| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ismhm | Unicode version | ||
| Description: Property of a monoid homomorphism. (Contributed by Mario Carneiro, 7-Mar-2015.) |
| Ref | Expression |
|---|---|
| ismhm.b |
|
| ismhm.c |
|
| ismhm.p |
|
| ismhm.q |
|
| ismhm.z |
|
| ismhm.y |
|
| Ref | Expression |
|---|---|
| ismhm |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-mhm 13291 |
. . 3
| |
| 2 | 1 | elmpocl 6141 |
. 2
|
| 3 | fnmap 6742 |
. . . . . . 7
| |
| 4 | ismhm.c |
. . . . . . . 8
| |
| 5 | basfn 12890 |
. . . . . . . . 9
| |
| 6 | simpr 110 |
. . . . . . . . . 10
| |
| 7 | 6 | elexd 2785 |
. . . . . . . . 9
|
| 8 | funfvex 5593 |
. . . . . . . . . 10
| |
| 9 | 8 | funfni 5376 |
. . . . . . . . 9
|
| 10 | 5, 7, 9 | sylancr 414 |
. . . . . . . 8
|
| 11 | 4, 10 | eqeltrid 2292 |
. . . . . . 7
|
| 12 | ismhm.b |
. . . . . . . 8
| |
| 13 | simpl 109 |
. . . . . . . . . 10
| |
| 14 | 13 | elexd 2785 |
. . . . . . . . 9
|
| 15 | funfvex 5593 |
. . . . . . . . . 10
| |
| 16 | 15 | funfni 5376 |
. . . . . . . . 9
|
| 17 | 5, 14, 16 | sylancr 414 |
. . . . . . . 8
|
| 18 | 12, 17 | eqeltrid 2292 |
. . . . . . 7
|
| 19 | fnovex 5977 |
. . . . . . 7
| |
| 20 | 3, 11, 18, 19 | mp3an2i 1355 |
. . . . . 6
|
| 21 | rabexg 4187 |
. . . . . 6
| |
| 22 | 20, 21 | syl 14 |
. . . . 5
|
| 23 | fveq2 5576 |
. . . . . . . . 9
| |
| 24 | 23, 4 | eqtr4di 2256 |
. . . . . . . 8
|
| 25 | fveq2 5576 |
. . . . . . . . 9
| |
| 26 | 25, 12 | eqtr4di 2256 |
. . . . . . . 8
|
| 27 | 24, 26 | oveqan12rd 5964 |
. . . . . . 7
|
| 28 | 26 | adantr 276 |
. . . . . . . . 9
|
| 29 | fveq2 5576 |
. . . . . . . . . . . . . 14
| |
| 30 | ismhm.p |
. . . . . . . . . . . . . 14
| |
| 31 | 29, 30 | eqtr4di 2256 |
. . . . . . . . . . . . 13
|
| 32 | 31 | oveqd 5961 |
. . . . . . . . . . . 12
|
| 33 | 32 | fveq2d 5580 |
. . . . . . . . . . 11
|
| 34 | fveq2 5576 |
. . . . . . . . . . . . 13
| |
| 35 | ismhm.q |
. . . . . . . . . . . . 13
| |
| 36 | 34, 35 | eqtr4di 2256 |
. . . . . . . . . . . 12
|
| 37 | 36 | oveqd 5961 |
. . . . . . . . . . 11
|
| 38 | 33, 37 | eqeqan12d 2221 |
. . . . . . . . . 10
|
| 39 | 28, 38 | raleqbidv 2718 |
. . . . . . . . 9
|
| 40 | 28, 39 | raleqbidv 2718 |
. . . . . . . 8
|
| 41 | fveq2 5576 |
. . . . . . . . . . 11
| |
| 42 | ismhm.z |
. . . . . . . . . . 11
| |
| 43 | 41, 42 | eqtr4di 2256 |
. . . . . . . . . 10
|
| 44 | 43 | fveq2d 5580 |
. . . . . . . . 9
|
| 45 | fveq2 5576 |
. . . . . . . . . 10
| |
| 46 | ismhm.y |
. . . . . . . . . 10
| |
| 47 | 45, 46 | eqtr4di 2256 |
. . . . . . . . 9
|
| 48 | 44, 47 | eqeqan12d 2221 |
. . . . . . . 8
|
| 49 | 40, 48 | anbi12d 473 |
. . . . . . 7
|
| 50 | 27, 49 | rabeqbidv 2767 |
. . . . . 6
|
| 51 | 50, 1 | ovmpoga 6075 |
. . . . 5
|
| 52 | 22, 51 | mpd3an3 1351 |
. . . 4
|
| 53 | 52 | eleq2d 2275 |
. . 3
|
| 54 | 11, 18 | elmapd 6749 |
. . . . 5
|
| 55 | 54 | anbi1d 465 |
. . . 4
|
| 56 | fveq1 5575 |
. . . . . . . 8
| |
| 57 | fveq1 5575 |
. . . . . . . . 9
| |
| 58 | fveq1 5575 |
. . . . . . . . 9
| |
| 59 | 57, 58 | oveq12d 5962 |
. . . . . . . 8
|
| 60 | 56, 59 | eqeq12d 2220 |
. . . . . . 7
|
| 61 | 60 | 2ralbidv 2530 |
. . . . . 6
|
| 62 | fveq1 5575 |
. . . . . . 7
| |
| 63 | 62 | eqeq1d 2214 |
. . . . . 6
|
| 64 | 61, 63 | anbi12d 473 |
. . . . 5
|
| 65 | 64 | elrab 2929 |
. . . 4
|
| 66 | 3anass 985 |
. . . 4
| |
| 67 | 55, 65, 66 | 3bitr4g 223 |
. . 3
|
| 68 | 53, 67 | bitrd 188 |
. 2
|
| 69 | 2, 68 | biadanii 613 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-setind 4585 ax-cnex 8016 ax-resscn 8017 ax-1re 8019 ax-addrcl 8022 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-ral 2489 df-rex 2490 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-iun 3929 df-br 4045 df-opab 4106 df-mpt 4107 df-id 4340 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-res 4687 df-ima 4688 df-iota 5232 df-fun 5273 df-fn 5274 df-f 5275 df-fv 5279 df-ov 5947 df-oprab 5948 df-mpo 5949 df-1st 6226 df-2nd 6227 df-map 6737 df-inn 9037 df-ndx 12835 df-slot 12836 df-base 12838 df-mhm 13291 |
| This theorem is referenced by: mhmf 13297 mhmpropd 13298 mhmlin 13299 mhm0 13300 idmhm 13301 mhmf1o 13302 0mhm 13318 resmhm 13319 resmhm2 13320 resmhm2b 13321 mhmco 13322 mhmfmhm 13453 ghmmhm 13589 srglmhm 13755 srgrmhm 13756 dfrhm2 13916 isrhm2d 13927 |
| Copyright terms: Public domain | W3C validator |