![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ancli | Unicode version |
Description: Deduction conjoining antecedent to left of consequent. (Contributed by NM, 12-Aug-1993.) |
Ref | Expression |
---|---|
ancli.1 |
![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
ancli |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 19 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() | |
2 | ancli.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | jca 306 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia3 108 |
This theorem is referenced by: pm4.45im 334 mo23 2083 barbari 2144 cesaro 2150 camestros 2151 calemos 2161 swopo 4338 elrnrexdm 5698 uchoice 6192 tfrcl 6419 ixpsnf1o 6792 fidcenumlemrk 7015 subhalfnqq 7476 enq0ref 7495 prarloc 7565 letrp1 8869 p1le 8870 peano2uz2 9427 uzind 9431 uzid 9609 qreccl 9710 fprodsplit1f 11780 lmodfopne 13825 |
Copyright terms: Public domain | W3C validator |