ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  con34bdc Unicode version

Theorem con34bdc 866
Description: Contraposition. Theorem *4.1 of [WhiteheadRussell] p. 116, but for a decidable proposition. (Contributed by Jim Kingdon, 24-Apr-2018.)
Assertion
Ref Expression
con34bdc  |-  (DECID  ps  ->  ( ( ph  ->  ps ) 
<->  ( -.  ps  ->  -. 
ph ) ) )

Proof of Theorem con34bdc
StepHypRef Expression
1 con3 637 . 2  |-  ( (
ph  ->  ps )  -> 
( -.  ps  ->  -. 
ph ) )
2 condc 848 . 2  |-  (DECID  ps  ->  ( ( -.  ps  ->  -. 
ph )  ->  ( ph  ->  ps ) ) )
31, 2impbid2 142 1  |-  (DECID  ps  ->  ( ( ph  ->  ps ) 
<->  ( -.  ps  ->  -. 
ph ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 104  DECID wdc 829
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704
This theorem depends on definitions:  df-bi 116  df-stab 826  df-dc 830
This theorem is referenced by:  pm4.14dc  885  algcvgblem  12003
  Copyright terms: Public domain W3C validator