| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > bitr4i | Unicode version | ||
| Description: An inference from transitive law for logical equivalence. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| bitr4i.1 |
|
| bitr4i.2 |
|
| Ref | Expression |
|---|---|
| bitr4i |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bitr4i.1 |
. 2
| |
| 2 | bitr4i.2 |
. . 3
| |
| 3 | 2 | bicomi 132 |
. 2
|
| 4 | 1, 3 | bitri 184 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: 3bitr2i 208 3bitr2ri 209 3bitr4i 212 3bitr4ri 213 biancomi 270 imdistan 444 bianass 469 biadani 612 mpbiran 942 mpbiran2 943 3anrev 990 an6 1333 nfand 1590 19.33b2 1651 nf3 1691 nf4dc 1692 nf4r 1693 equsalh 1748 sb6x 1801 sb5f 1826 sbidm 1873 sb5 1910 sbanv 1912 sborv 1913 sbhb 1967 sb3an 1985 sbel2x 2025 sbal1yz 2028 sbexyz 2030 eu2 2097 2eu4 2146 cleqh 2304 cleqf 2372 dcne 2386 necon3bii 2413 ne3anior 2463 r2alf 2522 r2exf 2523 r19.23t 2612 r19.26-3 2635 r19.26m 2636 r19.43 2663 rabid2 2682 isset 2777 ralv 2788 rexv 2789 reuv 2790 rmov 2791 rexcom4b 2796 ceqsex4v 2815 ceqsex8v 2817 ceqsrexv 2902 ralrab2 2937 rexrab2 2939 reu2 2960 reu3 2962 reueq 2971 2reuswapdc 2976 reuind 2977 sbc3an 3059 rmo2ilem 3087 csbcow 3103 ssalel 3180 dfss3 3181 dfss3f 3184 ssabral 3263 rabss 3269 ssrabeq 3279 uniiunlem 3281 dfdif3 3282 ddifstab 3304 uncom 3316 inass 3382 indi 3419 difindiss 3426 difin2 3434 reupick3 3457 n0rf 3472 eq0 3478 eqv 3479 vss 3507 disj 3508 disj3 3512 undisj1 3517 undisj2 3518 exsnrex 3674 euabsn2 3701 euabsn 3702 prssg 3789 dfuni2 3851 unissb 3879 elint2 3891 ssint 3900 dfiin2g 3959 iunn0m 3987 iunxun 4006 iunxiun 4008 iinpw 4017 disjnim 4034 dftr2 4143 dftr5 4144 dftr3 4145 dftr4 4146 vnex 4174 inuni 4198 snelpw 4256 sspwb 4259 opelopabsb 4305 eusv2 4503 orddif 4594 onintexmid 4620 zfregfr 4621 tfi 4629 opthprc 4725 elxp3 4728 xpiundir 4733 elvv 4736 brinxp2 4741 relsn 4779 reliun 4795 inxp 4811 raliunxp 4818 rexiunxp 4819 cnvuni 4863 dm0rn0 4894 elrn 4920 ssdmres 4980 dfres2 5010 dfima2 5023 args 5050 cotr 5063 intasym 5066 asymref 5067 intirr 5068 cnv0 5085 xp11m 5120 cnvresima 5171 resco 5186 rnco 5188 coiun 5191 coass 5200 dfiota2 5232 dffun2 5280 dffun6f 5283 dffun4f 5286 dffun7 5297 dffun9 5299 funfn 5300 svrelfun 5338 imadiflem 5352 dffn2 5426 dffn3 5435 fintm 5460 dffn4 5503 dff1o4 5529 brprcneu 5568 eqfnfv3 5678 fnreseql 5689 fsn 5751 abrexco 5827 imaiun 5828 mpo2eqb 6054 elovmpo 6144 abexex 6210 releldm2 6270 fnmpo 6287 dftpos4 6348 tfrlem7 6402 0er 6653 eroveu 6712 erovlem 6713 map0e 6772 elixpconst 6792 domen 6839 reuen1 6892 xpf1o 6940 ssfilem 6971 finexdc 6998 pw1dc0el 7007 ssfirab 7032 sbthlemi10 7067 djuexb 7145 dmaddpq 7491 dmmulpq 7492 distrnqg 7499 enq0enq 7543 enq0tr 7546 nqnq0pi 7550 distrnq0 7571 prltlu 7599 prarloc 7615 genpdflem 7619 ltexprlemm 7712 ltexprlemlol 7714 ltexprlemupu 7716 ltexprlemdisj 7718 recexprlemdisj 7742 ltresr 7951 elnnz 9381 dfz2 9444 2rexuz 9702 eluz2b1 9721 elxr 9897 elixx1 10018 elioo2 10042 elioopnf 10088 elicopnf 10090 elfz1 10134 fzdifsuc 10202 fznn 10210 fzp1nel 10225 fznn0 10234 dfrp2 10404 redivap 11127 imdivap 11134 rexanre 11473 climreu 11550 prodmodc 11831 3dvdsdec 12118 3dvds2dec 12119 bitsval 12196 bezoutlembi 12268 nnwosdc 12302 isprm2 12381 isprm3 12382 isprm4 12383 pythagtriplem2 12531 elgz 12636 inffinp1 12742 isnsg4 13490 isrng 13638 isring 13704 dfrhm2 13858 lss1d 14087 isbasis3g 14460 restsn 14594 lmbr 14627 txbas 14672 tx2cn 14684 elcncf1di 14993 dedekindicclemicc 15046 limcrcl 15072 bj-nnor 15603 bj-vprc 15765 ss1oel2o 15861 subctctexmid 15870 trirec0xor 15917 |
| Copyright terms: Public domain | W3C validator |