ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  notnot Unicode version

Theorem notnot 619
Description: Double negation introduction. Theorem *2.12 of [WhiteheadRussell] p. 101. The converse need not hold. It holds exactly for stable propositions (by definition, see df-stab 817) and in particular for decidable propositions (see notnotrdc 829). See also notnotnot 624. (Contributed by NM, 28-Dec-1992.) (Proof shortened by Wolf Lammen, 2-Mar-2013.)
Assertion
Ref Expression
notnot  |-  ( ph  ->  -.  -.  ph )

Proof of Theorem notnot
StepHypRef Expression
1 id 19 . 2  |-  ( -. 
ph  ->  -.  ph )
21con2i 617 1  |-  ( ph  ->  -.  -.  ph )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-in1 604  ax-in2 605
This theorem is referenced by:  notnotd  620  con3d  621  notnotnot  624  notnoti  635  pm3.24  683  biortn  735  dcn  828  const  838  con1dc  842  notnotbdc  858  imanst  874  eueq2dc  2881  ddifstab  3235  ismkvnex  7077  xrlttri3  9682  nltpnft  9696  ngtmnft  9699  bj-nnsn  13247  bj-nndcALT  13268  bdnthALT  13348
  Copyright terms: Public domain W3C validator