Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > con34bdc | GIF version |
Description: Contraposition. Theorem *4.1 of [WhiteheadRussell] p. 116, but for a decidable proposition. (Contributed by Jim Kingdon, 24-Apr-2018.) |
Ref | Expression |
---|---|
con34bdc | ⊢ (DECID 𝜓 → ((𝜑 → 𝜓) ↔ (¬ 𝜓 → ¬ 𝜑))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | con3 632 | . 2 ⊢ ((𝜑 → 𝜓) → (¬ 𝜓 → ¬ 𝜑)) | |
2 | condc 843 | . 2 ⊢ (DECID 𝜓 → ((¬ 𝜓 → ¬ 𝜑) → (𝜑 → 𝜓))) | |
3 | 1, 2 | impbid2 142 | 1 ⊢ (DECID 𝜓 → ((𝜑 → 𝜓) ↔ (¬ 𝜓 → ¬ 𝜑))) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 104 DECID wdc 824 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 |
This theorem depends on definitions: df-bi 116 df-stab 821 df-dc 825 |
This theorem is referenced by: pm4.14dc 880 algcvgblem 11981 |
Copyright terms: Public domain | W3C validator |