![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > biorf | Unicode version |
Description: A wff is equivalent to its disjunction with falsehood. Theorem *4.74 of [WhiteheadRussell] p. 121. (Contributed by NM, 23-Mar-1995.) (Proof shortened by Wolf Lammen, 18-Nov-2012.) |
Ref | Expression |
---|---|
biorf |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | olc 711 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | orel1 725 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | impbid2 143 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in2 615 ax-io 709 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: biortn 745 pm5.61 794 pm5.55dc 913 euor 2052 eueq3dc 2911 ifordc 3573 difprsnss 3730 exmidsssn 4202 opthprc 4677 frecabcl 6399 frecsuclem 6406 swoord1 6563 indpi 7340 enq0tr 7432 mulap0r 8570 mulge0 8574 leltap 8580 ap0gt0 8595 sumsplitdc 11435 coprm 12138 bdbl 13896 subctctexmid 14632 |
Copyright terms: Public domain | W3C validator |