Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > anass | Unicode version |
Description: Associative law for conjunction. Theorem *4.32 of [WhiteheadRussell] p. 118. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 24-Nov-2012.) |
Ref | Expression |
---|---|
anass |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 19 | . . 3 | |
2 | 1 | anassrs 398 | . 2 |
3 | id 19 | . . 3 | |
4 | 3 | anasss 397 | . 2 |
5 | 2, 4 | impbii 125 | 1 |
Colors of variables: wff set class |
Syntax hints: wa 103 wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: mpan10 466 an12 551 an32 552 an13 553 an31 554 an4 576 3anass 967 sbidm 1831 4exdistr 1896 2sb5 1963 2sb5rf 1969 sbel2x 1978 r2exf 2475 r19.41 2612 ceqsex3v 2754 ceqsrex2v 2844 rexrab 2875 rexrab2 2879 rexss 3195 inass 3317 difin2 3369 difrab 3381 reupick3 3392 inssdif0im 3461 rexdifpr 3588 rexdifsn 3691 unidif0 4128 bnd2 4134 eqvinop 4203 copsexg 4204 uniuni 4410 rabxp 4622 elvvv 4648 rexiunxp 4727 resopab2 4912 ssrnres 5027 elxp4 5072 elxp5 5073 cnvresima 5074 mptpreima 5078 coass 5103 dff1o2 5418 eqfnfv3 5566 rexsupp 5590 isoini 5765 f1oiso 5773 oprabid 5850 dfoprab2 5865 mpoeq123 5877 mpomptx 5909 resoprab2 5915 ovi3 5954 oprabex3 6074 spc2ed 6177 f1od2 6179 brtpos2 6195 mapsnen 6753 xpsnen 6763 xpcomco 6768 xpassen 6772 ltexpi 7251 enq0enq 7345 enq0tr 7348 prnmaxl 7402 prnminu 7403 genpdflem 7421 ltexprlemm 7514 suplocsrlemb 7720 axaddf 7782 axmulf 7783 rexuz 9485 rexuz2 9486 rexrp 9576 elixx3g 9798 elfz2 9912 fzdifsuc 9976 fzind2 10131 divalgb 11808 gcdass 11890 lcmass 11953 isprm2 11985 ntreq0 12503 tx1cn 12640 tx2cn 12641 blres 12805 metrest 12877 elcncf1di 12937 dedekindicclemicc 12981 |
Copyright terms: Public domain | W3C validator |