Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > con1biddc | Unicode version |
Description: A contraposition deduction. (Contributed by Jim Kingdon, 4-Apr-2018.) |
Ref | Expression |
---|---|
con1biddc.1 | DECID |
Ref | Expression |
---|---|
con1biddc | DECID |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | con1biddc.1 | . 2 DECID | |
2 | con1biimdc 868 | . 2 DECID | |
3 | 1, 2 | sylcom 28 | 1 DECID |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wb 104 DECID wdc 829 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 |
This theorem depends on definitions: df-bi 116 df-stab 826 df-dc 830 |
This theorem is referenced by: con2biddc 875 pm5.18dc 878 necon1abiddc 2402 necon1bbiddc 2403 |
Copyright terms: Public domain | W3C validator |