| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > notnot | Unicode version | ||
| Description: Double negation introduction. Theorem *2.12 of [WhiteheadRussell] p. 101. The converse need not hold. It holds exactly for stable propositions (by definition, see df-stab 833) and in particular for decidable propositions (see notnotrdc 845). See also notnotnot 635. (Contributed by NM, 28-Dec-1992.) (Proof shortened by Wolf Lammen, 2-Mar-2013.) |
| Ref | Expression |
|---|---|
| notnot |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 19 |
. 2
| |
| 2 | 1 | con2i 628 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-in1 615 ax-in2 616 |
| This theorem is referenced by: notnotd 631 con3d 632 notnotnot 635 notnoti 646 pm3.24 695 biortn 747 dcn 844 con1dc 858 notnotbdc 874 imanst 890 eueq2dc 2946 ddifstab 3305 ifnotdc 3609 ismkvnex 7257 xrlttri3 9919 nltpnft 9936 ngtmnft 9939 bj-nnsn 15669 bj-nndcALT 15694 bdnthALT 15771 |
| Copyright terms: Public domain | W3C validator |