![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > biorf | Unicode version |
Description: A wff is equivalent to its disjunction with falsehood. Theorem *4.74 of [WhiteheadRussell] p. 121. (Contributed by NM, 23-Mar-1995.) (Proof shortened by Wolf Lammen, 18-Nov-2012.) |
Ref | Expression |
---|---|
biorf |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | olc 667 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | orel1 679 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | impbid2 141 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in2 580 ax-io 665 |
This theorem depends on definitions: df-bi 115 |
This theorem is referenced by: biortn 699 pm5.61 743 pm5.55dc 857 euor 1974 eueq3dc 2789 difprsnss 3575 opthprc 4489 frecabcl 6164 frecsuclem 6171 swoord1 6321 indpi 6901 enq0tr 6993 mulap0r 8092 mulge0 8096 leltap 8101 ap0gt0 8115 sumsplitdc 10826 coprm 11401 |
Copyright terms: Public domain | W3C validator |