Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > bitr4i | Unicode version |
Description: An inference from transitive law for logical equivalence. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
bitr4i.1 | |
bitr4i.2 |
Ref | Expression |
---|---|
bitr4i |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bitr4i.1 | . 2 | |
2 | bitr4i.2 | . . 3 | |
3 | 2 | bicomi 131 | . 2 |
4 | 1, 3 | bitri 183 | 1 |
Colors of variables: wff set class |
Syntax hints: wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: 3bitr2i 207 3bitr2ri 208 3bitr4i 211 3bitr4ri 212 biancomi 268 imdistan 441 biadani 602 mpbiran 925 mpbiran2 926 3anrev 973 an6 1303 nfand 1548 19.33b2 1609 nf3 1649 nf4dc 1650 nf4r 1651 equsalh 1706 sb6x 1759 sb5f 1784 sbidm 1831 sb5 1867 sbanv 1869 sborv 1870 sbhb 1920 sb3an 1938 sbel2x 1978 sbal1yz 1981 sbexyz 1983 eu2 2050 2eu4 2099 cleqh 2257 cleqf 2324 dcne 2338 necon3bii 2365 ne3anior 2415 r2alf 2474 r2exf 2475 r19.23t 2564 r19.26-3 2587 r19.26m 2588 r19.43 2615 rabid2 2633 isset 2718 ralv 2729 rexv 2730 reuv 2731 rmov 2732 rexcom4b 2737 ceqsex4v 2755 ceqsex8v 2757 ceqsrexv 2842 ralrab2 2877 rexrab2 2879 reu2 2900 reu3 2902 reueq 2911 2reuswapdc 2916 reuind 2917 sbc3an 2998 rmo2ilem 3026 csbcow 3042 dfss2 3117 dfss3 3118 dfss3f 3120 ssabral 3199 rabss 3205 ssrabeq 3215 uniiunlem 3217 dfdif3 3218 ddifstab 3240 uncom 3252 inass 3318 indi 3355 difindiss 3362 difin2 3370 reupick3 3393 n0rf 3407 eq0 3413 eqv 3414 vss 3442 disj 3443 disj3 3447 undisj1 3452 undisj2 3453 exsnrex 3603 euabsn2 3630 euabsn 3631 prssg 3715 dfuni2 3776 unissb 3804 elint2 3816 ssint 3825 dfiin2g 3884 iunn0m 3911 iunxun 3930 iunxiun 3932 iinpw 3941 disjnim 3958 dftr2 4067 dftr5 4068 dftr3 4069 dftr4 4070 vnex 4098 inuni 4119 snelpw 4176 sspwb 4179 opelopabsb 4223 eusv2 4420 orddif 4509 onintexmid 4535 zfregfr 4536 tfi 4544 opthprc 4640 elxp3 4643 xpiundir 4648 elvv 4651 brinxp2 4656 relsn 4694 reliun 4710 inxp 4723 raliunxp 4730 rexiunxp 4731 cnvuni 4775 dm0rn0 4806 elrn 4832 ssdmres 4891 dfres2 4921 dfima2 4933 args 4958 cotr 4970 intasym 4973 asymref 4974 intirr 4975 cnv0 4992 xp11m 5027 cnvresima 5078 resco 5093 rnco 5095 coiun 5098 coass 5107 dfiota2 5139 dffun2 5183 dffun6f 5186 dffun4f 5189 dffun7 5200 dffun9 5202 funfn 5203 svrelfun 5238 imadiflem 5252 dffn2 5324 dffn3 5333 fintm 5358 dffn4 5401 dff1o4 5425 brprcneu 5464 eqfnfv3 5570 fnreseql 5580 fsn 5642 abrexco 5712 imaiun 5713 mpo2eqb 5933 elovmpo 6024 abexex 6077 releldm2 6136 fnmpo 6153 dftpos4 6213 tfrlem7 6267 0er 6517 eroveu 6574 erovlem 6575 map0e 6634 elixpconst 6654 domen 6699 reuen1 6749 xpf1o 6792 ssfilem 6823 finexdc 6850 pw1dc0el 6859 ssfirab 6881 sbthlemi10 6913 djuexb 6991 dmaddpq 7302 dmmulpq 7303 distrnqg 7310 enq0enq 7354 enq0tr 7357 nqnq0pi 7361 distrnq0 7382 prltlu 7410 prarloc 7426 genpdflem 7430 ltexprlemm 7523 ltexprlemlol 7525 ltexprlemupu 7527 ltexprlemdisj 7529 recexprlemdisj 7553 ltresr 7762 elnnz 9183 dfz2 9242 2rexuz 9499 eluz2b1 9518 elxr 9690 elixx1 9808 elioo2 9832 elioopnf 9878 elicopnf 9880 elfz1 9924 fzdifsuc 9990 fznn 9998 fzp1nel 10013 fznn0 10022 dfrp2 10173 redivap 10786 imdivap 10793 rexanre 11132 climreu 11206 prodmodc 11487 3dvdsdec 11769 3dvds2dec 11770 bezoutlembi 11905 isprm2 12010 isprm3 12011 isprm4 12012 pythagtriplem2 12157 inffinp1 12254 isbasis3g 12540 restsn 12676 lmbr 12709 txbas 12754 tx2cn 12766 elcncf1di 13062 dedekindicclemicc 13106 limcrcl 13123 bj-nnor 13407 bj-vprc 13568 ss1oel2o 13662 subctctexmid 13670 trirec0xor 13713 |
Copyright terms: Public domain | W3C validator |