![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > anass | Unicode version |
Description: Associative law for conjunction. Theorem *4.32 of [WhiteheadRussell] p. 118. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 24-Nov-2012.) |
Ref | Expression |
---|---|
anass |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 19 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | anassrs 400 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3 | id 19 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 3 | anasss 399 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
5 | 2, 4 | impbii 126 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: bianass 469 mpan10 474 an12 561 an32 562 an13 563 an31 564 an4 586 3anass 984 sbidm 1862 4exdistr 1928 2sb5 1999 2sb5rf 2005 sbel2x 2014 r2exf 2512 r19.41 2649 ceqsex3v 2802 ceqsrex2v 2892 rexrab 2923 rexrab2 2927 rexss 3246 inass 3369 difin2 3421 difrab 3433 reupick3 3444 inssdif0im 3514 rexdifpr 3646 rexdifsn 3750 unidif0 4196 bnd2 4202 eqvinop 4272 copsexg 4273 uniuni 4482 rabxp 4696 elvvv 4722 rexiunxp 4804 resopab2 4989 ssrnres 5108 elxp4 5153 elxp5 5154 cnvresima 5155 mptpreima 5159 coass 5184 dff1o2 5505 eqfnfv3 5657 rexsupp 5682 isoini 5861 f1oiso 5869 oprabid 5950 dfoprab2 5965 mpoeq123 5977 mpomptx 6009 resoprab2 6015 ovi3 6055 oprabex3 6181 spc2ed 6286 f1od2 6288 brtpos2 6304 mapsnen 6865 xpsnen 6875 xpcomco 6880 xpassen 6884 ltexpi 7397 enq0enq 7491 enq0tr 7494 prnmaxl 7548 prnminu 7549 genpdflem 7567 ltexprlemm 7660 suplocsrlemb 7866 axaddf 7928 axmulf 7929 rexuz 9645 rexuz2 9646 rexrp 9742 elixx3g 9967 elfz2 10081 fzdifsuc 10147 fzind2 10306 divalgb 12066 gcdass 12152 nnwosdc 12176 lcmass 12223 isprm2 12255 infpn2 12613 fngsum 12971 igsumvalx 12972 issubg3 13262 dfrhm2 13650 ntreq0 14300 tx1cn 14437 tx2cn 14438 blres 14602 metrest 14674 elcncf1di 14734 dedekindicclemicc 14786 lgsquadlem1 15191 |
Copyright terms: Public domain | W3C validator |