| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > ismhm | Unicode version | ||
| Description: Property of a monoid homomorphism. (Contributed by Mario Carneiro, 7-Mar-2015.) | 
| Ref | Expression | 
|---|---|
| ismhm.b | 
 | 
| ismhm.c | 
 | 
| ismhm.p | 
 | 
| ismhm.q | 
 | 
| ismhm.z | 
 | 
| ismhm.y | 
 | 
| Ref | Expression | 
|---|---|
| ismhm | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df-mhm 13091 | 
. . 3
 | |
| 2 | 1 | elmpocl 6118 | 
. 2
 | 
| 3 | fnmap 6714 | 
. . . . . . 7
 | |
| 4 | ismhm.c | 
. . . . . . . 8
 | |
| 5 | basfn 12736 | 
. . . . . . . . 9
 | |
| 6 | simpr 110 | 
. . . . . . . . . 10
 | |
| 7 | 6 | elexd 2776 | 
. . . . . . . . 9
 | 
| 8 | funfvex 5575 | 
. . . . . . . . . 10
 | |
| 9 | 8 | funfni 5358 | 
. . . . . . . . 9
 | 
| 10 | 5, 7, 9 | sylancr 414 | 
. . . . . . . 8
 | 
| 11 | 4, 10 | eqeltrid 2283 | 
. . . . . . 7
 | 
| 12 | ismhm.b | 
. . . . . . . 8
 | |
| 13 | simpl 109 | 
. . . . . . . . . 10
 | |
| 14 | 13 | elexd 2776 | 
. . . . . . . . 9
 | 
| 15 | funfvex 5575 | 
. . . . . . . . . 10
 | |
| 16 | 15 | funfni 5358 | 
. . . . . . . . 9
 | 
| 17 | 5, 14, 16 | sylancr 414 | 
. . . . . . . 8
 | 
| 18 | 12, 17 | eqeltrid 2283 | 
. . . . . . 7
 | 
| 19 | fnovex 5955 | 
. . . . . . 7
 | |
| 20 | 3, 11, 18, 19 | mp3an2i 1353 | 
. . . . . 6
 | 
| 21 | rabexg 4176 | 
. . . . . 6
 | |
| 22 | 20, 21 | syl 14 | 
. . . . 5
 | 
| 23 | fveq2 5558 | 
. . . . . . . . 9
 | |
| 24 | 23, 4 | eqtr4di 2247 | 
. . . . . . . 8
 | 
| 25 | fveq2 5558 | 
. . . . . . . . 9
 | |
| 26 | 25, 12 | eqtr4di 2247 | 
. . . . . . . 8
 | 
| 27 | 24, 26 | oveqan12rd 5942 | 
. . . . . . 7
 | 
| 28 | 26 | adantr 276 | 
. . . . . . . . 9
 | 
| 29 | fveq2 5558 | 
. . . . . . . . . . . . . 14
 | |
| 30 | ismhm.p | 
. . . . . . . . . . . . . 14
 | |
| 31 | 29, 30 | eqtr4di 2247 | 
. . . . . . . . . . . . 13
 | 
| 32 | 31 | oveqd 5939 | 
. . . . . . . . . . . 12
 | 
| 33 | 32 | fveq2d 5562 | 
. . . . . . . . . . 11
 | 
| 34 | fveq2 5558 | 
. . . . . . . . . . . . 13
 | |
| 35 | ismhm.q | 
. . . . . . . . . . . . 13
 | |
| 36 | 34, 35 | eqtr4di 2247 | 
. . . . . . . . . . . 12
 | 
| 37 | 36 | oveqd 5939 | 
. . . . . . . . . . 11
 | 
| 38 | 33, 37 | eqeqan12d 2212 | 
. . . . . . . . . 10
 | 
| 39 | 28, 38 | raleqbidv 2709 | 
. . . . . . . . 9
 | 
| 40 | 28, 39 | raleqbidv 2709 | 
. . . . . . . 8
 | 
| 41 | fveq2 5558 | 
. . . . . . . . . . 11
 | |
| 42 | ismhm.z | 
. . . . . . . . . . 11
 | |
| 43 | 41, 42 | eqtr4di 2247 | 
. . . . . . . . . 10
 | 
| 44 | 43 | fveq2d 5562 | 
. . . . . . . . 9
 | 
| 45 | fveq2 5558 | 
. . . . . . . . . 10
 | |
| 46 | ismhm.y | 
. . . . . . . . . 10
 | |
| 47 | 45, 46 | eqtr4di 2247 | 
. . . . . . . . 9
 | 
| 48 | 44, 47 | eqeqan12d 2212 | 
. . . . . . . 8
 | 
| 49 | 40, 48 | anbi12d 473 | 
. . . . . . 7
 | 
| 50 | 27, 49 | rabeqbidv 2758 | 
. . . . . 6
 | 
| 51 | 50, 1 | ovmpoga 6052 | 
. . . . 5
 | 
| 52 | 22, 51 | mpd3an3 1349 | 
. . . 4
 | 
| 53 | 52 | eleq2d 2266 | 
. . 3
 | 
| 54 | 11, 18 | elmapd 6721 | 
. . . . 5
 | 
| 55 | 54 | anbi1d 465 | 
. . . 4
 | 
| 56 | fveq1 5557 | 
. . . . . . . 8
 | |
| 57 | fveq1 5557 | 
. . . . . . . . 9
 | |
| 58 | fveq1 5557 | 
. . . . . . . . 9
 | |
| 59 | 57, 58 | oveq12d 5940 | 
. . . . . . . 8
 | 
| 60 | 56, 59 | eqeq12d 2211 | 
. . . . . . 7
 | 
| 61 | 60 | 2ralbidv 2521 | 
. . . . . 6
 | 
| 62 | fveq1 5557 | 
. . . . . . 7
 | |
| 63 | 62 | eqeq1d 2205 | 
. . . . . 6
 | 
| 64 | 61, 63 | anbi12d 473 | 
. . . . 5
 | 
| 65 | 64 | elrab 2920 | 
. . . 4
 | 
| 66 | 3anass 984 | 
. . . 4
 | |
| 67 | 55, 65, 66 | 3bitr4g 223 | 
. . 3
 | 
| 68 | 53, 67 | bitrd 188 | 
. 2
 | 
| 69 | 2, 68 | biadanii 613 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-cnex 7970 ax-resscn 7971 ax-1re 7973 ax-addrcl 7976 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-fv 5266 df-ov 5925 df-oprab 5926 df-mpo 5927 df-1st 6198 df-2nd 6199 df-map 6709 df-inn 8991 df-ndx 12681 df-slot 12682 df-base 12684 df-mhm 13091 | 
| This theorem is referenced by: mhmf 13097 mhmpropd 13098 mhmlin 13099 mhm0 13100 idmhm 13101 mhmf1o 13102 0mhm 13118 resmhm 13119 resmhm2 13120 resmhm2b 13121 mhmco 13122 mhmfmhm 13247 ghmmhm 13383 srglmhm 13549 srgrmhm 13550 dfrhm2 13710 isrhm2d 13721 | 
| Copyright terms: Public domain | W3C validator |