Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > bitr4i | Unicode version |
Description: An inference from transitive law for logical equivalence. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
bitr4i.1 | |
bitr4i.2 |
Ref | Expression |
---|---|
bitr4i |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bitr4i.1 | . 2 | |
2 | bitr4i.2 | . . 3 | |
3 | 2 | bicomi 131 | . 2 |
4 | 1, 3 | bitri 183 | 1 |
Colors of variables: wff set class |
Syntax hints: wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: 3bitr2i 207 3bitr2ri 208 3bitr4i 211 3bitr4ri 212 biancomi 268 imdistan 441 biadani 602 mpbiran 930 mpbiran2 931 3anrev 978 an6 1311 nfand 1556 19.33b2 1617 nf3 1657 nf4dc 1658 nf4r 1659 equsalh 1714 sb6x 1767 sb5f 1792 sbidm 1839 sb5 1875 sbanv 1877 sborv 1878 sbhb 1928 sb3an 1946 sbel2x 1986 sbal1yz 1989 sbexyz 1991 eu2 2058 2eu4 2107 cleqh 2265 cleqf 2332 dcne 2346 necon3bii 2373 ne3anior 2423 r2alf 2482 r2exf 2483 r19.23t 2572 r19.26-3 2595 r19.26m 2596 r19.43 2623 rabid2 2641 isset 2731 ralv 2742 rexv 2743 reuv 2744 rmov 2745 rexcom4b 2750 ceqsex4v 2768 ceqsex8v 2770 ceqsrexv 2855 ralrab2 2890 rexrab2 2892 reu2 2913 reu3 2915 reueq 2924 2reuswapdc 2929 reuind 2930 sbc3an 3011 rmo2ilem 3039 csbcow 3055 dfss2 3130 dfss3 3131 dfss3f 3133 ssabral 3212 rabss 3218 ssrabeq 3228 uniiunlem 3230 dfdif3 3231 ddifstab 3253 uncom 3265 inass 3331 indi 3368 difindiss 3375 difin2 3383 reupick3 3406 n0rf 3420 eq0 3426 eqv 3427 vss 3455 disj 3456 disj3 3460 undisj1 3465 undisj2 3466 exsnrex 3617 euabsn2 3644 euabsn 3645 prssg 3729 dfuni2 3790 unissb 3818 elint2 3830 ssint 3839 dfiin2g 3898 iunn0m 3925 iunxun 3944 iunxiun 3946 iinpw 3955 disjnim 3972 dftr2 4081 dftr5 4082 dftr3 4083 dftr4 4084 vnex 4112 inuni 4133 snelpw 4190 sspwb 4193 opelopabsb 4237 eusv2 4434 orddif 4523 onintexmid 4549 zfregfr 4550 tfi 4558 opthprc 4654 elxp3 4657 xpiundir 4662 elvv 4665 brinxp2 4670 relsn 4708 reliun 4724 inxp 4737 raliunxp 4744 rexiunxp 4745 cnvuni 4789 dm0rn0 4820 elrn 4846 ssdmres 4905 dfres2 4935 dfima2 4947 args 4972 cotr 4984 intasym 4987 asymref 4988 intirr 4989 cnv0 5006 xp11m 5041 cnvresima 5092 resco 5107 rnco 5109 coiun 5112 coass 5121 dfiota2 5153 dffun2 5197 dffun6f 5200 dffun4f 5203 dffun7 5214 dffun9 5216 funfn 5217 svrelfun 5252 imadiflem 5266 dffn2 5338 dffn3 5347 fintm 5372 dffn4 5415 dff1o4 5439 brprcneu 5478 eqfnfv3 5584 fnreseql 5594 fsn 5656 abrexco 5726 imaiun 5727 mpo2eqb 5947 elovmpo 6038 abexex 6091 releldm2 6150 fnmpo 6167 dftpos4 6227 tfrlem7 6281 0er 6531 eroveu 6588 erovlem 6589 map0e 6648 elixpconst 6668 domen 6713 reuen1 6763 xpf1o 6806 ssfilem 6837 finexdc 6864 pw1dc0el 6873 ssfirab 6895 sbthlemi10 6927 djuexb 7005 dmaddpq 7316 dmmulpq 7317 distrnqg 7324 enq0enq 7368 enq0tr 7371 nqnq0pi 7375 distrnq0 7396 prltlu 7424 prarloc 7440 genpdflem 7444 ltexprlemm 7537 ltexprlemlol 7539 ltexprlemupu 7541 ltexprlemdisj 7543 recexprlemdisj 7567 ltresr 7776 elnnz 9197 dfz2 9259 2rexuz 9516 eluz2b1 9535 elxr 9708 elixx1 9829 elioo2 9853 elioopnf 9899 elicopnf 9901 elfz1 9945 fzdifsuc 10012 fznn 10020 fzp1nel 10035 fznn0 10044 dfrp2 10195 redivap 10812 imdivap 10819 rexanre 11158 climreu 11234 prodmodc 11515 3dvdsdec 11798 3dvds2dec 11799 bezoutlembi 11934 nnwosdc 11968 isprm2 12045 isprm3 12046 isprm4 12047 pythagtriplem2 12194 elgz 12297 inffinp1 12358 isbasis3g 12644 restsn 12780 lmbr 12813 txbas 12858 tx2cn 12870 elcncf1di 13166 dedekindicclemicc 13210 limcrcl 13227 bj-nnor 13575 bj-vprc 13738 ss1oel2o 13833 subctctexmid 13841 trirec0xor 13884 |
Copyright terms: Public domain | W3C validator |