Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > camestros | Unicode version |
Description: "Camestros", one of the syllogisms of Aristotelian logic. All is , no is , and exist, therefore some is not . (In Aristotelian notation, AEO-2: PaM and SeM therefore SoP.) For example, "All horses have hooves", "No humans have hooves", and humans exist, therefore "Some humans are not horses". (Contributed by David A. Wheeler, 28-Aug-2016.) (Revised by David A. Wheeler, 2-Sep-2016.) |
Ref | Expression |
---|---|
camestros.maj | |
camestros.min | |
camestros.e |
Ref | Expression |
---|---|
camestros |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | camestros.e | . 2 | |
2 | camestros.min | . . . . 5 | |
3 | 2 | spi 1524 | . . . 4 |
4 | camestros.maj | . . . . 5 | |
5 | 4 | spi 1524 | . . . 4 |
6 | 3, 5 | nsyl 618 | . . 3 |
7 | 6 | ancli 321 | . 2 |
8 | 1, 7 | eximii 1590 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wal 1341 wex 1480 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-5 1435 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-4 1498 ax-ial 1522 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |