ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  algcvgblem Unicode version

Theorem algcvgblem 12003
Description: Lemma for algcvgb 12004. (Contributed by Paul Chapman, 31-Mar-2011.)
Assertion
Ref Expression
algcvgblem  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( ( N  =/=  0  ->  N  <  M )  <->  ( ( M  =/=  0  ->  N  <  M )  /\  ( M  =  0  ->  N  =  0 ) ) ) )

Proof of Theorem algcvgblem
StepHypRef Expression
1 nn0z 9232 . . . . . . . . 9  |-  ( N  e.  NN0  ->  N  e.  ZZ )
2 0z 9223 . . . . . . . . 9  |-  0  e.  ZZ
3 zdceq 9287 . . . . . . . . 9  |-  ( ( N  e.  ZZ  /\  0  e.  ZZ )  -> DECID  N  =  0 )
41, 2, 3sylancl 411 . . . . . . . 8  |-  ( N  e.  NN0  -> DECID  N  =  0
)
54dcned 2346 . . . . . . 7  |-  ( N  e.  NN0  -> DECID  N  =/=  0
)
6 imordc 892 . . . . . . 7  |-  (DECID  N  =/=  0  ->  ( ( N  =/=  0  ->  N  <  M )  <->  ( -.  N  =/=  0  \/  N  <  M ) ) )
75, 6syl 14 . . . . . 6  |-  ( N  e.  NN0  ->  ( ( N  =/=  0  ->  N  <  M )  <->  ( -.  N  =/=  0  \/  N  <  M ) ) )
87adantl 275 . . . . 5  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( ( N  =/=  0  ->  N  <  M )  <->  ( -.  N  =/=  0  \/  N  <  M ) ) )
9 nn0z 9232 . . . . . . . . . . . . . 14  |-  ( M  e.  NN0  ->  M  e.  ZZ )
10 zltnle 9258 . . . . . . . . . . . . . 14  |-  ( ( 0  e.  ZZ  /\  M  e.  ZZ )  ->  ( 0  <  M  <->  -.  M  <_  0 ) )
112, 9, 10sylancr 412 . . . . . . . . . . . . 13  |-  ( M  e.  NN0  ->  ( 0  <  M  <->  -.  M  <_  0 ) )
1211adantr 274 . . . . . . . . . . . 12  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( 0  <  M  <->  -.  M  <_  0 ) )
13 nn0le0eq0 9163 . . . . . . . . . . . . . 14  |-  ( M  e.  NN0  ->  ( M  <_  0  <->  M  = 
0 ) )
1413notbid 662 . . . . . . . . . . . . 13  |-  ( M  e.  NN0  ->  ( -.  M  <_  0  <->  -.  M  =  0 ) )
1514adantr 274 . . . . . . . . . . . 12  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( -.  M  <_ 
0  <->  -.  M  = 
0 ) )
1612, 15bitrd 187 . . . . . . . . . . 11  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( 0  <  M  <->  -.  M  =  0 ) )
17 df-ne 2341 . . . . . . . . . . 11  |-  ( M  =/=  0  <->  -.  M  =  0 )
1816, 17bitr4di 197 . . . . . . . . . 10  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( 0  <  M  <->  M  =/=  0 ) )
1918anbi2d 461 . . . . . . . . 9  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( ( -.  N  =/=  0  /\  0  <  M )  <->  ( -.  N  =/=  0  /\  M  =/=  0 ) ) )
201adantl 275 . . . . . . . . . . . . . 14  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  ->  N  e.  ZZ )
2120, 2, 3sylancl 411 . . . . . . . . . . . . 13  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> DECID  N  =  0 )
22 nnedc 2345 . . . . . . . . . . . . 13  |-  (DECID  N  =  0  ->  ( -.  N  =/=  0  <->  N  = 
0 ) )
2321, 22syl 14 . . . . . . . . . . . 12  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( -.  N  =/=  0  <->  N  =  0
) )
24 breq1 3992 . . . . . . . . . . . 12  |-  ( N  =  0  ->  ( N  <  M  <->  0  <  M ) )
2523, 24syl6bi 162 . . . . . . . . . . 11  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( -.  N  =/=  0  ->  ( N  <  M  <->  0  <  M
) ) )
26 biimpr 129 . . . . . . . . . . 11  |-  ( ( N  <  M  <->  0  <  M )  ->  ( 0  <  M  ->  N  <  M ) )
2725, 26syl6 33 . . . . . . . . . 10  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( -.  N  =/=  0  ->  ( 0  <  M  ->  N  <  M ) ) )
2827impd 252 . . . . . . . . 9  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( ( -.  N  =/=  0  /\  0  <  M )  ->  N  <  M ) )
2919, 28sylbird 169 . . . . . . . 8  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( ( -.  N  =/=  0  /\  M  =/=  0 )  ->  N  <  M ) )
3029expd 256 . . . . . . 7  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( -.  N  =/=  0  ->  ( M  =/=  0  ->  N  < 
M ) ) )
31 ax-1 6 . . . . . . 7  |-  ( N  <  M  ->  ( M  =/=  0  ->  N  <  M ) )
3230, 31jctir 311 . . . . . 6  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( ( -.  N  =/=  0  ->  ( M  =/=  0  ->  N  <  M ) )  /\  ( N  <  M  -> 
( M  =/=  0  ->  N  <  M ) ) ) )
33 jaob 705 . . . . . 6  |-  ( ( ( -.  N  =/=  0  \/  N  < 
M )  ->  ( M  =/=  0  ->  N  <  M ) )  <->  ( ( -.  N  =/=  0  ->  ( M  =/=  0  ->  N  <  M ) )  /\  ( N  <  M  ->  ( M  =/=  0  ->  N  <  M ) ) ) )
3432, 33sylibr 133 . . . . 5  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( ( -.  N  =/=  0  \/  N  <  M )  ->  ( M  =/=  0  ->  N  <  M ) ) )
358, 34sylbid 149 . . . 4  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( ( N  =/=  0  ->  N  <  M )  ->  ( M  =/=  0  ->  N  < 
M ) ) )
36 nn0ge0 9160 . . . . . . . 8  |-  ( N  e.  NN0  ->  0  <_  N )
3736adantl 275 . . . . . . 7  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
0  <_  N )
38 nn0re 9144 . . . . . . . 8  |-  ( N  e.  NN0  ->  N  e.  RR )
39 nn0re 9144 . . . . . . . 8  |-  ( M  e.  NN0  ->  M  e.  RR )
40 0re 7920 . . . . . . . . 9  |-  0  e.  RR
41 lelttr 8008 . . . . . . . . 9  |-  ( ( 0  e.  RR  /\  N  e.  RR  /\  M  e.  RR )  ->  (
( 0  <_  N  /\  N  <  M )  ->  0  <  M
) )
4240, 41mp3an1 1319 . . . . . . . 8  |-  ( ( N  e.  RR  /\  M  e.  RR )  ->  ( ( 0  <_  N  /\  N  <  M
)  ->  0  <  M ) )
4338, 39, 42syl2anr 288 . . . . . . 7  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( ( 0  <_  N  /\  N  <  M
)  ->  0  <  M ) )
4437, 43mpand 427 . . . . . 6  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( N  <  M  ->  0  <  M ) )
4544, 18sylibd 148 . . . . 5  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( N  <  M  ->  M  =/=  0 ) )
4645imim2d 54 . . . 4  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( ( N  =/=  0  ->  N  <  M )  ->  ( N  =/=  0  ->  M  =/=  0 ) ) )
4735, 46jcad 305 . . 3  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( ( N  =/=  0  ->  N  <  M )  ->  ( ( M  =/=  0  ->  N  <  M )  /\  ( N  =/=  0  ->  M  =/=  0 ) ) ) )
48 pm3.34 344 . . 3  |-  ( ( ( M  =/=  0  ->  N  <  M )  /\  ( N  =/=  0  ->  M  =/=  0 ) )  -> 
( N  =/=  0  ->  N  <  M ) )
4947, 48impbid1 141 . 2  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( ( N  =/=  0  ->  N  <  M )  <->  ( ( M  =/=  0  ->  N  <  M )  /\  ( N  =/=  0  ->  M  =/=  0 ) ) ) )
50 con34bdc 866 . . . . 5  |-  (DECID  N  =  0  ->  ( ( M  =  0  ->  N  =  0 )  <->  ( -.  N  =  0  ->  -.  M  =  0 ) ) )
5121, 50syl 14 . . . 4  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( ( M  =  0  ->  N  = 
0 )  <->  ( -.  N  =  0  ->  -.  M  =  0 ) ) )
52 df-ne 2341 . . . . 5  |-  ( N  =/=  0  <->  -.  N  =  0 )
5352, 17imbi12i 238 . . . 4  |-  ( ( N  =/=  0  ->  M  =/=  0 )  <->  ( -.  N  =  0  ->  -.  M  =  0 ) )
5451, 53bitr4di 197 . . 3  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( ( M  =  0  ->  N  = 
0 )  <->  ( N  =/=  0  ->  M  =/=  0 ) ) )
5554anbi2d 461 . 2  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( ( ( M  =/=  0  ->  N  <  M )  /\  ( M  =  0  ->  N  =  0 ) )  <-> 
( ( M  =/=  0  ->  N  <  M )  /\  ( N  =/=  0  ->  M  =/=  0 ) ) ) )
5649, 55bitr4d 190 1  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( ( N  =/=  0  ->  N  <  M )  <->  ( ( M  =/=  0  ->  N  <  M )  /\  ( M  =  0  ->  N  =  0 ) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 703  DECID wdc 829    = wceq 1348    e. wcel 2141    =/= wne 2340   class class class wbr 3989   RRcr 7773   0cc0 7774    < clt 7954    <_ cle 7955   NN0cn0 9135   ZZcz 9212
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-addcom 7874  ax-addass 7876  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-0id 7882  ax-rnegex 7883  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-apti 7889  ax-pre-ltadd 7890
This theorem depends on definitions:  df-bi 116  df-stab 826  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-br 3990  df-opab 4051  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-iota 5160  df-fun 5200  df-fv 5206  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-inn 8879  df-n0 9136  df-z 9213
This theorem is referenced by:  algcvgb  12004
  Copyright terms: Public domain W3C validator