ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bianass Unicode version

Theorem bianass 469
Description: An inference to merge two lists of conjuncts. (Contributed by Giovanni Mascellani, 23-May-2019.)
Hypothesis
Ref Expression
bianass.1  |-  ( ph  <->  ( ps  /\  ch )
)
Assertion
Ref Expression
bianass  |-  ( ( et  /\  ph )  <->  ( ( et  /\  ps )  /\  ch ) )

Proof of Theorem bianass
StepHypRef Expression
1 bianass.1 . . 3  |-  ( ph  <->  ( ps  /\  ch )
)
21anbi2i 457 . 2  |-  ( ( et  /\  ph )  <->  ( et  /\  ( ps 
/\  ch ) ) )
3 anass 401 . 2  |-  ( ( ( et  /\  ps )  /\  ch )  <->  ( et  /\  ( ps  /\  ch ) ) )
42, 3bitr4i 187 1  |-  ( ( et  /\  ph )  <->  ( ( et  /\  ps )  /\  ch ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  bianassc  470
  Copyright terms: Public domain W3C validator