| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > bitr4i | Unicode version | ||
| Description: An inference from transitive law for logical equivalence. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| bitr4i.1 |
|
| bitr4i.2 |
|
| Ref | Expression |
|---|---|
| bitr4i |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bitr4i.1 |
. 2
| |
| 2 | bitr4i.2 |
. . 3
| |
| 3 | 2 | bicomi 132 |
. 2
|
| 4 | 1, 3 | bitri 184 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: 3bitr2i 208 3bitr2ri 209 3bitr4i 212 3bitr4ri 213 biancomi 270 imdistan 444 bianass 469 biadani 614 mpbiran 946 mpbiran2 947 3anrev 1012 an6 1355 nfand 1614 19.33b2 1675 nf3 1715 nf4dc 1716 nf4r 1717 equsalh 1772 sb6x 1825 sb5f 1850 sbidm 1897 sb5 1934 sbanv 1936 sborv 1937 sbhb 1991 sb3an 2009 sbel2x 2049 sbal1yz 2052 sbexyz 2054 eu2 2122 2eu4 2171 cleqh 2329 cleqf 2397 dcne 2411 necon3bii 2438 ne3anior 2488 r2alf 2547 r2exf 2548 r19.23t 2638 r19.26-3 2661 r19.26m 2662 r19.43 2689 rabid2 2708 isset 2806 ralv 2817 rexv 2818 reuv 2819 rmov 2820 rexcom4b 2825 ceqsex4v 2844 ceqsex8v 2846 ceqsrexv 2933 ralrab2 2968 rexrab2 2970 reu2 2991 reu3 2993 reueq 3002 2reuswapdc 3007 reuind 3008 sbc3an 3090 rmo2ilem 3119 csbcow 3135 ssalel 3212 dfss3 3213 dfss3f 3216 ssabral 3295 rabss 3301 ssrabeq 3311 uniiunlem 3313 dfdif3 3314 ddifstab 3336 uncom 3348 inass 3414 indi 3451 difindiss 3458 difin2 3466 reupick3 3489 n0rf 3504 eq0 3510 eqv 3511 vss 3539 disj 3540 disj3 3544 undisj1 3549 undisj2 3550 exsnrex 3708 euabsn2 3735 euabsn 3736 snmb 3787 prssg 3824 dfuni2 3889 unissb 3917 elint2 3929 ssint 3938 dfiin2g 3997 iunn0m 4025 iunxun 4044 iunxiun 4046 iinpw 4055 disjnim 4072 dftr2 4183 dftr5 4184 dftr3 4185 dftr4 4186 vnex 4214 inuni 4238 snelpw 4297 sspwb 4301 opelopabsb 4347 eusv2 4547 orddif 4638 onintexmid 4664 zfregfr 4665 tfi 4673 opthprc 4769 elxp3 4772 xpiundir 4777 elvv 4780 brinxp2 4785 relsn 4823 reliun 4839 inxp 4855 raliunxp 4862 rexiunxp 4863 cnvuni 4907 dm0rn0 4939 elrn 4966 ssdmres 5026 dfres2 5056 dfima2 5069 args 5096 cotr 5109 intasym 5112 asymref 5113 intirr 5114 cnv0 5131 xp11m 5166 cnvresima 5217 resco 5232 rnco 5234 coiun 5237 coass 5246 dfiota2 5278 dffun2 5327 dffun6f 5330 dffun4f 5333 dffun7 5344 dffun9 5346 funfn 5347 svrelfun 5385 imadiflem 5399 dffn2 5474 dffn3 5483 fintm 5510 dffn4 5553 dff1o4 5579 brprcneu 5619 eqfnfv3 5733 fnreseql 5744 fsn 5806 abrexco 5882 imaiun 5883 mpo2eqb 6113 elovmpo 6203 abexex 6269 releldm2 6329 fnmpo 6346 dftpos4 6407 tfrlem7 6461 0er 6712 eroveu 6771 erovlem 6772 map0e 6831 elixpconst 6851 domen 6898 reuen1 6951 xpf1o 7001 ssfilem 7033 finexdc 7060 pw1dc0el 7069 ssfirab 7094 sbthlemi10 7129 djuexb 7207 iftrueb01 7404 pw1if 7406 dmaddpq 7562 dmmulpq 7563 distrnqg 7570 enq0enq 7614 enq0tr 7617 nqnq0pi 7621 distrnq0 7642 prltlu 7670 prarloc 7686 genpdflem 7690 ltexprlemm 7783 ltexprlemlol 7785 ltexprlemupu 7787 ltexprlemdisj 7789 recexprlemdisj 7813 ltresr 8022 elnnz 9452 dfz2 9515 2rexuz 9773 eluz2b1 9792 elxr 9968 elixx1 10089 elioo2 10113 elioopnf 10159 elicopnf 10161 elfz1 10205 fzdifsuc 10273 fznn 10281 fzp1nel 10296 fznn0 10305 dfrp2 10478 redivap 11380 imdivap 11387 rexanre 11726 climreu 11803 prodmodc 12084 3dvdsdec 12371 3dvds2dec 12372 bitsval 12449 bezoutlembi 12521 nnwosdc 12555 isprm2 12634 isprm3 12635 isprm4 12636 pythagtriplem2 12784 elgz 12889 inffinp1 12995 isnsg4 13744 isrng 13892 isring 13958 dfrhm2 14112 lss1d 14341 isbasis3g 14714 restsn 14848 lmbr 14881 txbas 14926 tx2cn 14938 elcncf1di 15247 dedekindicclemicc 15300 limcrcl 15326 bj-nnor 16056 bj-vprc 16217 ss1oel2o 16313 subctctexmid 16325 trirec0xor 16372 |
| Copyright terms: Public domain | W3C validator |