Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-con1st GIF version

Theorem bj-con1st 13786
Description: Contraposition when the antecedent is a negated stable proposition. See con1dc 851. (Contributed by BJ, 11-Nov-2024.)
Assertion
Ref Expression
bj-con1st (STAB 𝜑 → ((¬ 𝜑𝜓) → (¬ 𝜓𝜑)))

Proof of Theorem bj-con1st
StepHypRef Expression
1 con3 637 . 2 ((¬ 𝜑𝜓) → (¬ 𝜓 → ¬ ¬ 𝜑))
2 df-stab 826 . . 3 (STAB 𝜑 ↔ (¬ ¬ 𝜑𝜑))
32biimpi 119 . 2 (STAB 𝜑 → (¬ ¬ 𝜑𝜑))
41, 3syl9r 73 1 (STAB 𝜑 → ((¬ 𝜑𝜓) → (¬ 𝜓𝜑)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  STAB wstab 825
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-in1 609  ax-in2 610
This theorem depends on definitions:  df-bi 116  df-stab 826
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator