Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > notnotbdc | Unicode version |
Description: Double negation equivalence for a decidable proposition. Like Theorem *4.13 of [WhiteheadRussell] p. 117, but with a decidability antecendent. The forward direction, notnot 624, holds for all propositions, not just decidable ones. (Contributed by Jim Kingdon, 13-Mar-2018.) |
Ref | Expression |
---|---|
notnotbdc | DECID |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | notnot 624 | . 2 | |
2 | notnotrdc 838 | . 2 DECID | |
3 | 1, 2 | impbid2 142 | 1 DECID |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wb 104 DECID wdc 829 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 |
This theorem depends on definitions: df-bi 116 df-dc 830 |
This theorem is referenced by: con1biidc 872 imordc 892 dfbi3dc 1392 alexdc 1612 |
Copyright terms: Public domain | W3C validator |