ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ismhm Unicode version

Theorem ismhm 12716
Description: Property of a monoid homomorphism. (Contributed by Mario Carneiro, 7-Mar-2015.)
Hypotheses
Ref Expression
ismhm.b  |-  B  =  ( Base `  S
)
ismhm.c  |-  C  =  ( Base `  T
)
ismhm.p  |-  .+  =  ( +g  `  S )
ismhm.q  |-  .+^  =  ( +g  `  T )
ismhm.z  |-  .0.  =  ( 0g `  S )
ismhm.y  |-  Y  =  ( 0g `  T
)
Assertion
Ref Expression
ismhm  |-  ( F  e.  ( S MndHom  T
)  <->  ( ( S  e.  Mnd  /\  T  e.  Mnd )  /\  ( F : B --> C  /\  A. x  e.  B  A. y  e.  B  ( F `  ( x  .+  y ) )  =  ( ( F `  x )  .+^  ( F `
 y ) )  /\  ( F `  .0.  )  =  Y
) ) )
Distinct variable groups:    x, y, B   
x, S, y    x, T, y    x, F, y
Allowed substitution hints:    C( x, y)    .+ ( x, y)    .+^ ( x, y)    Y( x, y)    .0. ( x, y)

Proof of Theorem ismhm
Dummy variables  f  s  t are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-mhm 12714 . . 3  |- MndHom  =  ( s  e.  Mnd , 
t  e.  Mnd  |->  { f  e.  ( (
Base `  t )  ^m  ( Base `  s
) )  |  ( A. x  e.  (
Base `  s ) A. y  e.  ( Base `  s ) ( f `  ( x ( +g  `  s
) y ) )  =  ( ( f `
 x ) ( +g  `  t ) ( f `  y
) )  /\  (
f `  ( 0g `  s ) )  =  ( 0g `  t
) ) } )
21elmpocl 6059 . 2  |-  ( F  e.  ( S MndHom  T
)  ->  ( S  e.  Mnd  /\  T  e. 
Mnd ) )
3 fnmap 6645 . . . . . . 7  |-  ^m  Fn  ( _V  X.  _V )
4 ismhm.c . . . . . . . 8  |-  C  =  ( Base `  T
)
5 basfn 12486 . . . . . . . . 9  |-  Base  Fn  _V
6 simpr 110 . . . . . . . . . 10  |-  ( ( S  e.  Mnd  /\  T  e.  Mnd )  ->  T  e.  Mnd )
76elexd 2748 . . . . . . . . 9  |-  ( ( S  e.  Mnd  /\  T  e.  Mnd )  ->  T  e.  _V )
8 funfvex 5524 . . . . . . . . . 10  |-  ( ( Fun  Base  /\  T  e. 
dom  Base )  ->  ( Base `  T )  e. 
_V )
98funfni 5308 . . . . . . . . 9  |-  ( (
Base  Fn  _V  /\  T  e.  _V )  ->  ( Base `  T )  e. 
_V )
105, 7, 9sylancr 414 . . . . . . . 8  |-  ( ( S  e.  Mnd  /\  T  e.  Mnd )  ->  ( Base `  T
)  e.  _V )
114, 10eqeltrid 2262 . . . . . . 7  |-  ( ( S  e.  Mnd  /\  T  e.  Mnd )  ->  C  e.  _V )
12 ismhm.b . . . . . . . 8  |-  B  =  ( Base `  S
)
13 simpl 109 . . . . . . . . . 10  |-  ( ( S  e.  Mnd  /\  T  e.  Mnd )  ->  S  e.  Mnd )
1413elexd 2748 . . . . . . . . 9  |-  ( ( S  e.  Mnd  /\  T  e.  Mnd )  ->  S  e.  _V )
15 funfvex 5524 . . . . . . . . . 10  |-  ( ( Fun  Base  /\  S  e. 
dom  Base )  ->  ( Base `  S )  e. 
_V )
1615funfni 5308 . . . . . . . . 9  |-  ( (
Base  Fn  _V  /\  S  e.  _V )  ->  ( Base `  S )  e. 
_V )
175, 14, 16sylancr 414 . . . . . . . 8  |-  ( ( S  e.  Mnd  /\  T  e.  Mnd )  ->  ( Base `  S
)  e.  _V )
1812, 17eqeltrid 2262 . . . . . . 7  |-  ( ( S  e.  Mnd  /\  T  e.  Mnd )  ->  B  e.  _V )
19 fnovex 5898 . . . . . . 7  |-  ( (  ^m  Fn  ( _V 
X.  _V )  /\  C  e.  _V  /\  B  e. 
_V )  ->  ( C  ^m  B )  e. 
_V )
203, 11, 18, 19mp3an2i 1342 . . . . . 6  |-  ( ( S  e.  Mnd  /\  T  e.  Mnd )  ->  ( C  ^m  B
)  e.  _V )
21 rabexg 4141 . . . . . 6  |-  ( ( C  ^m  B )  e.  _V  ->  { f  e.  ( C  ^m  B )  |  ( A. x  e.  B  A. y  e.  B  ( f `  (
x  .+  y )
)  =  ( ( f `  x ) 
.+^  ( f `  y ) )  /\  ( f `  .0.  )  =  Y ) }  e.  _V )
2220, 21syl 14 . . . . 5  |-  ( ( S  e.  Mnd  /\  T  e.  Mnd )  ->  { f  e.  ( C  ^m  B )  |  ( A. x  e.  B  A. y  e.  B  ( f `  ( x  .+  y
) )  =  ( ( f `  x
)  .+^  ( f `  y ) )  /\  ( f `  .0.  )  =  Y ) }  e.  _V )
23 fveq2 5507 . . . . . . . . 9  |-  ( t  =  T  ->  ( Base `  t )  =  ( Base `  T
) )
2423, 4eqtr4di 2226 . . . . . . . 8  |-  ( t  =  T  ->  ( Base `  t )  =  C )
25 fveq2 5507 . . . . . . . . 9  |-  ( s  =  S  ->  ( Base `  s )  =  ( Base `  S
) )
2625, 12eqtr4di 2226 . . . . . . . 8  |-  ( s  =  S  ->  ( Base `  s )  =  B )
2724, 26oveqan12rd 5885 . . . . . . 7  |-  ( ( s  =  S  /\  t  =  T )  ->  ( ( Base `  t
)  ^m  ( Base `  s ) )  =  ( C  ^m  B
) )
2826adantr 276 . . . . . . . . 9  |-  ( ( s  =  S  /\  t  =  T )  ->  ( Base `  s
)  =  B )
29 fveq2 5507 . . . . . . . . . . . . . 14  |-  ( s  =  S  ->  ( +g  `  s )  =  ( +g  `  S
) )
30 ismhm.p . . . . . . . . . . . . . 14  |-  .+  =  ( +g  `  S )
3129, 30eqtr4di 2226 . . . . . . . . . . . . 13  |-  ( s  =  S  ->  ( +g  `  s )  = 
.+  )
3231oveqd 5882 . . . . . . . . . . . 12  |-  ( s  =  S  ->  (
x ( +g  `  s
) y )  =  ( x  .+  y
) )
3332fveq2d 5511 . . . . . . . . . . 11  |-  ( s  =  S  ->  (
f `  ( x
( +g  `  s ) y ) )  =  ( f `  (
x  .+  y )
) )
34 fveq2 5507 . . . . . . . . . . . . 13  |-  ( t  =  T  ->  ( +g  `  t )  =  ( +g  `  T
) )
35 ismhm.q . . . . . . . . . . . . 13  |-  .+^  =  ( +g  `  T )
3634, 35eqtr4di 2226 . . . . . . . . . . . 12  |-  ( t  =  T  ->  ( +g  `  t )  = 
.+^  )
3736oveqd 5882 . . . . . . . . . . 11  |-  ( t  =  T  ->  (
( f `  x
) ( +g  `  t
) ( f `  y ) )  =  ( ( f `  x )  .+^  ( f `
 y ) ) )
3833, 37eqeqan12d 2191 . . . . . . . . . 10  |-  ( ( s  =  S  /\  t  =  T )  ->  ( ( f `  ( x ( +g  `  s ) y ) )  =  ( ( f `  x ) ( +g  `  t
) ( f `  y ) )  <->  ( f `  ( x  .+  y
) )  =  ( ( f `  x
)  .+^  ( f `  y ) ) ) )
3928, 38raleqbidv 2682 . . . . . . . . 9  |-  ( ( s  =  S  /\  t  =  T )  ->  ( A. y  e.  ( Base `  s
) ( f `  ( x ( +g  `  s ) y ) )  =  ( ( f `  x ) ( +g  `  t
) ( f `  y ) )  <->  A. y  e.  B  ( f `  ( x  .+  y
) )  =  ( ( f `  x
)  .+^  ( f `  y ) ) ) )
4028, 39raleqbidv 2682 . . . . . . . 8  |-  ( ( s  =  S  /\  t  =  T )  ->  ( A. x  e.  ( Base `  s
) A. y  e.  ( Base `  s
) ( f `  ( x ( +g  `  s ) y ) )  =  ( ( f `  x ) ( +g  `  t
) ( f `  y ) )  <->  A. x  e.  B  A. y  e.  B  ( f `  ( x  .+  y
) )  =  ( ( f `  x
)  .+^  ( f `  y ) ) ) )
41 fveq2 5507 . . . . . . . . . . 11  |-  ( s  =  S  ->  ( 0g `  s )  =  ( 0g `  S
) )
42 ismhm.z . . . . . . . . . . 11  |-  .0.  =  ( 0g `  S )
4341, 42eqtr4di 2226 . . . . . . . . . 10  |-  ( s  =  S  ->  ( 0g `  s )  =  .0.  )
4443fveq2d 5511 . . . . . . . . 9  |-  ( s  =  S  ->  (
f `  ( 0g `  s ) )  =  ( f `  .0.  ) )
45 fveq2 5507 . . . . . . . . . 10  |-  ( t  =  T  ->  ( 0g `  t )  =  ( 0g `  T
) )
46 ismhm.y . . . . . . . . . 10  |-  Y  =  ( 0g `  T
)
4745, 46eqtr4di 2226 . . . . . . . . 9  |-  ( t  =  T  ->  ( 0g `  t )  =  Y )
4844, 47eqeqan12d 2191 . . . . . . . 8  |-  ( ( s  =  S  /\  t  =  T )  ->  ( ( f `  ( 0g `  s ) )  =  ( 0g
`  t )  <->  ( f `  .0.  )  =  Y ) )
4940, 48anbi12d 473 . . . . . . 7  |-  ( ( s  =  S  /\  t  =  T )  ->  ( ( A. x  e.  ( Base `  s
) A. y  e.  ( Base `  s
) ( f `  ( x ( +g  `  s ) y ) )  =  ( ( f `  x ) ( +g  `  t
) ( f `  y ) )  /\  ( f `  ( 0g `  s ) )  =  ( 0g `  t ) )  <->  ( A. x  e.  B  A. y  e.  B  (
f `  ( x  .+  y ) )  =  ( ( f `  x )  .+^  ( f `
 y ) )  /\  ( f `  .0.  )  =  Y
) ) )
5027, 49rabeqbidv 2730 . . . . . 6  |-  ( ( s  =  S  /\  t  =  T )  ->  { f  e.  ( ( Base `  t
)  ^m  ( Base `  s ) )  |  ( A. x  e.  ( Base `  s
) A. y  e.  ( Base `  s
) ( f `  ( x ( +g  `  s ) y ) )  =  ( ( f `  x ) ( +g  `  t
) ( f `  y ) )  /\  ( f `  ( 0g `  s ) )  =  ( 0g `  t ) ) }  =  { f  e.  ( C  ^m  B
)  |  ( A. x  e.  B  A. y  e.  B  (
f `  ( x  .+  y ) )  =  ( ( f `  x )  .+^  ( f `
 y ) )  /\  ( f `  .0.  )  =  Y
) } )
5150, 1ovmpoga 5994 . . . . 5  |-  ( ( S  e.  Mnd  /\  T  e.  Mnd  /\  {
f  e.  ( C  ^m  B )  |  ( A. x  e.  B  A. y  e.  B  ( f `  ( x  .+  y ) )  =  ( ( f `  x ) 
.+^  ( f `  y ) )  /\  ( f `  .0.  )  =  Y ) }  e.  _V )  ->  ( S MndHom  T )  =  { f  e.  ( C  ^m  B
)  |  ( A. x  e.  B  A. y  e.  B  (
f `  ( x  .+  y ) )  =  ( ( f `  x )  .+^  ( f `
 y ) )  /\  ( f `  .0.  )  =  Y
) } )
5222, 51mpd3an3 1338 . . . 4  |-  ( ( S  e.  Mnd  /\  T  e.  Mnd )  ->  ( S MndHom  T )  =  { f  e.  ( C  ^m  B
)  |  ( A. x  e.  B  A. y  e.  B  (
f `  ( x  .+  y ) )  =  ( ( f `  x )  .+^  ( f `
 y ) )  /\  ( f `  .0.  )  =  Y
) } )
5352eleq2d 2245 . . 3  |-  ( ( S  e.  Mnd  /\  T  e.  Mnd )  ->  ( F  e.  ( S MndHom  T )  <->  F  e.  { f  e.  ( C  ^m  B )  |  ( A. x  e.  B  A. y  e.  B  ( f `  ( x  .+  y ) )  =  ( ( f `  x ) 
.+^  ( f `  y ) )  /\  ( f `  .0.  )  =  Y ) } ) )
5411, 18elmapd 6652 . . . . 5  |-  ( ( S  e.  Mnd  /\  T  e.  Mnd )  ->  ( F  e.  ( C  ^m  B )  <-> 
F : B --> C ) )
5554anbi1d 465 . . . 4  |-  ( ( S  e.  Mnd  /\  T  e.  Mnd )  ->  ( ( F  e.  ( C  ^m  B
)  /\  ( A. x  e.  B  A. y  e.  B  ( F `  ( x  .+  y ) )  =  ( ( F `  x )  .+^  ( F `
 y ) )  /\  ( F `  .0.  )  =  Y
) )  <->  ( F : B --> C  /\  ( A. x  e.  B  A. y  e.  B  ( F `  ( x 
.+  y ) )  =  ( ( F `
 x )  .+^  ( F `  y ) )  /\  ( F `
 .0.  )  =  Y ) ) ) )
56 fveq1 5506 . . . . . . . 8  |-  ( f  =  F  ->  (
f `  ( x  .+  y ) )  =  ( F `  (
x  .+  y )
) )
57 fveq1 5506 . . . . . . . . 9  |-  ( f  =  F  ->  (
f `  x )  =  ( F `  x ) )
58 fveq1 5506 . . . . . . . . 9  |-  ( f  =  F  ->  (
f `  y )  =  ( F `  y ) )
5957, 58oveq12d 5883 . . . . . . . 8  |-  ( f  =  F  ->  (
( f `  x
)  .+^  ( f `  y ) )  =  ( ( F `  x )  .+^  ( F `
 y ) ) )
6056, 59eqeq12d 2190 . . . . . . 7  |-  ( f  =  F  ->  (
( f `  (
x  .+  y )
)  =  ( ( f `  x ) 
.+^  ( f `  y ) )  <->  ( F `  ( x  .+  y
) )  =  ( ( F `  x
)  .+^  ( F `  y ) ) ) )
61602ralbidv 2499 . . . . . 6  |-  ( f  =  F  ->  ( A. x  e.  B  A. y  e.  B  ( f `  (
x  .+  y )
)  =  ( ( f `  x ) 
.+^  ( f `  y ) )  <->  A. x  e.  B  A. y  e.  B  ( F `  ( x  .+  y
) )  =  ( ( F `  x
)  .+^  ( F `  y ) ) ) )
62 fveq1 5506 . . . . . . 7  |-  ( f  =  F  ->  (
f `  .0.  )  =  ( F `  .0.  ) )
6362eqeq1d 2184 . . . . . 6  |-  ( f  =  F  ->  (
( f `  .0.  )  =  Y  <->  ( F `  .0.  )  =  Y ) )
6461, 63anbi12d 473 . . . . 5  |-  ( f  =  F  ->  (
( A. x  e.  B  A. y  e.  B  ( f `  ( x  .+  y ) )  =  ( ( f `  x ) 
.+^  ( f `  y ) )  /\  ( f `  .0.  )  =  Y )  <->  ( A. x  e.  B  A. y  e.  B  ( F `  ( x 
.+  y ) )  =  ( ( F `
 x )  .+^  ( F `  y ) )  /\  ( F `
 .0.  )  =  Y ) ) )
6564elrab 2891 . . . 4  |-  ( F  e.  { f  e.  ( C  ^m  B
)  |  ( A. x  e.  B  A. y  e.  B  (
f `  ( x  .+  y ) )  =  ( ( f `  x )  .+^  ( f `
 y ) )  /\  ( f `  .0.  )  =  Y
) }  <->  ( F  e.  ( C  ^m  B
)  /\  ( A. x  e.  B  A. y  e.  B  ( F `  ( x  .+  y ) )  =  ( ( F `  x )  .+^  ( F `
 y ) )  /\  ( F `  .0.  )  =  Y
) ) )
66 3anass 982 . . . 4  |-  ( ( F : B --> C  /\  A. x  e.  B  A. y  e.  B  ( F `  ( x  .+  y ) )  =  ( ( F `  x )  .+^  ( F `
 y ) )  /\  ( F `  .0.  )  =  Y
)  <->  ( F : B
--> C  /\  ( A. x  e.  B  A. y  e.  B  ( F `  ( x  .+  y ) )  =  ( ( F `  x )  .+^  ( F `
 y ) )  /\  ( F `  .0.  )  =  Y
) ) )
6755, 65, 663bitr4g 223 . . 3  |-  ( ( S  e.  Mnd  /\  T  e.  Mnd )  ->  ( F  e.  {
f  e.  ( C  ^m  B )  |  ( A. x  e.  B  A. y  e.  B  ( f `  ( x  .+  y ) )  =  ( ( f `  x ) 
.+^  ( f `  y ) )  /\  ( f `  .0.  )  =  Y ) } 
<->  ( F : B --> C  /\  A. x  e.  B  A. y  e.  B  ( F `  ( x  .+  y ) )  =  ( ( F `  x ) 
.+^  ( F `  y ) )  /\  ( F `  .0.  )  =  Y ) ) )
6853, 67bitrd 188 . 2  |-  ( ( S  e.  Mnd  /\  T  e.  Mnd )  ->  ( F  e.  ( S MndHom  T )  <->  ( F : B --> C  /\  A. x  e.  B  A. y  e.  B  ( F `  ( x  .+  y ) )  =  ( ( F `  x )  .+^  ( F `
 y ) )  /\  ( F `  .0.  )  =  Y
) ) )
692, 68biadanii 613 1  |-  ( F  e.  ( S MndHom  T
)  <->  ( ( S  e.  Mnd  /\  T  e.  Mnd )  /\  ( F : B --> C  /\  A. x  e.  B  A. y  e.  B  ( F `  ( x  .+  y ) )  =  ( ( F `  x )  .+^  ( F `
 y ) )  /\  ( F `  .0.  )  =  Y
) ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    /\ w3a 978    = wceq 1353    e. wcel 2146   A.wral 2453   {crab 2457   _Vcvv 2735    X. cxp 4618    Fn wfn 5203   -->wf 5204   ` cfv 5208  (class class class)co 5865    ^m cmap 6638   Basecbs 12429   +g cplusg 12493   0gc0g 12627   Mndcmnd 12683   MndHom cmhm 12712
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-13 2148  ax-14 2149  ax-ext 2157  ax-sep 4116  ax-pow 4169  ax-pr 4203  ax-un 4427  ax-setind 4530  ax-cnex 7877  ax-resscn 7878  ax-1re 7880  ax-addrcl 7883
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ne 2346  df-ral 2458  df-rex 2459  df-rab 2462  df-v 2737  df-sbc 2961  df-csb 3056  df-dif 3129  df-un 3131  df-in 3133  df-ss 3140  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-int 3841  df-iun 3884  df-br 3999  df-opab 4060  df-mpt 4061  df-id 4287  df-xp 4626  df-rel 4627  df-cnv 4628  df-co 4629  df-dm 4630  df-rn 4631  df-res 4632  df-ima 4633  df-iota 5170  df-fun 5210  df-fn 5211  df-f 5212  df-fv 5216  df-ov 5868  df-oprab 5869  df-mpo 5870  df-1st 6131  df-2nd 6132  df-map 6640  df-inn 8893  df-ndx 12432  df-slot 12433  df-base 12435  df-mhm 12714
This theorem is referenced by:  mhmf  12719  mhmpropd  12720  mhmlin  12721  mhm0  12722  idmhm  12723  mhmf1o  12724  0mhm  12735  mhmco  12736  mhmfmhm  12842  srglmhm  12973  srgrmhm  12974
  Copyright terms: Public domain W3C validator