ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  biorf Unicode version

Theorem biorf 746
Description: A wff is equivalent to its disjunction with falsehood. Theorem *4.74 of [WhiteheadRussell] p. 121. (Contributed by NM, 23-Mar-1995.) (Proof shortened by Wolf Lammen, 18-Nov-2012.)
Assertion
Ref Expression
biorf  |-  ( -. 
ph  ->  ( ps  <->  ( ph  \/  ps ) ) )

Proof of Theorem biorf
StepHypRef Expression
1 olc 713 . 2  |-  ( ps 
->  ( ph  \/  ps ) )
2 orel1 727 . 2  |-  ( -. 
ph  ->  ( ( ph  \/  ps )  ->  ps ) )
31, 2impbid2 143 1  |-  ( -. 
ph  ->  ( ps  <->  ( ph  \/  ps ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 105    \/ wo 710
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in2 616  ax-io 711
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  biortn  747  pm5.61  796  pm5.55dc  915  3bior1fd  1364  3bior2fd  1366  euor  2080  eueq3dc  2947  ifordc  3611  difprsnss  3771  exmidsssn  4246  opthprc  4726  frecabcl  6485  frecsuclem  6492  swoord1  6649  indpi  7455  enq0tr  7547  mulap0r  8688  mulge0  8692  leltap  8698  ap0gt0  8713  sumsplitdc  11743  coprm  12466  gsumval2  13229  bdbl  14975  subctctexmid  15937
  Copyright terms: Public domain W3C validator