| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > biorf | Unicode version | ||
| Description: A wff is equivalent to its disjunction with falsehood. Theorem *4.74 of [WhiteheadRussell] p. 121. (Contributed by NM, 23-Mar-1995.) (Proof shortened by Wolf Lammen, 18-Nov-2012.) |
| Ref | Expression |
|---|---|
| biorf |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | olc 713 |
. 2
| |
| 2 | orel1 727 |
. 2
| |
| 3 | 1, 2 | impbid2 143 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in2 616 ax-io 711 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: biortn 747 pm5.61 796 pm5.55dc 915 3bior1fd 1364 3bior2fd 1366 euor 2080 eueq3dc 2947 ifordc 3611 difprsnss 3771 exmidsssn 4246 opthprc 4726 frecabcl 6485 frecsuclem 6492 swoord1 6649 indpi 7455 enq0tr 7547 mulap0r 8688 mulge0 8692 leltap 8698 ap0gt0 8713 sumsplitdc 11743 coprm 12466 gsumval2 13229 bdbl 14975 subctctexmid 15937 |
| Copyright terms: Public domain | W3C validator |