| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > algcvgblem | Unicode version | ||
| Description: Lemma for algcvgb 12416. (Contributed by Paul Chapman, 31-Mar-2011.) |
| Ref | Expression |
|---|---|
| algcvgblem |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0z 9399 |
. . . . . . . . 9
| |
| 2 | 0z 9390 |
. . . . . . . . 9
| |
| 3 | zdceq 9455 |
. . . . . . . . 9
| |
| 4 | 1, 2, 3 | sylancl 413 |
. . . . . . . 8
|
| 5 | 4 | dcned 2383 |
. . . . . . 7
|
| 6 | imordc 899 |
. . . . . . 7
| |
| 7 | 5, 6 | syl 14 |
. . . . . 6
|
| 8 | 7 | adantl 277 |
. . . . 5
|
| 9 | nn0z 9399 |
. . . . . . . . . . . . . 14
| |
| 10 | zltnle 9425 |
. . . . . . . . . . . . . 14
| |
| 11 | 2, 9, 10 | sylancr 414 |
. . . . . . . . . . . . 13
|
| 12 | 11 | adantr 276 |
. . . . . . . . . . . 12
|
| 13 | nn0le0eq0 9330 |
. . . . . . . . . . . . . 14
| |
| 14 | 13 | notbid 669 |
. . . . . . . . . . . . 13
|
| 15 | 14 | adantr 276 |
. . . . . . . . . . . 12
|
| 16 | 12, 15 | bitrd 188 |
. . . . . . . . . . 11
|
| 17 | df-ne 2378 |
. . . . . . . . . . 11
| |
| 18 | 16, 17 | bitr4di 198 |
. . . . . . . . . 10
|
| 19 | 18 | anbi2d 464 |
. . . . . . . . 9
|
| 20 | 1 | adantl 277 |
. . . . . . . . . . . . . 14
|
| 21 | 20, 2, 3 | sylancl 413 |
. . . . . . . . . . . . 13
|
| 22 | nnedc 2382 |
. . . . . . . . . . . . 13
| |
| 23 | 21, 22 | syl 14 |
. . . . . . . . . . . 12
|
| 24 | breq1 4050 |
. . . . . . . . . . . 12
| |
| 25 | 23, 24 | biimtrdi 163 |
. . . . . . . . . . 11
|
| 26 | biimpr 130 |
. . . . . . . . . . 11
| |
| 27 | 25, 26 | syl6 33 |
. . . . . . . . . 10
|
| 28 | 27 | impd 254 |
. . . . . . . . 9
|
| 29 | 19, 28 | sylbird 170 |
. . . . . . . 8
|
| 30 | 29 | expd 258 |
. . . . . . 7
|
| 31 | ax-1 6 |
. . . . . . 7
| |
| 32 | 30, 31 | jctir 313 |
. . . . . 6
|
| 33 | jaob 712 |
. . . . . 6
| |
| 34 | 32, 33 | sylibr 134 |
. . . . 5
|
| 35 | 8, 34 | sylbid 150 |
. . . 4
|
| 36 | nn0ge0 9327 |
. . . . . . . 8
| |
| 37 | 36 | adantl 277 |
. . . . . . 7
|
| 38 | nn0re 9311 |
. . . . . . . 8
| |
| 39 | nn0re 9311 |
. . . . . . . 8
| |
| 40 | 0re 8079 |
. . . . . . . . 9
| |
| 41 | lelttr 8168 |
. . . . . . . . 9
| |
| 42 | 40, 41 | mp3an1 1337 |
. . . . . . . 8
|
| 43 | 38, 39, 42 | syl2anr 290 |
. . . . . . 7
|
| 44 | 37, 43 | mpand 429 |
. . . . . 6
|
| 45 | 44, 18 | sylibd 149 |
. . . . 5
|
| 46 | 45 | imim2d 54 |
. . . 4
|
| 47 | 35, 46 | jcad 307 |
. . 3
|
| 48 | pm3.34 346 |
. . 3
| |
| 49 | 47, 48 | impbid1 142 |
. 2
|
| 50 | con34bdc 873 |
. . . . 5
| |
| 51 | 21, 50 | syl 14 |
. . . 4
|
| 52 | df-ne 2378 |
. . . . 5
| |
| 53 | 52, 17 | imbi12i 239 |
. . . 4
|
| 54 | 51, 53 | bitr4di 198 |
. . 3
|
| 55 | 54 | anbi2d 464 |
. 2
|
| 56 | 49, 55 | bitr4d 191 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4166 ax-pow 4222 ax-pr 4257 ax-un 4484 ax-setind 4589 ax-cnex 8023 ax-resscn 8024 ax-1cn 8025 ax-1re 8026 ax-icn 8027 ax-addcl 8028 ax-addrcl 8029 ax-mulcl 8030 ax-addcom 8032 ax-addass 8034 ax-distr 8036 ax-i2m1 8037 ax-0lt1 8038 ax-0id 8040 ax-rnegex 8041 ax-cnre 8043 ax-pre-ltirr 8044 ax-pre-ltwlin 8045 ax-pre-lttrn 8046 ax-pre-apti 8047 ax-pre-ltadd 8048 |
| This theorem depends on definitions: df-bi 117 df-stab 833 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3000 df-dif 3169 df-un 3171 df-in 3173 df-ss 3180 df-pw 3619 df-sn 3640 df-pr 3641 df-op 3643 df-uni 3853 df-int 3888 df-br 4048 df-opab 4110 df-id 4344 df-xp 4685 df-rel 4686 df-cnv 4687 df-co 4688 df-dm 4689 df-iota 5237 df-fun 5278 df-fv 5284 df-riota 5906 df-ov 5954 df-oprab 5955 df-mpo 5956 df-pnf 8116 df-mnf 8117 df-xr 8118 df-ltxr 8119 df-le 8120 df-sub 8252 df-neg 8253 df-inn 9044 df-n0 9303 df-z 9380 |
| This theorem is referenced by: algcvgb 12416 |
| Copyright terms: Public domain | W3C validator |