| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > biorf | Unicode version | ||
| Description: A wff is equivalent to its disjunction with falsehood. Theorem *4.74 of [WhiteheadRussell] p. 121. (Contributed by NM, 23-Mar-1995.) (Proof shortened by Wolf Lammen, 18-Nov-2012.) |
| Ref | Expression |
|---|---|
| biorf |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | olc 713 |
. 2
| |
| 2 | orel1 727 |
. 2
| |
| 3 | 1, 2 | impbid2 143 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in2 616 ax-io 711 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: biortn 747 pm5.61 796 pm5.55dc 915 3bior1fd 1364 3bior2fd 1366 euor 2081 eueq3dc 2954 ifordc 3621 difprsnss 3782 exmidsssn 4262 opthprc 4744 frecabcl 6508 frecsuclem 6515 swoord1 6672 indpi 7490 enq0tr 7582 mulap0r 8723 mulge0 8727 leltap 8733 ap0gt0 8748 sumsplitdc 11858 coprm 12581 gsumval2 13344 bdbl 15090 subctctexmid 16139 |
| Copyright terms: Public domain | W3C validator |