![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ancli | Unicode version |
Description: Deduction conjoining antecedent to left of consequent. (Contributed by NM, 12-Aug-1993.) |
Ref | Expression |
---|---|
ancli.1 |
![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
ancli |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 19 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() | |
2 | ancli.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | jca 306 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia3 108 |
This theorem is referenced by: pm4.45im 334 mo23 2083 barbari 2144 cesaro 2150 camestros 2151 calemos 2161 swopo 4337 elrnrexdm 5697 uchoice 6190 tfrcl 6417 ixpsnf1o 6790 fidcenumlemrk 7013 subhalfnqq 7474 enq0ref 7493 prarloc 7563 letrp1 8867 p1le 8868 peano2uz2 9424 uzind 9428 uzid 9606 qreccl 9707 fprodsplit1f 11777 lmodfopne 13822 |
Copyright terms: Public domain | W3C validator |