![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > bitr4i | Unicode version |
Description: An inference from transitive law for logical equivalence. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
bitr4i.1 |
![]() ![]() ![]() ![]() ![]() ![]() |
bitr4i.2 |
![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
bitr4i |
![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bitr4i.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() | |
2 | bitr4i.2 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 2 | bicomi 132 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() |
4 | 1, 3 | bitri 184 |
1
![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: 3bitr2i 208 3bitr2ri 209 3bitr4i 212 3bitr4ri 213 biancomi 270 imdistan 444 bianass 469 biadani 612 mpbiran 940 mpbiran2 941 3anrev 988 an6 1321 nfand 1568 19.33b2 1629 nf3 1669 nf4dc 1670 nf4r 1671 equsalh 1726 sb6x 1779 sb5f 1804 sbidm 1851 sb5 1887 sbanv 1889 sborv 1890 sbhb 1940 sb3an 1958 sbel2x 1998 sbal1yz 2001 sbexyz 2003 eu2 2070 2eu4 2119 cleqh 2277 cleqf 2344 dcne 2358 necon3bii 2385 ne3anior 2435 r2alf 2494 r2exf 2495 r19.23t 2584 r19.26-3 2607 r19.26m 2608 r19.43 2635 rabid2 2654 isset 2744 ralv 2755 rexv 2756 reuv 2757 rmov 2758 rexcom4b 2763 ceqsex4v 2781 ceqsex8v 2783 ceqsrexv 2868 ralrab2 2903 rexrab2 2905 reu2 2926 reu3 2928 reueq 2937 2reuswapdc 2942 reuind 2943 sbc3an 3025 rmo2ilem 3053 csbcow 3069 dfss2 3145 dfss3 3146 dfss3f 3148 ssabral 3227 rabss 3233 ssrabeq 3243 uniiunlem 3245 dfdif3 3246 ddifstab 3268 uncom 3280 inass 3346 indi 3383 difindiss 3390 difin2 3398 reupick3 3421 n0rf 3436 eq0 3442 eqv 3443 vss 3471 disj 3472 disj3 3476 undisj1 3481 undisj2 3482 exsnrex 3635 euabsn2 3662 euabsn 3663 prssg 3750 dfuni2 3812 unissb 3840 elint2 3852 ssint 3861 dfiin2g 3920 iunn0m 3948 iunxun 3967 iunxiun 3969 iinpw 3978 disjnim 3995 dftr2 4104 dftr5 4105 dftr3 4106 dftr4 4107 vnex 4135 inuni 4156 snelpw 4214 sspwb 4217 opelopabsb 4261 eusv2 4458 orddif 4547 onintexmid 4573 zfregfr 4574 tfi 4582 opthprc 4678 elxp3 4681 xpiundir 4686 elvv 4689 brinxp2 4694 relsn 4732 reliun 4748 inxp 4762 raliunxp 4769 rexiunxp 4770 cnvuni 4814 dm0rn0 4845 elrn 4871 ssdmres 4930 dfres2 4960 dfima2 4973 args 4998 cotr 5011 intasym 5014 asymref 5015 intirr 5016 cnv0 5033 xp11m 5068 cnvresima 5119 resco 5134 rnco 5136 coiun 5139 coass 5148 dfiota2 5180 dffun2 5227 dffun6f 5230 dffun4f 5233 dffun7 5244 dffun9 5246 funfn 5247 svrelfun 5282 imadiflem 5296 dffn2 5368 dffn3 5377 fintm 5402 dffn4 5445 dff1o4 5470 brprcneu 5509 eqfnfv3 5616 fnreseql 5627 fsn 5689 abrexco 5760 imaiun 5761 mpo2eqb 5984 elovmpo 6072 abexex 6127 releldm2 6186 fnmpo 6203 dftpos4 6264 tfrlem7 6318 0er 6569 eroveu 6626 erovlem 6627 map0e 6686 elixpconst 6706 domen 6751 reuen1 6801 xpf1o 6844 ssfilem 6875 finexdc 6902 pw1dc0el 6911 ssfirab 6933 sbthlemi10 6965 djuexb 7043 dmaddpq 7378 dmmulpq 7379 distrnqg 7386 enq0enq 7430 enq0tr 7433 nqnq0pi 7437 distrnq0 7458 prltlu 7486 prarloc 7502 genpdflem 7506 ltexprlemm 7599 ltexprlemlol 7601 ltexprlemupu 7603 ltexprlemdisj 7605 recexprlemdisj 7629 ltresr 7838 elnnz 9263 dfz2 9325 2rexuz 9582 eluz2b1 9601 elxr 9776 elixx1 9897 elioo2 9921 elioopnf 9967 elicopnf 9969 elfz1 10013 fzdifsuc 10081 fznn 10089 fzp1nel 10104 fznn0 10113 dfrp2 10264 redivap 10883 imdivap 10890 rexanre 11229 climreu 11305 prodmodc 11586 3dvdsdec 11870 3dvds2dec 11871 bezoutlembi 12006 nnwosdc 12040 isprm2 12117 isprm3 12118 isprm4 12119 pythagtriplem2 12266 elgz 12369 inffinp1 12430 isnsg4 13072 isring 13183 isbasis3g 13549 restsn 13683 lmbr 13716 txbas 13761 tx2cn 13773 elcncf1di 14069 dedekindicclemicc 14113 limcrcl 14130 bj-nnor 14489 bj-vprc 14651 ss1oel2o 14746 subctctexmid 14753 trirec0xor 14796 |
Copyright terms: Public domain | W3C validator |