| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > notnot | Unicode version | ||
| Description: Double negation introduction. Theorem *2.12 of [WhiteheadRussell] p. 101. The converse need not hold. It holds exactly for stable propositions (by definition, see df-stab 833) and in particular for decidable propositions (see notnotrdc 845). See also notnotnot 635. (Contributed by NM, 28-Dec-1992.) (Proof shortened by Wolf Lammen, 2-Mar-2013.) |
| Ref | Expression |
|---|---|
| notnot |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 19 |
. 2
| |
| 2 | 1 | con2i 628 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-in1 615 ax-in2 616 |
| This theorem is referenced by: notnotd 631 con3d 632 notnotnot 635 notnoti 646 pm3.24 695 biortn 747 dcn 844 con1dc 858 notnotbdc 874 imanst 890 eueq2dc 2953 ddifstab 3313 ifnotdc 3618 ismkvnex 7283 xrlttri3 9954 nltpnft 9971 ngtmnft 9974 bj-nnsn 15869 bj-nndcALT 15894 bdnthALT 15970 |
| Copyright terms: Public domain | W3C validator |