Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ismhm | Unicode version |
Description: Property of a monoid homomorphism. (Contributed by Mario Carneiro, 7-Mar-2015.) |
Ref | Expression |
---|---|
ismhm.b | |
ismhm.c | |
ismhm.p | |
ismhm.q | |
ismhm.z | |
ismhm.y |
Ref | Expression |
---|---|
ismhm | MndHom |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-mhm 12687 | . . 3 MndHom | |
2 | 1 | elmpocl 6051 | . 2 MndHom |
3 | fnmap 6637 | . . . . . . 7 | |
4 | ismhm.c | . . . . . . . 8 | |
5 | basfn 12477 | . . . . . . . . 9 | |
6 | simpr 109 | . . . . . . . . . 10 | |
7 | 6 | elexd 2744 | . . . . . . . . 9 |
8 | funfvex 5516 | . . . . . . . . . 10 | |
9 | 8 | funfni 5300 | . . . . . . . . 9 |
10 | 5, 7, 9 | sylancr 412 | . . . . . . . 8 |
11 | 4, 10 | eqeltrid 2258 | . . . . . . 7 |
12 | ismhm.b | . . . . . . . 8 | |
13 | simpl 108 | . . . . . . . . . 10 | |
14 | 13 | elexd 2744 | . . . . . . . . 9 |
15 | funfvex 5516 | . . . . . . . . . 10 | |
16 | 15 | funfni 5300 | . . . . . . . . 9 |
17 | 5, 14, 16 | sylancr 412 | . . . . . . . 8 |
18 | 12, 17 | eqeltrid 2258 | . . . . . . 7 |
19 | fnovex 5890 | . . . . . . 7 | |
20 | 3, 11, 18, 19 | mp3an2i 1338 | . . . . . 6 |
21 | rabexg 4133 | . . . . . 6 | |
22 | 20, 21 | syl 14 | . . . . 5 |
23 | fveq2 5499 | . . . . . . . . 9 | |
24 | 23, 4 | eqtr4di 2222 | . . . . . . . 8 |
25 | fveq2 5499 | . . . . . . . . 9 | |
26 | 25, 12 | eqtr4di 2222 | . . . . . . . 8 |
27 | 24, 26 | oveqan12rd 5877 | . . . . . . 7 |
28 | 26 | adantr 274 | . . . . . . . . 9 |
29 | fveq2 5499 | . . . . . . . . . . . . . 14 | |
30 | ismhm.p | . . . . . . . . . . . . . 14 | |
31 | 29, 30 | eqtr4di 2222 | . . . . . . . . . . . . 13 |
32 | 31 | oveqd 5874 | . . . . . . . . . . . 12 |
33 | 32 | fveq2d 5503 | . . . . . . . . . . 11 |
34 | fveq2 5499 | . . . . . . . . . . . . 13 | |
35 | ismhm.q | . . . . . . . . . . . . 13 | |
36 | 34, 35 | eqtr4di 2222 | . . . . . . . . . . . 12 |
37 | 36 | oveqd 5874 | . . . . . . . . . . 11 |
38 | 33, 37 | eqeqan12d 2187 | . . . . . . . . . 10 |
39 | 28, 38 | raleqbidv 2678 | . . . . . . . . 9 |
40 | 28, 39 | raleqbidv 2678 | . . . . . . . 8 |
41 | fveq2 5499 | . . . . . . . . . . 11 | |
42 | ismhm.z | . . . . . . . . . . 11 | |
43 | 41, 42 | eqtr4di 2222 | . . . . . . . . . 10 |
44 | 43 | fveq2d 5503 | . . . . . . . . 9 |
45 | fveq2 5499 | . . . . . . . . . 10 | |
46 | ismhm.y | . . . . . . . . . 10 | |
47 | 45, 46 | eqtr4di 2222 | . . . . . . . . 9 |
48 | 44, 47 | eqeqan12d 2187 | . . . . . . . 8 |
49 | 40, 48 | anbi12d 471 | . . . . . . 7 |
50 | 27, 49 | rabeqbidv 2726 | . . . . . 6 |
51 | 50, 1 | ovmpoga 5986 | . . . . 5 MndHom |
52 | 22, 51 | mpd3an3 1334 | . . . 4 MndHom |
53 | 52 | eleq2d 2241 | . . 3 MndHom |
54 | 11, 18 | elmapd 6644 | . . . . 5 |
55 | 54 | anbi1d 463 | . . . 4 |
56 | fveq1 5498 | . . . . . . . 8 | |
57 | fveq1 5498 | . . . . . . . . 9 | |
58 | fveq1 5498 | . . . . . . . . 9 | |
59 | 57, 58 | oveq12d 5875 | . . . . . . . 8 |
60 | 56, 59 | eqeq12d 2186 | . . . . . . 7 |
61 | 60 | 2ralbidv 2495 | . . . . . 6 |
62 | fveq1 5498 | . . . . . . 7 | |
63 | 62 | eqeq1d 2180 | . . . . . 6 |
64 | 61, 63 | anbi12d 471 | . . . . 5 |
65 | 64 | elrab 2887 | . . . 4 |
66 | 3anass 978 | . . . 4 | |
67 | 55, 65, 66 | 3bitr4g 222 | . . 3 |
68 | 53, 67 | bitrd 187 | . 2 MndHom |
69 | 2, 68 | biadanii 609 | 1 MndHom |
Colors of variables: wff set class |
Syntax hints: wa 103 wb 104 w3a 974 wceq 1349 wcel 2142 wral 2449 crab 2453 cvv 2731 cxp 4610 wfn 5195 wf 5196 cfv 5200 (class class class)co 5857 cmap 6630 cbs 12420 cplusg 12484 c0g 12600 cmnd 12656 MndHom cmhm 12685 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 610 ax-in2 611 ax-io 705 ax-5 1441 ax-7 1442 ax-gen 1443 ax-ie1 1487 ax-ie2 1488 ax-8 1498 ax-10 1499 ax-11 1500 ax-i12 1501 ax-bndl 1503 ax-4 1504 ax-17 1520 ax-i9 1524 ax-ial 1528 ax-i5r 1529 ax-13 2144 ax-14 2145 ax-ext 2153 ax-sep 4108 ax-pow 4161 ax-pr 4195 ax-un 4419 ax-setind 4522 ax-cnex 7869 ax-resscn 7870 ax-1re 7872 ax-addrcl 7875 |
This theorem depends on definitions: df-bi 116 df-3an 976 df-tru 1352 df-fal 1355 df-nf 1455 df-sb 1757 df-eu 2023 df-mo 2024 df-clab 2158 df-cleq 2164 df-clel 2167 df-nfc 2302 df-ne 2342 df-ral 2454 df-rex 2455 df-rab 2458 df-v 2733 df-sbc 2957 df-csb 3051 df-dif 3124 df-un 3126 df-in 3128 df-ss 3135 df-pw 3569 df-sn 3590 df-pr 3591 df-op 3593 df-uni 3798 df-int 3833 df-iun 3876 df-br 3991 df-opab 4052 df-mpt 4053 df-id 4279 df-xp 4618 df-rel 4619 df-cnv 4620 df-co 4621 df-dm 4622 df-rn 4623 df-res 4624 df-ima 4625 df-iota 5162 df-fun 5202 df-fn 5203 df-f 5204 df-fv 5208 df-ov 5860 df-oprab 5861 df-mpo 5862 df-1st 6123 df-2nd 6124 df-map 6632 df-inn 8883 df-ndx 12423 df-slot 12424 df-base 12426 df-mhm 12687 |
This theorem is referenced by: mhmf 12692 mhmpropd 12693 mhmlin 12694 mhm0 12695 idmhm 12696 mhmf1o 12697 0mhm 12708 mhmco 12709 mhmfmhm 12814 |
Copyright terms: Public domain | W3C validator |