . 4
| |
| 67 | 55, 65, 66 | 3bitr4g 223 |
. . 3
|
| 68 | 53, 67 | bitrd 188 |
. 2
|
| 69 | 2, 68 | biadanii 613 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-cnex 8051 ax-resscn 8052 ax-1re 8054 ax-addrcl 8057 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-ral 2491 df-rex 2492 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-iun 3943 df-br 4060 df-opab 4122 df-mpt 4123 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-fv 5298 df-ov 5970 df-oprab 5971 df-mpo 5972 df-1st 6249 df-2nd 6250 df-map 6760 df-inn 9072 df-ndx 12950 df-slot 12951 df-base 12953 df-mhm 13406 |
| This theorem is referenced by: mhmf 13412 mhmpropd 13413 mhmlin 13414 mhm0 13415 idmhm 13416 mhmf1o 13417 0mhm 13433 resmhm 13434 resmhm2 13435 resmhm2b 13436 mhmco 13437 mhmfmhm 13568 ghmmhm 13704 srglmhm 13870 srgrmhm 13871 dfrhm2 14031 isrhm2d 14042 |
| Copyright terms: Public domain | W3C validator |