ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  biorf Unicode version

Theorem biorf 749
Description: A wff is equivalent to its disjunction with falsehood. Theorem *4.74 of [WhiteheadRussell] p. 121. (Contributed by NM, 23-Mar-1995.) (Proof shortened by Wolf Lammen, 18-Nov-2012.)
Assertion
Ref Expression
biorf  |-  ( -. 
ph  ->  ( ps  <->  ( ph  \/  ps ) ) )

Proof of Theorem biorf
StepHypRef Expression
1 olc 716 . 2  |-  ( ps 
->  ( ph  \/  ps ) )
2 orel1 730 . 2  |-  ( -. 
ph  ->  ( ( ph  \/  ps )  ->  ps ) )
31, 2impbid2 143 1  |-  ( -. 
ph  ->  ( ps  <->  ( ph  \/  ps ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 105    \/ wo 713
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in2 618  ax-io 714
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  biortn  750  pm5.61  799  pm5.55dc  918  3bior1fd  1386  3bior2fd  1388  euor  2103  eueq3dc  2977  ifordc  3644  difprsnss  3806  exmidsssn  4286  opthprc  4770  frecabcl  6545  frecsuclem  6552  swoord1  6709  indpi  7529  enq0tr  7621  mulap0r  8762  mulge0  8766  leltap  8772  ap0gt0  8787  sumsplitdc  11943  coprm  12666  gsumval2  13430  bdbl  15177  subctctexmid  16366
  Copyright terms: Public domain W3C validator