| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > biorf | Unicode version | ||
| Description: A wff is equivalent to its disjunction with falsehood. Theorem *4.74 of [WhiteheadRussell] p. 121. (Contributed by NM, 23-Mar-1995.) (Proof shortened by Wolf Lammen, 18-Nov-2012.) |
| Ref | Expression |
|---|---|
| biorf |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | olc 716 |
. 2
| |
| 2 | orel1 730 |
. 2
| |
| 3 | 1, 2 | impbid2 143 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in2 618 ax-io 714 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: biortn 750 pm5.61 799 pm5.55dc 918 3bior1fd 1386 3bior2fd 1388 euor 2103 eueq3dc 2977 ifordc 3644 difprsnss 3806 exmidsssn 4286 opthprc 4770 frecabcl 6545 frecsuclem 6552 swoord1 6709 indpi 7529 enq0tr 7621 mulap0r 8762 mulge0 8766 leltap 8772 ap0gt0 8787 sumsplitdc 11943 coprm 12666 gsumval2 13430 bdbl 15177 subctctexmid 16366 |
| Copyright terms: Public domain | W3C validator |