Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ismhm | Unicode version |
Description: Property of a monoid homomorphism. (Contributed by Mario Carneiro, 7-Mar-2015.) |
Ref | Expression |
---|---|
ismhm.b | |
ismhm.c | |
ismhm.p | |
ismhm.q | |
ismhm.z | |
ismhm.y |
Ref | Expression |
---|---|
ismhm | MndHom |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-mhm 12714 | . . 3 MndHom | |
2 | 1 | elmpocl 6059 | . 2 MndHom |
3 | fnmap 6645 | . . . . . . 7 | |
4 | ismhm.c | . . . . . . . 8 | |
5 | basfn 12486 | . . . . . . . . 9 | |
6 | simpr 110 | . . . . . . . . . 10 | |
7 | 6 | elexd 2748 | . . . . . . . . 9 |
8 | funfvex 5524 | . . . . . . . . . 10 | |
9 | 8 | funfni 5308 | . . . . . . . . 9 |
10 | 5, 7, 9 | sylancr 414 | . . . . . . . 8 |
11 | 4, 10 | eqeltrid 2262 | . . . . . . 7 |
12 | ismhm.b | . . . . . . . 8 | |
13 | simpl 109 | . . . . . . . . . 10 | |
14 | 13 | elexd 2748 | . . . . . . . . 9 |
15 | funfvex 5524 | . . . . . . . . . 10 | |
16 | 15 | funfni 5308 | . . . . . . . . 9 |
17 | 5, 14, 16 | sylancr 414 | . . . . . . . 8 |
18 | 12, 17 | eqeltrid 2262 | . . . . . . 7 |
19 | fnovex 5898 | . . . . . . 7 | |
20 | 3, 11, 18, 19 | mp3an2i 1342 | . . . . . 6 |
21 | rabexg 4141 | . . . . . 6 | |
22 | 20, 21 | syl 14 | . . . . 5 |
23 | fveq2 5507 | . . . . . . . . 9 | |
24 | 23, 4 | eqtr4di 2226 | . . . . . . . 8 |
25 | fveq2 5507 | . . . . . . . . 9 | |
26 | 25, 12 | eqtr4di 2226 | . . . . . . . 8 |
27 | 24, 26 | oveqan12rd 5885 | . . . . . . 7 |
28 | 26 | adantr 276 | . . . . . . . . 9 |
29 | fveq2 5507 | . . . . . . . . . . . . . 14 | |
30 | ismhm.p | . . . . . . . . . . . . . 14 | |
31 | 29, 30 | eqtr4di 2226 | . . . . . . . . . . . . 13 |
32 | 31 | oveqd 5882 | . . . . . . . . . . . 12 |
33 | 32 | fveq2d 5511 | . . . . . . . . . . 11 |
34 | fveq2 5507 | . . . . . . . . . . . . 13 | |
35 | ismhm.q | . . . . . . . . . . . . 13 | |
36 | 34, 35 | eqtr4di 2226 | . . . . . . . . . . . 12 |
37 | 36 | oveqd 5882 | . . . . . . . . . . 11 |
38 | 33, 37 | eqeqan12d 2191 | . . . . . . . . . 10 |
39 | 28, 38 | raleqbidv 2682 | . . . . . . . . 9 |
40 | 28, 39 | raleqbidv 2682 | . . . . . . . 8 |
41 | fveq2 5507 | . . . . . . . . . . 11 | |
42 | ismhm.z | . . . . . . . . . . 11 | |
43 | 41, 42 | eqtr4di 2226 | . . . . . . . . . 10 |
44 | 43 | fveq2d 5511 | . . . . . . . . 9 |
45 | fveq2 5507 | . . . . . . . . . 10 | |
46 | ismhm.y | . . . . . . . . . 10 | |
47 | 45, 46 | eqtr4di 2226 | . . . . . . . . 9 |
48 | 44, 47 | eqeqan12d 2191 | . . . . . . . 8 |
49 | 40, 48 | anbi12d 473 | . . . . . . 7 |
50 | 27, 49 | rabeqbidv 2730 | . . . . . 6 |
51 | 50, 1 | ovmpoga 5994 | . . . . 5 MndHom |
52 | 22, 51 | mpd3an3 1338 | . . . 4 MndHom |
53 | 52 | eleq2d 2245 | . . 3 MndHom |
54 | 11, 18 | elmapd 6652 | . . . . 5 |
55 | 54 | anbi1d 465 | . . . 4 |
56 | fveq1 5506 | . . . . . . . 8 | |
57 | fveq1 5506 | . . . . . . . . 9 | |
58 | fveq1 5506 | . . . . . . . . 9 | |
59 | 57, 58 | oveq12d 5883 | . . . . . . . 8 |
60 | 56, 59 | eqeq12d 2190 | . . . . . . 7 |
61 | 60 | 2ralbidv 2499 | . . . . . 6 |
62 | fveq1 5506 | . . . . . . 7 | |
63 | 62 | eqeq1d 2184 | . . . . . 6 |
64 | 61, 63 | anbi12d 473 | . . . . 5 |
65 | 64 | elrab 2891 | . . . 4 |
66 | 3anass 982 | . . . 4 | |
67 | 55, 65, 66 | 3bitr4g 223 | . . 3 |
68 | 53, 67 | bitrd 188 | . 2 MndHom |
69 | 2, 68 | biadanii 613 | 1 MndHom |
Colors of variables: wff set class |
Syntax hints: wa 104 wb 105 w3a 978 wceq 1353 wcel 2146 wral 2453 crab 2457 cvv 2735 cxp 4618 wfn 5203 wf 5204 cfv 5208 (class class class)co 5865 cmap 6638 cbs 12429 cplusg 12493 c0g 12627 cmnd 12683 MndHom cmhm 12712 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-13 2148 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-pow 4169 ax-pr 4203 ax-un 4427 ax-setind 4530 ax-cnex 7877 ax-resscn 7878 ax-1re 7880 ax-addrcl 7883 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ne 2346 df-ral 2458 df-rex 2459 df-rab 2462 df-v 2737 df-sbc 2961 df-csb 3056 df-dif 3129 df-un 3131 df-in 3133 df-ss 3140 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-int 3841 df-iun 3884 df-br 3999 df-opab 4060 df-mpt 4061 df-id 4287 df-xp 4626 df-rel 4627 df-cnv 4628 df-co 4629 df-dm 4630 df-rn 4631 df-res 4632 df-ima 4633 df-iota 5170 df-fun 5210 df-fn 5211 df-f 5212 df-fv 5216 df-ov 5868 df-oprab 5869 df-mpo 5870 df-1st 6131 df-2nd 6132 df-map 6640 df-inn 8893 df-ndx 12432 df-slot 12433 df-base 12435 df-mhm 12714 |
This theorem is referenced by: mhmf 12719 mhmpropd 12720 mhmlin 12721 mhm0 12722 idmhm 12723 mhmf1o 12724 0mhm 12735 mhmco 12736 mhmfmhm 12842 srglmhm 12973 srgrmhm 12974 |
Copyright terms: Public domain | W3C validator |