ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  biorf Unicode version

Theorem biorf 734
Description: A wff is equivalent to its disjunction with falsehood. Theorem *4.74 of [WhiteheadRussell] p. 121. (Contributed by NM, 23-Mar-1995.) (Proof shortened by Wolf Lammen, 18-Nov-2012.)
Assertion
Ref Expression
biorf  |-  ( -. 
ph  ->  ( ps  <->  ( ph  \/  ps ) ) )

Proof of Theorem biorf
StepHypRef Expression
1 olc 701 . 2  |-  ( ps 
->  ( ph  \/  ps ) )
2 orel1 715 . 2  |-  ( -. 
ph  ->  ( ( ph  \/  ps )  ->  ps ) )
31, 2impbid2 142 1  |-  ( -. 
ph  ->  ( ps  <->  ( ph  \/  ps ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 104    \/ wo 698
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in2 605  ax-io 699
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  biortn  735  pm5.61  784  pm5.55dc  903  euor  2040  eueq3dc  2900  difprsnss  3711  exmidsssn  4181  opthprc  4655  frecabcl  6367  frecsuclem  6374  swoord1  6530  indpi  7283  enq0tr  7375  mulap0r  8513  mulge0  8517  leltap  8523  ap0gt0  8538  sumsplitdc  11373  coprm  12076  bdbl  13153  subctctexmid  13891
  Copyright terms: Public domain W3C validator