| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > bitr4i | Unicode version | ||
| Description: An inference from transitive law for logical equivalence. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| bitr4i.1 |
|
| bitr4i.2 |
|
| Ref | Expression |
|---|---|
| bitr4i |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bitr4i.1 |
. 2
| |
| 2 | bitr4i.2 |
. . 3
| |
| 3 | 2 | bicomi 132 |
. 2
|
| 4 | 1, 3 | bitri 184 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: 3bitr2i 208 3bitr2ri 209 3bitr4i 212 3bitr4ri 213 biancomi 270 imdistan 444 bianass 469 biadani 612 mpbiran 942 mpbiran2 943 3anrev 990 an6 1333 nfand 1590 19.33b2 1651 nf3 1691 nf4dc 1692 nf4r 1693 equsalh 1748 sb6x 1801 sb5f 1826 sbidm 1873 sb5 1910 sbanv 1912 sborv 1913 sbhb 1967 sb3an 1985 sbel2x 2025 sbal1yz 2028 sbexyz 2030 eu2 2097 2eu4 2146 cleqh 2304 cleqf 2372 dcne 2386 necon3bii 2413 ne3anior 2463 r2alf 2522 r2exf 2523 r19.23t 2612 r19.26-3 2635 r19.26m 2636 r19.43 2663 rabid2 2682 isset 2777 ralv 2788 rexv 2789 reuv 2790 rmov 2791 rexcom4b 2796 ceqsex4v 2815 ceqsex8v 2817 ceqsrexv 2902 ralrab2 2937 rexrab2 2939 reu2 2960 reu3 2962 reueq 2971 2reuswapdc 2976 reuind 2977 sbc3an 3059 rmo2ilem 3087 csbcow 3103 ssalel 3180 dfss3 3181 dfss3f 3184 ssabral 3263 rabss 3269 ssrabeq 3279 uniiunlem 3281 dfdif3 3282 ddifstab 3304 uncom 3316 inass 3382 indi 3419 difindiss 3426 difin2 3434 reupick3 3457 n0rf 3472 eq0 3478 eqv 3479 vss 3507 disj 3508 disj3 3512 undisj1 3517 undisj2 3518 exsnrex 3674 euabsn2 3701 euabsn 3702 prssg 3789 dfuni2 3851 unissb 3879 elint2 3891 ssint 3900 dfiin2g 3959 iunn0m 3987 iunxun 4006 iunxiun 4008 iinpw 4017 disjnim 4034 dftr2 4143 dftr5 4144 dftr3 4145 dftr4 4146 vnex 4174 inuni 4198 snelpw 4256 sspwb 4259 opelopabsb 4304 eusv2 4502 orddif 4593 onintexmid 4619 zfregfr 4620 tfi 4628 opthprc 4724 elxp3 4727 xpiundir 4732 elvv 4735 brinxp2 4740 relsn 4778 reliun 4794 inxp 4810 raliunxp 4817 rexiunxp 4818 cnvuni 4862 dm0rn0 4893 elrn 4919 ssdmres 4978 dfres2 5008 dfima2 5021 args 5048 cotr 5061 intasym 5064 asymref 5065 intirr 5066 cnv0 5083 xp11m 5118 cnvresima 5169 resco 5184 rnco 5186 coiun 5189 coass 5198 dfiota2 5230 dffun2 5278 dffun6f 5281 dffun4f 5284 dffun7 5295 dffun9 5297 funfn 5298 svrelfun 5333 imadiflem 5347 dffn2 5421 dffn3 5430 fintm 5455 dffn4 5498 dff1o4 5524 brprcneu 5563 eqfnfv3 5673 fnreseql 5684 fsn 5746 abrexco 5818 imaiun 5819 mpo2eqb 6045 elovmpo 6135 abexex 6201 releldm2 6261 fnmpo 6278 dftpos4 6339 tfrlem7 6393 0er 6644 eroveu 6703 erovlem 6704 map0e 6763 elixpconst 6783 domen 6828 reuen1 6878 xpf1o 6923 ssfilem 6954 finexdc 6981 pw1dc0el 6990 ssfirab 7015 sbthlemi10 7050 djuexb 7128 dmaddpq 7474 dmmulpq 7475 distrnqg 7482 enq0enq 7526 enq0tr 7529 nqnq0pi 7533 distrnq0 7554 prltlu 7582 prarloc 7598 genpdflem 7602 ltexprlemm 7695 ltexprlemlol 7697 ltexprlemupu 7699 ltexprlemdisj 7701 recexprlemdisj 7725 ltresr 7934 elnnz 9364 dfz2 9427 2rexuz 9685 eluz2b1 9704 elxr 9880 elixx1 10001 elioo2 10025 elioopnf 10071 elicopnf 10073 elfz1 10117 fzdifsuc 10185 fznn 10193 fzp1nel 10208 fznn0 10217 dfrp2 10387 redivap 11104 imdivap 11111 rexanre 11450 climreu 11527 prodmodc 11808 3dvdsdec 12095 3dvds2dec 12096 bitsval 12173 bezoutlembi 12245 nnwosdc 12279 isprm2 12358 isprm3 12359 isprm4 12360 pythagtriplem2 12508 elgz 12613 inffinp1 12719 isnsg4 13466 isrng 13614 isring 13680 dfrhm2 13834 lss1d 14063 isbasis3g 14436 restsn 14570 lmbr 14603 txbas 14648 tx2cn 14660 elcncf1di 14969 dedekindicclemicc 15022 limcrcl 15048 bj-nnor 15534 bj-vprc 15696 ss1oel2o 15792 subctctexmid 15801 trirec0xor 15848 |
| Copyright terms: Public domain | W3C validator |