ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  notnot Unicode version

Theorem notnot 630
Description: Double negation introduction. Theorem *2.12 of [WhiteheadRussell] p. 101. The converse need not hold. It holds exactly for stable propositions (by definition, see df-stab 832) and in particular for decidable propositions (see notnotrdc 844). See also notnotnot 635. (Contributed by NM, 28-Dec-1992.) (Proof shortened by Wolf Lammen, 2-Mar-2013.)
Assertion
Ref Expression
notnot  |-  ( ph  ->  -.  -.  ph )

Proof of Theorem notnot
StepHypRef Expression
1 id 19 . 2  |-  ( -. 
ph  ->  -.  ph )
21con2i 628 1  |-  ( ph  ->  -.  -.  ph )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-in1 615  ax-in2 616
This theorem is referenced by:  notnotd  631  con3d  632  notnotnot  635  notnoti  646  pm3.24  694  biortn  746  dcn  843  con1dc  857  notnotbdc  873  imanst  889  eueq2dc  2934  ddifstab  3292  ifnotdc  3595  ismkvnex  7216  xrlttri3  9866  nltpnft  9883  ngtmnft  9886  bj-nnsn  15295  bj-nndcALT  15320  bdnthALT  15397
  Copyright terms: Public domain W3C validator