Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > notnot | Unicode version |
Description: Double negation introduction. Theorem *2.12 of [WhiteheadRussell] p. 101. The converse need not hold. It holds exactly for stable propositions (by definition, see df-stab 821) and in particular for decidable propositions (see notnotrdc 833). See also notnotnot 624. (Contributed by NM, 28-Dec-1992.) (Proof shortened by Wolf Lammen, 2-Mar-2013.) |
Ref | Expression |
---|---|
notnot |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 19 | . 2 | |
2 | 1 | con2i 617 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-in1 604 ax-in2 605 |
This theorem is referenced by: notnotd 620 con3d 621 notnotnot 624 notnoti 635 pm3.24 683 biortn 735 dcn 832 con1dc 846 notnotbdc 862 imanst 878 eueq2dc 2899 ddifstab 3254 ifnotdc 3556 ismkvnex 7119 xrlttri3 9733 nltpnft 9750 ngtmnft 9753 bj-nnsn 13614 bj-nndcALT 13639 bdnthALT 13717 |
Copyright terms: Public domain | W3C validator |