| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ismhm | Unicode version | ||
| Description: Property of a monoid homomorphism. (Contributed by Mario Carneiro, 7-Mar-2015.) |
| Ref | Expression |
|---|---|
| ismhm.b |
|
| ismhm.c |
|
| ismhm.p |
|
| ismhm.q |
|
| ismhm.z |
|
| ismhm.y |
|
| Ref | Expression |
|---|---|
| ismhm |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-mhm 13324 |
. . 3
| |
| 2 | 1 | elmpocl 6143 |
. 2
|
| 3 | fnmap 6744 |
. . . . . . 7
| |
| 4 | ismhm.c |
. . . . . . . 8
| |
| 5 | basfn 12923 |
. . . . . . . . 9
| |
| 6 | simpr 110 |
. . . . . . . . . 10
| |
| 7 | 6 | elexd 2785 |
. . . . . . . . 9
|
| 8 | funfvex 5595 |
. . . . . . . . . 10
| |
| 9 | 8 | funfni 5377 |
. . . . . . . . 9
|
| 10 | 5, 7, 9 | sylancr 414 |
. . . . . . . 8
|
| 11 | 4, 10 | eqeltrid 2292 |
. . . . . . 7
|
| 12 | ismhm.b |
. . . . . . . 8
| |
| 13 | simpl 109 |
. . . . . . . . . 10
| |
| 14 | 13 | elexd 2785 |
. . . . . . . . 9
|
| 15 | funfvex 5595 |
. . . . . . . . . 10
| |
| 16 | 15 | funfni 5377 |
. . . . . . . . 9
|
| 17 | 5, 14, 16 | sylancr 414 |
. . . . . . . 8
|
| 18 | 12, 17 | eqeltrid 2292 |
. . . . . . 7
|
| 19 | fnovex 5979 |
. . . . . . 7
| |
| 20 | 3, 11, 18, 19 | mp3an2i 1355 |
. . . . . 6
|
| 21 | rabexg 4188 |
. . . . . 6
| |
| 22 | 20, 21 | syl 14 |
. . . . 5
|
| 23 | fveq2 5578 |
. . . . . . . . 9
| |
| 24 | 23, 4 | eqtr4di 2256 |
. . . . . . . 8
|
| 25 | fveq2 5578 |
. . . . . . . . 9
| |
| 26 | 25, 12 | eqtr4di 2256 |
. . . . . . . 8
|
| 27 | 24, 26 | oveqan12rd 5966 |
. . . . . . 7
|
| 28 | 26 | adantr 276 |
. . . . . . . . 9
|
| 29 | fveq2 5578 |
. . . . . . . . . . . . . 14
| |
| 30 | ismhm.p |
. . . . . . . . . . . . . 14
| |
| 31 | 29, 30 | eqtr4di 2256 |
. . . . . . . . . . . . 13
|
| 32 | 31 | oveqd 5963 |
. . . . . . . . . . . 12
|
| 33 | 32 | fveq2d 5582 |
. . . . . . . . . . 11
|
| 34 | fveq2 5578 |
. . . . . . . . . . . . 13
| |
| 35 | ismhm.q |
. . . . . . . . . . . . 13
| |
| 36 | 34, 35 | eqtr4di 2256 |
. . . . . . . . . . . 12
|
| 37 | 36 | oveqd 5963 |
. . . . . . . . . . 11
|
| 38 | 33, 37 | eqeqan12d 2221 |
. . . . . . . . . 10
|
| 39 | 28, 38 | raleqbidv 2718 |
. . . . . . . . 9
|
| 40 | 28, 39 | raleqbidv 2718 |
. . . . . . . 8
|
| 41 | fveq2 5578 |
. . . . . . . . . . 11
| |
| 42 | ismhm.z |
. . . . . . . . . . 11
| |
| 43 | 41, 42 | eqtr4di 2256 |
. . . . . . . . . 10
|
| 44 | 43 | fveq2d 5582 |
. . . . . . . . 9
|
| 45 | fveq2 5578 |
. . . . . . . . . 10
| |
| 46 | ismhm.y |
. . . . . . . . . 10
| |
| 47 | 45, 46 | eqtr4di 2256 |
. . . . . . . . 9
|
| 48 | 44, 47 | eqeqan12d 2221 |
. . . . . . . 8
|
| 49 | 40, 48 | anbi12d 473 |
. . . . . . 7
|
| 50 | 27, 49 | rabeqbidv 2767 |
. . . . . 6
|
| 51 | 50, 1 | ovmpoga 6077 |
. . . . 5
|
| 52 | 22, 51 | mpd3an3 1351 |
. . . 4
|
| 53 | 52 | eleq2d 2275 |
. . 3
|
| 54 | 11, 18 | elmapd 6751 |
. . . . 5
|
| 55 | 54 | anbi1d 465 |
. . . 4
|
| 56 | fveq1 5577 |
. . . . . . . 8
| |
| 57 | fveq1 5577 |
. . . . . . . . 9
| |
| 58 | fveq1 5577 |
. . . . . . . . 9
| |
| 59 | 57, 58 | oveq12d 5964 |
. . . . . . . 8
|
| 60 | 56, 59 | eqeq12d 2220 |
. . . . . . 7
|
| 61 | 60 | 2ralbidv 2530 |
. . . . . 6
|
| 62 | fveq1 5577 |
. . . . . . 7
| |
| 63 | 62 | eqeq1d 2214 |
. . . . . 6
|
| 64 | 61, 63 | anbi12d 473 |
. . . . 5
|
| 65 | 64 | elrab 2929 |
. . . 4
|
| 66 | 3anass 985 |
. . . 4
| |
| 67 | 55, 65, 66 | 3bitr4g 223 |
. . 3
|
| 68 | 53, 67 | bitrd 188 |
. 2
|
| 69 | 2, 68 | biadanii 613 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4163 ax-pow 4219 ax-pr 4254 ax-un 4481 ax-setind 4586 ax-cnex 8018 ax-resscn 8019 ax-1re 8021 ax-addrcl 8024 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-ral 2489 df-rex 2490 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-iun 3929 df-br 4046 df-opab 4107 df-mpt 4108 df-id 4341 df-xp 4682 df-rel 4683 df-cnv 4684 df-co 4685 df-dm 4686 df-rn 4687 df-res 4688 df-ima 4689 df-iota 5233 df-fun 5274 df-fn 5275 df-f 5276 df-fv 5280 df-ov 5949 df-oprab 5950 df-mpo 5951 df-1st 6228 df-2nd 6229 df-map 6739 df-inn 9039 df-ndx 12868 df-slot 12869 df-base 12871 df-mhm 13324 |
| This theorem is referenced by: mhmf 13330 mhmpropd 13331 mhmlin 13332 mhm0 13333 idmhm 13334 mhmf1o 13335 0mhm 13351 resmhm 13352 resmhm2 13353 resmhm2b 13354 mhmco 13355 mhmfmhm 13486 ghmmhm 13622 srglmhm 13788 srgrmhm 13789 dfrhm2 13949 isrhm2d 13960 |
| Copyright terms: Public domain | W3C validator |