ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  camestros Unicode version

Theorem camestros 2128
Description: "Camestros", one of the syllogisms of Aristotelian logic. All  ph is  ps, no  ch is  ps, and  ch exist, therefore some  ch is not  ph. (In Aristotelian notation, AEO-2: PaM and SeM therefore SoP.) For example, "All horses have hooves", "No humans have hooves", and humans exist, therefore "Some humans are not horses". (Contributed by David A. Wheeler, 28-Aug-2016.) (Revised by David A. Wheeler, 2-Sep-2016.)
Hypotheses
Ref Expression
camestros.maj  |-  A. x
( ph  ->  ps )
camestros.min  |-  A. x
( ch  ->  -.  ps )
camestros.e  |-  E. x ch
Assertion
Ref Expression
camestros  |-  E. x
( ch  /\  -.  ph )

Proof of Theorem camestros
StepHypRef Expression
1 camestros.e . 2  |-  E. x ch
2 camestros.min . . . . 5  |-  A. x
( ch  ->  -.  ps )
32spi 1529 . . . 4  |-  ( ch 
->  -.  ps )
4 camestros.maj . . . . 5  |-  A. x
( ph  ->  ps )
54spi 1529 . . . 4  |-  ( ph  ->  ps )
63, 5nsyl 623 . . 3  |-  ( ch 
->  -.  ph )
76ancli 321 . 2  |-  ( ch 
->  ( ch  /\  -.  ph ) )
81, 7eximii 1595 1  |-  E. x
( ch  /\  -.  ph )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103   A.wal 1346   E.wex 1485
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-5 1440  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-4 1503  ax-ial 1527
This theorem depends on definitions:  df-bi 116
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator