| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > biorf | Unicode version | ||
| Description: A wff is equivalent to its disjunction with falsehood. Theorem *4.74 of [WhiteheadRussell] p. 121. (Contributed by NM, 23-Mar-1995.) (Proof shortened by Wolf Lammen, 18-Nov-2012.) |
| Ref | Expression |
|---|---|
| biorf |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | olc 713 |
. 2
| |
| 2 | orel1 727 |
. 2
| |
| 3 | 1, 2 | impbid2 143 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in2 616 ax-io 711 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: biortn 747 pm5.61 796 pm5.55dc 915 3bior1fd 1364 3bior2fd 1366 euor 2080 eueq3dc 2947 ifordc 3611 difprsnss 3771 exmidsssn 4247 opthprc 4727 frecabcl 6487 frecsuclem 6494 swoord1 6651 indpi 7457 enq0tr 7549 mulap0r 8690 mulge0 8694 leltap 8700 ap0gt0 8715 sumsplitdc 11776 coprm 12499 gsumval2 13262 bdbl 15008 subctctexmid 15974 |
| Copyright terms: Public domain | W3C validator |