| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ismhm | Unicode version | ||
| Description: Property of a monoid homomorphism. (Contributed by Mario Carneiro, 7-Mar-2015.) |
| Ref | Expression |
|---|---|
| ismhm.b |
|
| ismhm.c |
|
| ismhm.p |
|
| ismhm.q |
|
| ismhm.z |
|
| ismhm.y |
|
| Ref | Expression |
|---|---|
| ismhm |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-mhm 13492 |
. . 3
| |
| 2 | 1 | elmpocl 6200 |
. 2
|
| 3 | fnmap 6802 |
. . . . . . 7
| |
| 4 | ismhm.c |
. . . . . . . 8
| |
| 5 | basfn 13091 |
. . . . . . . . 9
| |
| 6 | simpr 110 |
. . . . . . . . . 10
| |
| 7 | 6 | elexd 2813 |
. . . . . . . . 9
|
| 8 | funfvex 5644 |
. . . . . . . . . 10
| |
| 9 | 8 | funfni 5423 |
. . . . . . . . 9
|
| 10 | 5, 7, 9 | sylancr 414 |
. . . . . . . 8
|
| 11 | 4, 10 | eqeltrid 2316 |
. . . . . . 7
|
| 12 | ismhm.b |
. . . . . . . 8
| |
| 13 | simpl 109 |
. . . . . . . . . 10
| |
| 14 | 13 | elexd 2813 |
. . . . . . . . 9
|
| 15 | funfvex 5644 |
. . . . . . . . . 10
| |
| 16 | 15 | funfni 5423 |
. . . . . . . . 9
|
| 17 | 5, 14, 16 | sylancr 414 |
. . . . . . . 8
|
| 18 | 12, 17 | eqeltrid 2316 |
. . . . . . 7
|
| 19 | fnovex 6034 |
. . . . . . 7
| |
| 20 | 3, 11, 18, 19 | mp3an2i 1376 |
. . . . . 6
|
| 21 | rabexg 4227 |
. . . . . 6
| |
| 22 | 20, 21 | syl 14 |
. . . . 5
|
| 23 | fveq2 5627 |
. . . . . . . . 9
| |
| 24 | 23, 4 | eqtr4di 2280 |
. . . . . . . 8
|
| 25 | fveq2 5627 |
. . . . . . . . 9
| |
| 26 | 25, 12 | eqtr4di 2280 |
. . . . . . . 8
|
| 27 | 24, 26 | oveqan12rd 6021 |
. . . . . . 7
|
| 28 | 26 | adantr 276 |
. . . . . . . . 9
|
| 29 | fveq2 5627 |
. . . . . . . . . . . . . 14
| |
| 30 | ismhm.p |
. . . . . . . . . . . . . 14
| |
| 31 | 29, 30 | eqtr4di 2280 |
. . . . . . . . . . . . 13
|
| 32 | 31 | oveqd 6018 |
. . . . . . . . . . . 12
|
| 33 | 32 | fveq2d 5631 |
. . . . . . . . . . 11
|
| 34 | fveq2 5627 |
. . . . . . . . . . . . 13
| |
| 35 | ismhm.q |
. . . . . . . . . . . . 13
| |
| 36 | 34, 35 | eqtr4di 2280 |
. . . . . . . . . . . 12
|
| 37 | 36 | oveqd 6018 |
. . . . . . . . . . 11
|
| 38 | 33, 37 | eqeqan12d 2245 |
. . . . . . . . . 10
|
| 39 | 28, 38 | raleqbidv 2744 |
. . . . . . . . 9
|
| 40 | 28, 39 | raleqbidv 2744 |
. . . . . . . 8
|
| 41 | fveq2 5627 |
. . . . . . . . . . 11
| |
| 42 | ismhm.z |
. . . . . . . . . . 11
| |
| 43 | 41, 42 | eqtr4di 2280 |
. . . . . . . . . 10
|
| 44 | 43 | fveq2d 5631 |
. . . . . . . . 9
|
| 45 | fveq2 5627 |
. . . . . . . . . 10
| |
| 46 | ismhm.y |
. . . . . . . . . 10
| |
| 47 | 45, 46 | eqtr4di 2280 |
. . . . . . . . 9
|
| 48 | 44, 47 | eqeqan12d 2245 |
. . . . . . . 8
|
| 49 | 40, 48 | anbi12d 473 |
. . . . . . 7
|
| 50 | 27, 49 | rabeqbidv 2794 |
. . . . . 6
|
| 51 | 50, 1 | ovmpoga 6134 |
. . . . 5
|
| 52 | 22, 51 | mpd3an3 1372 |
. . . 4
|
| 53 | 52 | eleq2d 2299 |
. . 3
|
| 54 | 11, 18 | elmapd 6809 |
. . . . 5
|
| 55 | 54 | anbi1d 465 |
. . . 4
|
| 56 | fveq1 5626 |
. . . . . . . 8
| |
| 57 | fveq1 5626 |
. . . . . . . . 9
| |
| 58 | fveq1 5626 |
. . . . . . . . 9
| |
| 59 | 57, 58 | oveq12d 6019 |
. . . . . . . 8
|
| 60 | 56, 59 | eqeq12d 2244 |
. . . . . . 7
|
| 61 | 60 | 2ralbidv 2554 |
. . . . . 6
|
| 62 | fveq1 5626 |
. . . . . . 7
| |
| 63 | 62 | eqeq1d 2238 |
. . . . . 6
|
| 64 | 61, 63 | anbi12d 473 |
. . . . 5
|
| 65 | 64 | elrab 2959 |
. . . 4
|
| 66 | 3anass 1006 |
. . . 4
| |
| 67 | 55, 65, 66 | 3bitr4g 223 |
. . 3
|
| 68 | 53, 67 | bitrd 188 |
. 2
|
| 69 | 2, 68 | biadanii 615 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-cnex 8090 ax-resscn 8091 ax-1re 8093 ax-addrcl 8096 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-fv 5326 df-ov 6004 df-oprab 6005 df-mpo 6006 df-1st 6286 df-2nd 6287 df-map 6797 df-inn 9111 df-ndx 13035 df-slot 13036 df-base 13038 df-mhm 13492 |
| This theorem is referenced by: mhmf 13498 mhmpropd 13499 mhmlin 13500 mhm0 13501 idmhm 13502 mhmf1o 13503 0mhm 13519 resmhm 13520 resmhm2 13521 resmhm2b 13522 mhmco 13523 mhmfmhm 13654 ghmmhm 13790 srglmhm 13956 srgrmhm 13957 dfrhm2 14118 isrhm2d 14129 |
| Copyright terms: Public domain | W3C validator |