| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > bitr4i | Unicode version | ||
| Description: An inference from transitive law for logical equivalence. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| bitr4i.1 |
|
| bitr4i.2 |
|
| Ref | Expression |
|---|---|
| bitr4i |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bitr4i.1 |
. 2
| |
| 2 | bitr4i.2 |
. . 3
| |
| 3 | 2 | bicomi 132 |
. 2
|
| 4 | 1, 3 | bitri 184 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: 3bitr2i 208 3bitr2ri 209 3bitr4i 212 3bitr4ri 213 biancomi 270 imdistan 444 bianass 469 biadani 612 mpbiran 943 mpbiran2 944 3anrev 991 an6 1334 nfand 1592 19.33b2 1653 nf3 1693 nf4dc 1694 nf4r 1695 equsalh 1750 sb6x 1803 sb5f 1828 sbidm 1875 sb5 1912 sbanv 1914 sborv 1915 sbhb 1969 sb3an 1987 sbel2x 2027 sbal1yz 2030 sbexyz 2032 eu2 2099 2eu4 2148 cleqh 2306 cleqf 2374 dcne 2388 necon3bii 2415 ne3anior 2465 r2alf 2524 r2exf 2525 r19.23t 2614 r19.26-3 2637 r19.26m 2638 r19.43 2665 rabid2 2684 isset 2780 ralv 2791 rexv 2792 reuv 2793 rmov 2794 rexcom4b 2799 ceqsex4v 2818 ceqsex8v 2820 ceqsrexv 2907 ralrab2 2942 rexrab2 2944 reu2 2965 reu3 2967 reueq 2976 2reuswapdc 2981 reuind 2982 sbc3an 3064 rmo2ilem 3092 csbcow 3108 ssalel 3185 dfss3 3186 dfss3f 3189 ssabral 3268 rabss 3274 ssrabeq 3284 uniiunlem 3286 dfdif3 3287 ddifstab 3309 uncom 3321 inass 3387 indi 3424 difindiss 3431 difin2 3439 reupick3 3462 n0rf 3477 eq0 3483 eqv 3484 vss 3512 disj 3513 disj3 3517 undisj1 3522 undisj2 3523 exsnrex 3680 euabsn2 3707 euabsn 3708 snmb 3759 prssg 3796 dfuni2 3858 unissb 3886 elint2 3898 ssint 3907 dfiin2g 3966 iunn0m 3994 iunxun 4013 iunxiun 4015 iinpw 4024 disjnim 4041 dftr2 4152 dftr5 4153 dftr3 4154 dftr4 4155 vnex 4183 inuni 4207 snelpw 4265 sspwb 4268 opelopabsb 4314 eusv2 4512 orddif 4603 onintexmid 4629 zfregfr 4630 tfi 4638 opthprc 4734 elxp3 4737 xpiundir 4742 elvv 4745 brinxp2 4750 relsn 4788 reliun 4804 inxp 4820 raliunxp 4827 rexiunxp 4828 cnvuni 4872 dm0rn0 4904 elrn 4930 ssdmres 4990 dfres2 5020 dfima2 5033 args 5060 cotr 5073 intasym 5076 asymref 5077 intirr 5078 cnv0 5095 xp11m 5130 cnvresima 5181 resco 5196 rnco 5198 coiun 5201 coass 5210 dfiota2 5242 dffun2 5290 dffun6f 5293 dffun4f 5296 dffun7 5307 dffun9 5309 funfn 5310 svrelfun 5348 imadiflem 5362 dffn2 5437 dffn3 5446 fintm 5473 dffn4 5516 dff1o4 5542 brprcneu 5582 eqfnfv3 5692 fnreseql 5703 fsn 5765 abrexco 5841 imaiun 5842 mpo2eqb 6068 elovmpo 6158 abexex 6224 releldm2 6284 fnmpo 6301 dftpos4 6362 tfrlem7 6416 0er 6667 eroveu 6726 erovlem 6727 map0e 6786 elixpconst 6806 domen 6853 reuen1 6906 xpf1o 6956 ssfilem 6987 finexdc 7014 pw1dc0el 7023 ssfirab 7048 sbthlemi10 7083 djuexb 7161 iftrueb01 7354 pw1if 7356 dmaddpq 7512 dmmulpq 7513 distrnqg 7520 enq0enq 7564 enq0tr 7567 nqnq0pi 7571 distrnq0 7592 prltlu 7620 prarloc 7636 genpdflem 7640 ltexprlemm 7733 ltexprlemlol 7735 ltexprlemupu 7737 ltexprlemdisj 7739 recexprlemdisj 7763 ltresr 7972 elnnz 9402 dfz2 9465 2rexuz 9723 eluz2b1 9742 elxr 9918 elixx1 10039 elioo2 10063 elioopnf 10109 elicopnf 10111 elfz1 10155 fzdifsuc 10223 fznn 10231 fzp1nel 10246 fznn0 10255 dfrp2 10428 redivap 11260 imdivap 11267 rexanre 11606 climreu 11683 prodmodc 11964 3dvdsdec 12251 3dvds2dec 12252 bitsval 12329 bezoutlembi 12401 nnwosdc 12435 isprm2 12514 isprm3 12515 isprm4 12516 pythagtriplem2 12664 elgz 12769 inffinp1 12875 isnsg4 13623 isrng 13771 isring 13837 dfrhm2 13991 lss1d 14220 isbasis3g 14593 restsn 14727 lmbr 14760 txbas 14805 tx2cn 14817 elcncf1di 15126 dedekindicclemicc 15179 limcrcl 15205 bj-nnor 15809 bj-vprc 15970 ss1oel2o 16066 subctctexmid 16078 trirec0xor 16125 |
| Copyright terms: Public domain | W3C validator |