ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ismhm Unicode version

Theorem ismhm 13408
Description: Property of a monoid homomorphism. (Contributed by Mario Carneiro, 7-Mar-2015.)
Hypotheses
Ref Expression
ismhm.b  |-  B  =  ( Base `  S
)
ismhm.c  |-  C  =  ( Base `  T
)
ismhm.p  |-  .+  =  ( +g  `  S )
ismhm.q  |-  .+^  =  ( +g  `  T )
ismhm.z  |-  .0.  =  ( 0g `  S )
ismhm.y  |-  Y  =  ( 0g `  T
)
Assertion
Ref Expression
ismhm  |-  ( F  e.  ( S MndHom  T
)  <->  ( ( S  e.  Mnd  /\  T  e.  Mnd )  /\  ( F : B --> C  /\  A. x  e.  B  A. y  e.  B  ( F `  ( x  .+  y ) )  =  ( ( F `  x )  .+^  ( F `
 y ) )  /\  ( F `  .0.  )  =  Y
) ) )
Distinct variable groups:    x, y, B   
x, S, y    x, T, y    x, F, y
Allowed substitution hints:    C( x, y)    .+ ( x, y)    .+^ ( x, y)    Y( x, y)    .0. ( x, y)

Proof of Theorem ismhm
Dummy variables  f  s  t are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-mhm 13406 . . 3  |- MndHom  =  ( s  e.  Mnd , 
t  e.  Mnd  |->  { f  e.  ( (
Base `  t )  ^m  ( Base `  s
) )  |  ( A. x  e.  (
Base `  s ) A. y  e.  ( Base `  s ) ( f `  ( x ( +g  `  s
) y ) )  =  ( ( f `
 x ) ( +g  `  t ) ( f `  y
) )  /\  (
f `  ( 0g `  s ) )  =  ( 0g `  t
) ) } )
21elmpocl 6164 . 2  |-  ( F  e.  ( S MndHom  T
)  ->  ( S  e.  Mnd  /\  T  e. 
Mnd ) )
3 fnmap 6765 . . . . . . 7  |-  ^m  Fn  ( _V  X.  _V )
4 ismhm.c . . . . . . . 8  |-  C  =  ( Base `  T
)
5 basfn 13005 . . . . . . . . 9  |-  Base  Fn  _V
6 simpr 110 . . . . . . . . . 10  |-  ( ( S  e.  Mnd  /\  T  e.  Mnd )  ->  T  e.  Mnd )
76elexd 2790 . . . . . . . . 9  |-  ( ( S  e.  Mnd  /\  T  e.  Mnd )  ->  T  e.  _V )
8 funfvex 5616 . . . . . . . . . 10  |-  ( ( Fun  Base  /\  T  e. 
dom  Base )  ->  ( Base `  T )  e. 
_V )
98funfni 5395 . . . . . . . . 9  |-  ( (
Base  Fn  _V  /\  T  e.  _V )  ->  ( Base `  T )  e. 
_V )
105, 7, 9sylancr 414 . . . . . . . 8  |-  ( ( S  e.  Mnd  /\  T  e.  Mnd )  ->  ( Base `  T
)  e.  _V )
114, 10eqeltrid 2294 . . . . . . 7  |-  ( ( S  e.  Mnd  /\  T  e.  Mnd )  ->  C  e.  _V )
12 ismhm.b . . . . . . . 8  |-  B  =  ( Base `  S
)
13 simpl 109 . . . . . . . . . 10  |-  ( ( S  e.  Mnd  /\  T  e.  Mnd )  ->  S  e.  Mnd )
1413elexd 2790 . . . . . . . . 9  |-  ( ( S  e.  Mnd  /\  T  e.  Mnd )  ->  S  e.  _V )
15 funfvex 5616 . . . . . . . . . 10  |-  ( ( Fun  Base  /\  S  e. 
dom  Base )  ->  ( Base `  S )  e. 
_V )
1615funfni 5395 . . . . . . . . 9  |-  ( (
Base  Fn  _V  /\  S  e.  _V )  ->  ( Base `  S )  e. 
_V )
175, 14, 16sylancr 414 . . . . . . . 8  |-  ( ( S  e.  Mnd  /\  T  e.  Mnd )  ->  ( Base `  S
)  e.  _V )
1812, 17eqeltrid 2294 . . . . . . 7  |-  ( ( S  e.  Mnd  /\  T  e.  Mnd )  ->  B  e.  _V )
19 fnovex 6000 . . . . . . 7  |-  ( (  ^m  Fn  ( _V 
X.  _V )  /\  C  e.  _V  /\  B  e. 
_V )  ->  ( C  ^m  B )  e. 
_V )
203, 11, 18, 19mp3an2i 1355 . . . . . 6  |-  ( ( S  e.  Mnd  /\  T  e.  Mnd )  ->  ( C  ^m  B
)  e.  _V )
21 rabexg 4203 . . . . . 6  |-  ( ( C  ^m  B )  e.  _V  ->  { f  e.  ( C  ^m  B )  |  ( A. x  e.  B  A. y  e.  B  ( f `  (
x  .+  y )
)  =  ( ( f `  x ) 
.+^  ( f `  y ) )  /\  ( f `  .0.  )  =  Y ) }  e.  _V )
2220, 21syl 14 . . . . 5  |-  ( ( S  e.  Mnd  /\  T  e.  Mnd )  ->  { f  e.  ( C  ^m  B )  |  ( A. x  e.  B  A. y  e.  B  ( f `  ( x  .+  y
) )  =  ( ( f `  x
)  .+^  ( f `  y ) )  /\  ( f `  .0.  )  =  Y ) }  e.  _V )
23 fveq2 5599 . . . . . . . . 9  |-  ( t  =  T  ->  ( Base `  t )  =  ( Base `  T
) )
2423, 4eqtr4di 2258 . . . . . . . 8  |-  ( t  =  T  ->  ( Base `  t )  =  C )
25 fveq2 5599 . . . . . . . . 9  |-  ( s  =  S  ->  ( Base `  s )  =  ( Base `  S
) )
2625, 12eqtr4di 2258 . . . . . . . 8  |-  ( s  =  S  ->  ( Base `  s )  =  B )
2724, 26oveqan12rd 5987 . . . . . . 7  |-  ( ( s  =  S  /\  t  =  T )  ->  ( ( Base `  t
)  ^m  ( Base `  s ) )  =  ( C  ^m  B
) )
2826adantr 276 . . . . . . . . 9  |-  ( ( s  =  S  /\  t  =  T )  ->  ( Base `  s
)  =  B )
29 fveq2 5599 . . . . . . . . . . . . . 14  |-  ( s  =  S  ->  ( +g  `  s )  =  ( +g  `  S
) )
30 ismhm.p . . . . . . . . . . . . . 14  |-  .+  =  ( +g  `  S )
3129, 30eqtr4di 2258 . . . . . . . . . . . . 13  |-  ( s  =  S  ->  ( +g  `  s )  = 
.+  )
3231oveqd 5984 . . . . . . . . . . . 12  |-  ( s  =  S  ->  (
x ( +g  `  s
) y )  =  ( x  .+  y
) )
3332fveq2d 5603 . . . . . . . . . . 11  |-  ( s  =  S  ->  (
f `  ( x
( +g  `  s ) y ) )  =  ( f `  (
x  .+  y )
) )
34 fveq2 5599 . . . . . . . . . . . . 13  |-  ( t  =  T  ->  ( +g  `  t )  =  ( +g  `  T
) )
35 ismhm.q . . . . . . . . . . . . 13  |-  .+^  =  ( +g  `  T )
3634, 35eqtr4di 2258 . . . . . . . . . . . 12  |-  ( t  =  T  ->  ( +g  `  t )  = 
.+^  )
3736oveqd 5984 . . . . . . . . . . 11  |-  ( t  =  T  ->  (
( f `  x
) ( +g  `  t
) ( f `  y ) )  =  ( ( f `  x )  .+^  ( f `
 y ) ) )
3833, 37eqeqan12d 2223 . . . . . . . . . 10  |-  ( ( s  =  S  /\  t  =  T )  ->  ( ( f `  ( x ( +g  `  s ) y ) )  =  ( ( f `  x ) ( +g  `  t
) ( f `  y ) )  <->  ( f `  ( x  .+  y
) )  =  ( ( f `  x
)  .+^  ( f `  y ) ) ) )
3928, 38raleqbidv 2721 . . . . . . . . 9  |-  ( ( s  =  S  /\  t  =  T )  ->  ( A. y  e.  ( Base `  s
) ( f `  ( x ( +g  `  s ) y ) )  =  ( ( f `  x ) ( +g  `  t
) ( f `  y ) )  <->  A. y  e.  B  ( f `  ( x  .+  y
) )  =  ( ( f `  x
)  .+^  ( f `  y ) ) ) )
4028, 39raleqbidv 2721 . . . . . . . 8  |-  ( ( s  =  S  /\  t  =  T )  ->  ( A. x  e.  ( Base `  s
) A. y  e.  ( Base `  s
) ( f `  ( x ( +g  `  s ) y ) )  =  ( ( f `  x ) ( +g  `  t
) ( f `  y ) )  <->  A. x  e.  B  A. y  e.  B  ( f `  ( x  .+  y
) )  =  ( ( f `  x
)  .+^  ( f `  y ) ) ) )
41 fveq2 5599 . . . . . . . . . . 11  |-  ( s  =  S  ->  ( 0g `  s )  =  ( 0g `  S
) )
42 ismhm.z . . . . . . . . . . 11  |-  .0.  =  ( 0g `  S )
4341, 42eqtr4di 2258 . . . . . . . . . 10  |-  ( s  =  S  ->  ( 0g `  s )  =  .0.  )
4443fveq2d 5603 . . . . . . . . 9  |-  ( s  =  S  ->  (
f `  ( 0g `  s ) )  =  ( f `  .0.  ) )
45 fveq2 5599 . . . . . . . . . 10  |-  ( t  =  T  ->  ( 0g `  t )  =  ( 0g `  T
) )
46 ismhm.y . . . . . . . . . 10  |-  Y  =  ( 0g `  T
)
4745, 46eqtr4di 2258 . . . . . . . . 9  |-  ( t  =  T  ->  ( 0g `  t )  =  Y )
4844, 47eqeqan12d 2223 . . . . . . . 8  |-  ( ( s  =  S  /\  t  =  T )  ->  ( ( f `  ( 0g `  s ) )  =  ( 0g
`  t )  <->  ( f `  .0.  )  =  Y ) )
4940, 48anbi12d 473 . . . . . . 7  |-  ( ( s  =  S  /\  t  =  T )  ->  ( ( A. x  e.  ( Base `  s
) A. y  e.  ( Base `  s
) ( f `  ( x ( +g  `  s ) y ) )  =  ( ( f `  x ) ( +g  `  t
) ( f `  y ) )  /\  ( f `  ( 0g `  s ) )  =  ( 0g `  t ) )  <->  ( A. x  e.  B  A. y  e.  B  (
f `  ( x  .+  y ) )  =  ( ( f `  x )  .+^  ( f `
 y ) )  /\  ( f `  .0.  )  =  Y
) ) )
5027, 49rabeqbidv 2771 . . . . . 6  |-  ( ( s  =  S  /\  t  =  T )  ->  { f  e.  ( ( Base `  t
)  ^m  ( Base `  s ) )  |  ( A. x  e.  ( Base `  s
) A. y  e.  ( Base `  s
) ( f `  ( x ( +g  `  s ) y ) )  =  ( ( f `  x ) ( +g  `  t
) ( f `  y ) )  /\  ( f `  ( 0g `  s ) )  =  ( 0g `  t ) ) }  =  { f  e.  ( C  ^m  B
)  |  ( A. x  e.  B  A. y  e.  B  (
f `  ( x  .+  y ) )  =  ( ( f `  x )  .+^  ( f `
 y ) )  /\  ( f `  .0.  )  =  Y
) } )
5150, 1ovmpoga 6098 . . . . 5  |-  ( ( S  e.  Mnd  /\  T  e.  Mnd  /\  {
f  e.  ( C  ^m  B )  |  ( A. x  e.  B  A. y  e.  B  ( f `  ( x  .+  y ) )  =  ( ( f `  x ) 
.+^  ( f `  y ) )  /\  ( f `  .0.  )  =  Y ) }  e.  _V )  ->  ( S MndHom  T )  =  { f  e.  ( C  ^m  B
)  |  ( A. x  e.  B  A. y  e.  B  (
f `  ( x  .+  y ) )  =  ( ( f `  x )  .+^  ( f `
 y ) )  /\  ( f `  .0.  )  =  Y
) } )
5222, 51mpd3an3 1351 . . . 4  |-  ( ( S  e.  Mnd  /\  T  e.  Mnd )  ->  ( S MndHom  T )  =  { f  e.  ( C  ^m  B
)  |  ( A. x  e.  B  A. y  e.  B  (
f `  ( x  .+  y ) )  =  ( ( f `  x )  .+^  ( f `
 y ) )  /\  ( f `  .0.  )  =  Y
) } )
5352eleq2d 2277 . . 3  |-  ( ( S  e.  Mnd  /\  T  e.  Mnd )  ->  ( F  e.  ( S MndHom  T )  <->  F  e.  { f  e.  ( C  ^m  B )  |  ( A. x  e.  B  A. y  e.  B  ( f `  ( x  .+  y ) )  =  ( ( f `  x ) 
.+^  ( f `  y ) )  /\  ( f `  .0.  )  =  Y ) } ) )
5411, 18elmapd 6772 . . . . 5  |-  ( ( S  e.  Mnd  /\  T  e.  Mnd )  ->  ( F  e.  ( C  ^m  B )  <-> 
F : B --> C ) )
5554anbi1d 465 . . . 4  |-  ( ( S  e.  Mnd  /\  T  e.  Mnd )  ->  ( ( F  e.  ( C  ^m  B
)  /\  ( A. x  e.  B  A. y  e.  B  ( F `  ( x  .+  y ) )  =  ( ( F `  x )  .+^  ( F `
 y ) )  /\  ( F `  .0.  )  =  Y
) )  <->  ( F : B --> C  /\  ( A. x  e.  B  A. y  e.  B  ( F `  ( x 
.+  y ) )  =  ( ( F `
 x )  .+^  ( F `  y ) )  /\  ( F `
 .0.  )  =  Y ) ) ) )
56 fveq1 5598 . . . . . . . 8  |-  ( f  =  F  ->  (
f `  ( x  .+  y ) )  =  ( F `  (
x  .+  y )
) )
57 fveq1 5598 . . . . . . . . 9  |-  ( f  =  F  ->  (
f `  x )  =  ( F `  x ) )
58 fveq1 5598 . . . . . . . . 9  |-  ( f  =  F  ->  (
f `  y )  =  ( F `  y ) )
5957, 58oveq12d 5985 . . . . . . . 8  |-  ( f  =  F  ->  (
( f `  x
)  .+^  ( f `  y ) )  =  ( ( F `  x )  .+^  ( F `
 y ) ) )
6056, 59eqeq12d 2222 . . . . . . 7  |-  ( f  =  F  ->  (
( f `  (
x  .+  y )
)  =  ( ( f `  x ) 
.+^  ( f `  y ) )  <->  ( F `  ( x  .+  y
) )  =  ( ( F `  x
)  .+^  ( F `  y ) ) ) )
61602ralbidv 2532 . . . . . 6  |-  ( f  =  F  ->  ( A. x  e.  B  A. y  e.  B  ( f `  (
x  .+  y )
)  =  ( ( f `  x ) 
.+^  ( f `  y ) )  <->  A. x  e.  B  A. y  e.  B  ( F `  ( x  .+  y
) )  =  ( ( F `  x
)  .+^  ( F `  y ) ) ) )
62 fveq1 5598 . . . . . . 7  |-  ( f  =  F  ->  (
f `  .0.  )  =  ( F `  .0.  ) )
6362eqeq1d 2216 . . . . . 6  |-  ( f  =  F  ->  (
( f `  .0.  )  =  Y  <->  ( F `  .0.  )  =  Y ) )
6461, 63anbi12d 473 . . . . 5  |-  ( f  =  F  ->  (
( A. x  e.  B  A. y  e.  B  ( f `  ( x  .+  y ) )  =  ( ( f `  x ) 
.+^  ( f `  y ) )  /\  ( f `  .0.  )  =  Y )  <->  ( A. x  e.  B  A. y  e.  B  ( F `  ( x 
.+  y ) )  =  ( ( F `
 x )  .+^  ( F `  y ) )  /\  ( F `
 .0.  )  =  Y ) ) )
6564elrab 2936 . . . 4  |-  ( F  e.  { f  e.  ( C  ^m  B
)  |  ( A. x  e.  B  A. y  e.  B  (
f `  ( x  .+  y ) )  =  ( ( f `  x )  .+^  ( f `
 y ) )  /\  ( f `  .0.  )  =  Y
) }  <->  ( F  e.  ( C  ^m  B
)  /\  ( A. x  e.  B  A. y  e.  B  ( F `  ( x  .+  y ) )  =  ( ( F `  x )  .+^  ( F `
 y ) )  /\  ( F `  .0.  )  =  Y
) ) )
66 3anass 985 . . . 4  |-  ( ( F : B --> C  /\  A. x  e.  B  A. y  e.  B  ( F `  ( x  .+  y ) )  =  ( ( F `  x )  .+^  ( F `
 y ) )  /\  ( F `  .0.  )  =  Y
)  <->  ( F : B
--> C  /\  ( A. x  e.  B  A. y  e.  B  ( F `  ( x  .+  y ) )  =  ( ( F `  x )  .+^  ( F `
 y ) )  /\  ( F `  .0.  )  =  Y
) ) )
6755, 65, 663bitr4g 223 . . 3  |-  ( ( S  e.  Mnd  /\  T  e.  Mnd )  ->  ( F  e.  {
f  e.  ( C  ^m  B )  |  ( A. x  e.  B  A. y  e.  B  ( f `  ( x  .+  y ) )  =  ( ( f `  x ) 
.+^  ( f `  y ) )  /\  ( f `  .0.  )  =  Y ) } 
<->  ( F : B --> C  /\  A. x  e.  B  A. y  e.  B  ( F `  ( x  .+  y ) )  =  ( ( F `  x ) 
.+^  ( F `  y ) )  /\  ( F `  .0.  )  =  Y ) ) )
6853, 67bitrd 188 . 2  |-  ( ( S  e.  Mnd  /\  T  e.  Mnd )  ->  ( F  e.  ( S MndHom  T )  <->  ( F : B --> C  /\  A. x  e.  B  A. y  e.  B  ( F `  ( x  .+  y ) )  =  ( ( F `  x )  .+^  ( F `
 y ) )  /\  ( F `  .0.  )  =  Y
) ) )
692, 68biadanii 613 1  |-  ( F  e.  ( S MndHom  T
)  <->  ( ( S  e.  Mnd  /\  T  e.  Mnd )  /\  ( F : B --> C  /\  A. x  e.  B  A. y  e.  B  ( F `  ( x  .+  y ) )  =  ( ( F `  x )  .+^  ( F `
 y ) )  /\  ( F `  .0.  )  =  Y
) ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    /\ w3a 981    = wceq 1373    e. wcel 2178   A.wral 2486   {crab 2490   _Vcvv 2776    X. cxp 4691    Fn wfn 5285   -->wf 5286   ` cfv 5290  (class class class)co 5967    ^m cmap 6758   Basecbs 12947   +g cplusg 13024   0gc0g 13203   Mndcmnd 13363   MndHom cmhm 13404
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-cnex 8051  ax-resscn 8052  ax-1re 8054  ax-addrcl 8057
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-ral 2491  df-rex 2492  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-fv 5298  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-map 6760  df-inn 9072  df-ndx 12950  df-slot 12951  df-base 12953  df-mhm 13406
This theorem is referenced by:  mhmf  13412  mhmpropd  13413  mhmlin  13414  mhm0  13415  idmhm  13416  mhmf1o  13417  0mhm  13433  resmhm  13434  resmhm2  13435  resmhm2b  13436  mhmco  13437  mhmfmhm  13568  ghmmhm  13704  srglmhm  13870  srgrmhm  13871  dfrhm2  14031  isrhm2d  14042
  Copyright terms: Public domain W3C validator