ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  con2bidc Unicode version

Theorem con2bidc 870
Description: Contraposition. (Contributed by Jim Kingdon, 17-Apr-2018.)
Assertion
Ref Expression
con2bidc  |-  (DECID  ph  ->  (DECID  ps 
->  ( ( ph  <->  -.  ps )  <->  ( ps  <->  -.  ph ) ) ) )

Proof of Theorem con2bidc
StepHypRef Expression
1 con1bidc 869 . . . . 5  |-  (DECID  ph  ->  (DECID  ps 
->  ( ( -.  ph  <->  ps )  <->  ( -.  ps  <->  ph ) ) ) )
21imp 123 . . . 4  |-  ( (DECID  ph  /\ DECID  ps )  ->  ( ( -. 
ph 
<->  ps )  <->  ( -.  ps 
<-> 
ph ) ) )
3 bicom 139 . . . 4  |-  ( ( -.  ph  <->  ps )  <->  ( ps  <->  -. 
ph ) )
4 bicom 139 . . . 4  |-  ( ( -.  ps  <->  ph )  <->  ( ph  <->  -. 
ps ) )
52, 3, 43bitr3g 221 . . 3  |-  ( (DECID  ph  /\ DECID  ps )  ->  ( ( ps  <->  -. 
ph )  <->  ( ph  <->  -. 
ps ) ) )
65bicomd 140 . 2  |-  ( (DECID  ph  /\ DECID  ps )  ->  ( ( ph  <->  -. 
ps )  <->  ( ps  <->  -. 
ph ) ) )
76ex 114 1  |-  (DECID  ph  ->  (DECID  ps 
->  ( ( ph  <->  -.  ps )  <->  ( ps  <->  -.  ph ) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104  DECID wdc 829
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704
This theorem depends on definitions:  df-bi 116  df-stab 826  df-dc 830
This theorem is referenced by:  annimdc  932  pm4.55dc  933  orandc  934  nbbndc  1389
  Copyright terms: Public domain W3C validator