![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ancli | Unicode version |
Description: Deduction conjoining antecedent to left of consequent. (Contributed by NM, 12-Aug-1993.) |
Ref | Expression |
---|---|
ancli.1 |
![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
ancli |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 19 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() | |
2 | ancli.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | jca 306 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia3 108 |
This theorem is referenced by: pm4.45im 334 mo23 2079 barbari 2140 cesaro 2146 camestros 2147 calemos 2157 swopo 4321 elrnrexdm 5672 tfrcl 6384 ixpsnf1o 6757 fidcenumlemrk 6978 subhalfnqq 7438 enq0ref 7457 prarloc 7527 letrp1 8830 p1le 8831 peano2uz2 9385 uzind 9389 uzid 9567 qreccl 9667 fprodsplit1f 11669 lmodfopne 13635 |
Copyright terms: Public domain | W3C validator |