![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > notnot | Unicode version |
Description: Double negation introduction. Theorem *2.12 of [WhiteheadRussell] p. 101. This one holds for all propositions, but its converse only holds for decidable propositions (see notnotrdc 789). (Contributed by NM, 28-Dec-1992.) (Proof shortened by Wolf Lammen, 2-Mar-2013.) |
Ref | Expression |
---|---|
notnot |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 19 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | con2i 592 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-in1 579 ax-in2 580 |
This theorem is referenced by: notnotd 595 con3d 596 notnoti 609 pm3.24 662 notnotnot 663 biortn 699 imanst 779 dcn 784 con1dc 791 notnotbdc 804 eueq2dc 2788 ddifstab 3132 xrlttri3 9265 nltpnft 9277 ngtmnft 9278 bdnthALT 11681 |
Copyright terms: Public domain | W3C validator |