| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > con2biddc | Unicode version | ||
| Description: A contraposition deduction. (Contributed by Jim Kingdon, 11-Apr-2018.) |
| Ref | Expression |
|---|---|
| con2biddc.1 |
|
| Ref | Expression |
|---|---|
| con2biddc |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | con2biddc.1 |
. . . 4
| |
| 2 | bicom 140 |
. . . 4
| |
| 3 | 1, 2 | imbitrdi 161 |
. . 3
|
| 4 | 3 | con1biddc 877 |
. 2
|
| 5 | bicom 140 |
. 2
| |
| 6 | 4, 5 | imbitrdi 161 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 |
| This theorem depends on definitions: df-bi 117 df-stab 832 df-dc 836 |
| This theorem is referenced by: anordc 958 xor3dc 1398 |
| Copyright terms: Public domain | W3C validator |