Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > algcvgblem | Unicode version |
Description: Lemma for algcvgb 11982. (Contributed by Paul Chapman, 31-Mar-2011.) |
Ref | Expression |
---|---|
algcvgblem |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nn0z 9211 | . . . . . . . . 9 | |
2 | 0z 9202 | . . . . . . . . 9 | |
3 | zdceq 9266 | . . . . . . . . 9 DECID | |
4 | 1, 2, 3 | sylancl 410 | . . . . . . . 8 DECID |
5 | 4 | dcned 2342 | . . . . . . 7 DECID |
6 | imordc 887 | . . . . . . 7 DECID | |
7 | 5, 6 | syl 14 | . . . . . 6 |
8 | 7 | adantl 275 | . . . . 5 |
9 | nn0z 9211 | . . . . . . . . . . . . . 14 | |
10 | zltnle 9237 | . . . . . . . . . . . . . 14 | |
11 | 2, 9, 10 | sylancr 411 | . . . . . . . . . . . . 13 |
12 | 11 | adantr 274 | . . . . . . . . . . . 12 |
13 | nn0le0eq0 9142 | . . . . . . . . . . . . . 14 | |
14 | 13 | notbid 657 | . . . . . . . . . . . . 13 |
15 | 14 | adantr 274 | . . . . . . . . . . . 12 |
16 | 12, 15 | bitrd 187 | . . . . . . . . . . 11 |
17 | df-ne 2337 | . . . . . . . . . . 11 | |
18 | 16, 17 | bitr4di 197 | . . . . . . . . . 10 |
19 | 18 | anbi2d 460 | . . . . . . . . 9 |
20 | 1 | adantl 275 | . . . . . . . . . . . . . 14 |
21 | 20, 2, 3 | sylancl 410 | . . . . . . . . . . . . 13 DECID |
22 | nnedc 2341 | . . . . . . . . . . . . 13 DECID | |
23 | 21, 22 | syl 14 | . . . . . . . . . . . 12 |
24 | breq1 3985 | . . . . . . . . . . . 12 | |
25 | 23, 24 | syl6bi 162 | . . . . . . . . . . 11 |
26 | biimpr 129 | . . . . . . . . . . 11 | |
27 | 25, 26 | syl6 33 | . . . . . . . . . 10 |
28 | 27 | impd 252 | . . . . . . . . 9 |
29 | 19, 28 | sylbird 169 | . . . . . . . 8 |
30 | 29 | expd 256 | . . . . . . 7 |
31 | ax-1 6 | . . . . . . 7 | |
32 | 30, 31 | jctir 311 | . . . . . 6 |
33 | jaob 700 | . . . . . 6 | |
34 | 32, 33 | sylibr 133 | . . . . 5 |
35 | 8, 34 | sylbid 149 | . . . 4 |
36 | nn0ge0 9139 | . . . . . . . 8 | |
37 | 36 | adantl 275 | . . . . . . 7 |
38 | nn0re 9123 | . . . . . . . 8 | |
39 | nn0re 9123 | . . . . . . . 8 | |
40 | 0re 7899 | . . . . . . . . 9 | |
41 | lelttr 7987 | . . . . . . . . 9 | |
42 | 40, 41 | mp3an1 1314 | . . . . . . . 8 |
43 | 38, 39, 42 | syl2anr 288 | . . . . . . 7 |
44 | 37, 43 | mpand 426 | . . . . . 6 |
45 | 44, 18 | sylibd 148 | . . . . 5 |
46 | 45 | imim2d 54 | . . . 4 |
47 | 35, 46 | jcad 305 | . . 3 |
48 | pm3.34 344 | . . 3 | |
49 | 47, 48 | impbid1 141 | . 2 |
50 | con34bdc 861 | . . . . 5 DECID | |
51 | 21, 50 | syl 14 | . . . 4 |
52 | df-ne 2337 | . . . . 5 | |
53 | 52, 17 | imbi12i 238 | . . . 4 |
54 | 51, 53 | bitr4di 197 | . . 3 |
55 | 54 | anbi2d 460 | . 2 |
56 | 49, 55 | bitr4d 190 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wb 104 wo 698 DECID wdc 824 wceq 1343 wcel 2136 wne 2336 class class class wbr 3982 cr 7752 cc0 7753 clt 7933 cle 7934 cn0 9114 cz 9191 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-cnex 7844 ax-resscn 7845 ax-1cn 7846 ax-1re 7847 ax-icn 7848 ax-addcl 7849 ax-addrcl 7850 ax-mulcl 7851 ax-addcom 7853 ax-addass 7855 ax-distr 7857 ax-i2m1 7858 ax-0lt1 7859 ax-0id 7861 ax-rnegex 7862 ax-cnre 7864 ax-pre-ltirr 7865 ax-pre-ltwlin 7866 ax-pre-lttrn 7867 ax-pre-apti 7868 ax-pre-ltadd 7869 |
This theorem depends on definitions: df-bi 116 df-stab 821 df-dc 825 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-br 3983 df-opab 4044 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-iota 5153 df-fun 5190 df-fv 5196 df-riota 5798 df-ov 5845 df-oprab 5846 df-mpo 5847 df-pnf 7935 df-mnf 7936 df-xr 7937 df-ltxr 7938 df-le 7939 df-sub 8071 df-neg 8072 df-inn 8858 df-n0 9115 df-z 9192 |
This theorem is referenced by: algcvgb 11982 |
Copyright terms: Public domain | W3C validator |