Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > con2biddc | Unicode version |
Description: A contraposition deduction. (Contributed by Jim Kingdon, 11-Apr-2018.) |
Ref | Expression |
---|---|
con2biddc.1 | DECID |
Ref | Expression |
---|---|
con2biddc | DECID |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | con2biddc.1 | . . . 4 DECID | |
2 | bicom 139 | . . . 4 | |
3 | 1, 2 | syl6ib 160 | . . 3 DECID |
4 | 3 | con1biddc 866 | . 2 DECID |
5 | bicom 139 | . 2 | |
6 | 4, 5 | syl6ib 160 | 1 DECID |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wb 104 DECID wdc 824 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 |
This theorem depends on definitions: df-bi 116 df-stab 821 df-dc 825 |
This theorem is referenced by: anordc 946 xor3dc 1377 |
Copyright terms: Public domain | W3C validator |