| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > bitr4i | Unicode version | ||
| Description: An inference from transitive law for logical equivalence. (Contributed by NM, 5-Aug-1993.) | 
| Ref | Expression | 
|---|---|
| bitr4i.1 | 
 | 
| bitr4i.2 | 
 | 
| Ref | Expression | 
|---|---|
| bitr4i | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | bitr4i.1 | 
. 2
 | |
| 2 | bitr4i.2 | 
. . 3
 | |
| 3 | 2 | bicomi 132 | 
. 2
 | 
| 4 | 1, 3 | bitri 184 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 | 
| This theorem depends on definitions: df-bi 117 | 
| This theorem is referenced by: 3bitr2i 208 3bitr2ri 209 3bitr4i 212 3bitr4ri 213 biancomi 270 imdistan 444 bianass 469 biadani 612 mpbiran 942 mpbiran2 943 3anrev 990 an6 1332 nfand 1582 19.33b2 1643 nf3 1683 nf4dc 1684 nf4r 1685 equsalh 1740 sb6x 1793 sb5f 1818 sbidm 1865 sb5 1902 sbanv 1904 sborv 1905 sbhb 1959 sb3an 1977 sbel2x 2017 sbal1yz 2020 sbexyz 2022 eu2 2089 2eu4 2138 cleqh 2296 cleqf 2364 dcne 2378 necon3bii 2405 ne3anior 2455 r2alf 2514 r2exf 2515 r19.23t 2604 r19.26-3 2627 r19.26m 2628 r19.43 2655 rabid2 2674 isset 2769 ralv 2780 rexv 2781 reuv 2782 rmov 2783 rexcom4b 2788 ceqsex4v 2807 ceqsex8v 2809 ceqsrexv 2894 ralrab2 2929 rexrab2 2931 reu2 2952 reu3 2954 reueq 2963 2reuswapdc 2968 reuind 2969 sbc3an 3051 rmo2ilem 3079 csbcow 3095 dfss2 3172 dfss3 3173 dfss3f 3175 ssabral 3254 rabss 3260 ssrabeq 3270 uniiunlem 3272 dfdif3 3273 ddifstab 3295 uncom 3307 inass 3373 indi 3410 difindiss 3417 difin2 3425 reupick3 3448 n0rf 3463 eq0 3469 eqv 3470 vss 3498 disj 3499 disj3 3503 undisj1 3508 undisj2 3509 exsnrex 3664 euabsn2 3691 euabsn 3692 prssg 3779 dfuni2 3841 unissb 3869 elint2 3881 ssint 3890 dfiin2g 3949 iunn0m 3977 iunxun 3996 iunxiun 3998 iinpw 4007 disjnim 4024 dftr2 4133 dftr5 4134 dftr3 4135 dftr4 4136 vnex 4164 inuni 4188 snelpw 4246 sspwb 4249 opelopabsb 4294 eusv2 4492 orddif 4583 onintexmid 4609 zfregfr 4610 tfi 4618 opthprc 4714 elxp3 4717 xpiundir 4722 elvv 4725 brinxp2 4730 relsn 4768 reliun 4784 inxp 4800 raliunxp 4807 rexiunxp 4808 cnvuni 4852 dm0rn0 4883 elrn 4909 ssdmres 4968 dfres2 4998 dfima2 5011 args 5038 cotr 5051 intasym 5054 asymref 5055 intirr 5056 cnv0 5073 xp11m 5108 cnvresima 5159 resco 5174 rnco 5176 coiun 5179 coass 5188 dfiota2 5220 dffun2 5268 dffun6f 5271 dffun4f 5274 dffun7 5285 dffun9 5287 funfn 5288 svrelfun 5323 imadiflem 5337 dffn2 5409 dffn3 5418 fintm 5443 dffn4 5486 dff1o4 5512 brprcneu 5551 eqfnfv3 5661 fnreseql 5672 fsn 5734 abrexco 5806 imaiun 5807 mpo2eqb 6032 elovmpo 6122 abexex 6183 releldm2 6243 fnmpo 6260 dftpos4 6321 tfrlem7 6375 0er 6626 eroveu 6685 erovlem 6686 map0e 6745 elixpconst 6765 domen 6810 reuen1 6860 xpf1o 6905 ssfilem 6936 finexdc 6963 pw1dc0el 6972 ssfirab 6997 sbthlemi10 7032 djuexb 7110 dmaddpq 7446 dmmulpq 7447 distrnqg 7454 enq0enq 7498 enq0tr 7501 nqnq0pi 7505 distrnq0 7526 prltlu 7554 prarloc 7570 genpdflem 7574 ltexprlemm 7667 ltexprlemlol 7669 ltexprlemupu 7671 ltexprlemdisj 7673 recexprlemdisj 7697 ltresr 7906 elnnz 9336 dfz2 9398 2rexuz 9656 eluz2b1 9675 elxr 9851 elixx1 9972 elioo2 9996 elioopnf 10042 elicopnf 10044 elfz1 10088 fzdifsuc 10156 fznn 10164 fzp1nel 10179 fznn0 10188 dfrp2 10353 redivap 11039 imdivap 11046 rexanre 11385 climreu 11462 prodmodc 11743 3dvdsdec 12030 3dvds2dec 12031 bitsval 12108 bezoutlembi 12172 nnwosdc 12206 isprm2 12285 isprm3 12286 isprm4 12287 pythagtriplem2 12435 elgz 12540 inffinp1 12646 isnsg4 13342 isrng 13490 isring 13556 dfrhm2 13710 lss1d 13939 isbasis3g 14282 restsn 14416 lmbr 14449 txbas 14494 tx2cn 14506 elcncf1di 14815 dedekindicclemicc 14868 limcrcl 14894 bj-nnor 15380 bj-vprc 15542 ss1oel2o 15638 subctctexmid 15645 trirec0xor 15689 | 
| Copyright terms: Public domain | W3C validator |