| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > con34bdc | GIF version | ||
| Description: Contraposition. Theorem *4.1 of [WhiteheadRussell] p. 116, but for a decidable proposition. (Contributed by Jim Kingdon, 24-Apr-2018.) |
| Ref | Expression |
|---|---|
| con34bdc | ⊢ (DECID 𝜓 → ((𝜑 → 𝜓) ↔ (¬ 𝜓 → ¬ 𝜑))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | con3 643 | . 2 ⊢ ((𝜑 → 𝜓) → (¬ 𝜓 → ¬ 𝜑)) | |
| 2 | condc 854 | . 2 ⊢ (DECID 𝜓 → ((¬ 𝜓 → ¬ 𝜑) → (𝜑 → 𝜓))) | |
| 3 | 1, 2 | impbid2 143 | 1 ⊢ (DECID 𝜓 → ((𝜑 → 𝜓) ↔ (¬ 𝜓 → ¬ 𝜑))) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 105 DECID wdc 835 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 |
| This theorem depends on definitions: df-bi 117 df-stab 832 df-dc 836 |
| This theorem is referenced by: pm4.14dc 891 algcvgblem 12242 |
| Copyright terms: Public domain | W3C validator |