Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-nnbist Unicode version

Theorem bj-nnbist 13779
Description: If a formula is not refutable, then it is stable if and only if it is provable. By double-negation translation, if  ph is a classical tautology, then  -.  -.  ph is an intuitionistic tautology. Therefore, if  ph is a classical tautology, then  ph is intuitionistically equivalent to its stability (and to its decidability, see bj-nnbidc 13792). (Contributed by BJ, 24-Nov-2023.)
Assertion
Ref Expression
bj-nnbist  |-  ( -. 
-.  ph  ->  (STAB  ph  <->  ph ) )

Proof of Theorem bj-nnbist
StepHypRef Expression
1 df-stab 826 . . . 4  |-  (STAB  ph  <->  ( -.  -.  ph  ->  ph ) )
21biimpi 119 . . 3  |-  (STAB  ph  ->  ( -.  -.  ph  ->  ph ) )
32com12 30 . 2  |-  ( -. 
-.  ph  ->  (STAB  ph  ->  ph ) )
4 bj-trst 13774 . 2  |-  ( ph  -> STAB  ph )
53, 4impbid1 141 1  |-  ( -. 
-.  ph  ->  (STAB  ph  <->  ph ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 104  STAB wstab 825
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107
This theorem depends on definitions:  df-bi 116  df-stab 826
This theorem is referenced by:  bj-stst  13780  bj-nnbidc  13792  bj-stdc  13795
  Copyright terms: Public domain W3C validator