![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > biorf | Unicode version |
Description: A wff is equivalent to its disjunction with falsehood. Theorem *4.74 of [WhiteheadRussell] p. 121. (Contributed by NM, 23-Mar-1995.) (Proof shortened by Wolf Lammen, 18-Nov-2012.) |
Ref | Expression |
---|---|
biorf |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | olc 712 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | orel1 726 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | impbid2 143 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in2 616 ax-io 710 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: biortn 746 pm5.61 795 pm5.55dc 914 euor 2068 eueq3dc 2934 ifordc 3596 difprsnss 3756 exmidsssn 4231 opthprc 4710 frecabcl 6452 frecsuclem 6459 swoord1 6616 indpi 7402 enq0tr 7494 mulap0r 8634 mulge0 8638 leltap 8644 ap0gt0 8659 sumsplitdc 11575 coprm 12282 gsumval2 12980 bdbl 14671 subctctexmid 15491 |
Copyright terms: Public domain | W3C validator |