Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > con2bidc | Unicode version |
Description: Contraposition. (Contributed by Jim Kingdon, 17-Apr-2018.) |
Ref | Expression |
---|---|
con2bidc | DECID DECID |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | con1bidc 869 | . . . . 5 DECID DECID | |
2 | 1 | imp 123 | . . . 4 DECID DECID |
3 | bicom 139 | . . . 4 | |
4 | bicom 139 | . . . 4 | |
5 | 2, 3, 4 | 3bitr3g 221 | . . 3 DECID DECID |
6 | 5 | bicomd 140 | . 2 DECID DECID |
7 | 6 | ex 114 | 1 DECID DECID |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wb 104 DECID wdc 829 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 |
This theorem depends on definitions: df-bi 116 df-stab 826 df-dc 830 |
This theorem is referenced by: annimdc 932 pm4.55dc 933 orandc 934 nbbndc 1389 |
Copyright terms: Public domain | W3C validator |