ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  algcvgblem Unicode version

Theorem algcvgblem 12557
Description: Lemma for algcvgb 12558. (Contributed by Paul Chapman, 31-Mar-2011.)
Assertion
Ref Expression
algcvgblem  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( ( N  =/=  0  ->  N  <  M )  <->  ( ( M  =/=  0  ->  N  <  M )  /\  ( M  =  0  ->  N  =  0 ) ) ) )

Proof of Theorem algcvgblem
StepHypRef Expression
1 nn0z 9454 . . . . . . . . 9  |-  ( N  e.  NN0  ->  N  e.  ZZ )
2 0z 9445 . . . . . . . . 9  |-  0  e.  ZZ
3 zdceq 9510 . . . . . . . . 9  |-  ( ( N  e.  ZZ  /\  0  e.  ZZ )  -> DECID  N  =  0 )
41, 2, 3sylancl 413 . . . . . . . 8  |-  ( N  e.  NN0  -> DECID  N  =  0
)
54dcned 2406 . . . . . . 7  |-  ( N  e.  NN0  -> DECID  N  =/=  0
)
6 imordc 902 . . . . . . 7  |-  (DECID  N  =/=  0  ->  ( ( N  =/=  0  ->  N  <  M )  <->  ( -.  N  =/=  0  \/  N  <  M ) ) )
75, 6syl 14 . . . . . 6  |-  ( N  e.  NN0  ->  ( ( N  =/=  0  ->  N  <  M )  <->  ( -.  N  =/=  0  \/  N  <  M ) ) )
87adantl 277 . . . . 5  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( ( N  =/=  0  ->  N  <  M )  <->  ( -.  N  =/=  0  \/  N  <  M ) ) )
9 nn0z 9454 . . . . . . . . . . . . . 14  |-  ( M  e.  NN0  ->  M  e.  ZZ )
10 zltnle 9480 . . . . . . . . . . . . . 14  |-  ( ( 0  e.  ZZ  /\  M  e.  ZZ )  ->  ( 0  <  M  <->  -.  M  <_  0 ) )
112, 9, 10sylancr 414 . . . . . . . . . . . . 13  |-  ( M  e.  NN0  ->  ( 0  <  M  <->  -.  M  <_  0 ) )
1211adantr 276 . . . . . . . . . . . 12  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( 0  <  M  <->  -.  M  <_  0 ) )
13 nn0le0eq0 9385 . . . . . . . . . . . . . 14  |-  ( M  e.  NN0  ->  ( M  <_  0  <->  M  = 
0 ) )
1413notbid 671 . . . . . . . . . . . . 13  |-  ( M  e.  NN0  ->  ( -.  M  <_  0  <->  -.  M  =  0 ) )
1514adantr 276 . . . . . . . . . . . 12  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( -.  M  <_ 
0  <->  -.  M  = 
0 ) )
1612, 15bitrd 188 . . . . . . . . . . 11  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( 0  <  M  <->  -.  M  =  0 ) )
17 df-ne 2401 . . . . . . . . . . 11  |-  ( M  =/=  0  <->  -.  M  =  0 )
1816, 17bitr4di 198 . . . . . . . . . 10  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( 0  <  M  <->  M  =/=  0 ) )
1918anbi2d 464 . . . . . . . . 9  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( ( -.  N  =/=  0  /\  0  <  M )  <->  ( -.  N  =/=  0  /\  M  =/=  0 ) ) )
201adantl 277 . . . . . . . . . . . . . 14  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  ->  N  e.  ZZ )
2120, 2, 3sylancl 413 . . . . . . . . . . . . 13  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> DECID  N  =  0 )
22 nnedc 2405 . . . . . . . . . . . . 13  |-  (DECID  N  =  0  ->  ( -.  N  =/=  0  <->  N  = 
0 ) )
2321, 22syl 14 . . . . . . . . . . . 12  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( -.  N  =/=  0  <->  N  =  0
) )
24 breq1 4085 . . . . . . . . . . . 12  |-  ( N  =  0  ->  ( N  <  M  <->  0  <  M ) )
2523, 24biimtrdi 163 . . . . . . . . . . 11  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( -.  N  =/=  0  ->  ( N  <  M  <->  0  <  M
) ) )
26 biimpr 130 . . . . . . . . . . 11  |-  ( ( N  <  M  <->  0  <  M )  ->  ( 0  <  M  ->  N  <  M ) )
2725, 26syl6 33 . . . . . . . . . 10  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( -.  N  =/=  0  ->  ( 0  <  M  ->  N  <  M ) ) )
2827impd 254 . . . . . . . . 9  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( ( -.  N  =/=  0  /\  0  <  M )  ->  N  <  M ) )
2919, 28sylbird 170 . . . . . . . 8  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( ( -.  N  =/=  0  /\  M  =/=  0 )  ->  N  <  M ) )
3029expd 258 . . . . . . 7  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( -.  N  =/=  0  ->  ( M  =/=  0  ->  N  < 
M ) ) )
31 ax-1 6 . . . . . . 7  |-  ( N  <  M  ->  ( M  =/=  0  ->  N  <  M ) )
3230, 31jctir 313 . . . . . 6  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( ( -.  N  =/=  0  ->  ( M  =/=  0  ->  N  <  M ) )  /\  ( N  <  M  -> 
( M  =/=  0  ->  N  <  M ) ) ) )
33 jaob 715 . . . . . 6  |-  ( ( ( -.  N  =/=  0  \/  N  < 
M )  ->  ( M  =/=  0  ->  N  <  M ) )  <->  ( ( -.  N  =/=  0  ->  ( M  =/=  0  ->  N  <  M ) )  /\  ( N  <  M  ->  ( M  =/=  0  ->  N  <  M ) ) ) )
3432, 33sylibr 134 . . . . 5  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( ( -.  N  =/=  0  \/  N  <  M )  ->  ( M  =/=  0  ->  N  <  M ) ) )
358, 34sylbid 150 . . . 4  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( ( N  =/=  0  ->  N  <  M )  ->  ( M  =/=  0  ->  N  < 
M ) ) )
36 nn0ge0 9382 . . . . . . . 8  |-  ( N  e.  NN0  ->  0  <_  N )
3736adantl 277 . . . . . . 7  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
0  <_  N )
38 nn0re 9366 . . . . . . . 8  |-  ( N  e.  NN0  ->  N  e.  RR )
39 nn0re 9366 . . . . . . . 8  |-  ( M  e.  NN0  ->  M  e.  RR )
40 0re 8134 . . . . . . . . 9  |-  0  e.  RR
41 lelttr 8223 . . . . . . . . 9  |-  ( ( 0  e.  RR  /\  N  e.  RR  /\  M  e.  RR )  ->  (
( 0  <_  N  /\  N  <  M )  ->  0  <  M
) )
4240, 41mp3an1 1358 . . . . . . . 8  |-  ( ( N  e.  RR  /\  M  e.  RR )  ->  ( ( 0  <_  N  /\  N  <  M
)  ->  0  <  M ) )
4338, 39, 42syl2anr 290 . . . . . . 7  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( ( 0  <_  N  /\  N  <  M
)  ->  0  <  M ) )
4437, 43mpand 429 . . . . . 6  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( N  <  M  ->  0  <  M ) )
4544, 18sylibd 149 . . . . 5  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( N  <  M  ->  M  =/=  0 ) )
4645imim2d 54 . . . 4  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( ( N  =/=  0  ->  N  <  M )  ->  ( N  =/=  0  ->  M  =/=  0 ) ) )
4735, 46jcad 307 . . 3  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( ( N  =/=  0  ->  N  <  M )  ->  ( ( M  =/=  0  ->  N  <  M )  /\  ( N  =/=  0  ->  M  =/=  0 ) ) ) )
48 pm3.34 346 . . 3  |-  ( ( ( M  =/=  0  ->  N  <  M )  /\  ( N  =/=  0  ->  M  =/=  0 ) )  -> 
( N  =/=  0  ->  N  <  M ) )
4947, 48impbid1 142 . 2  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( ( N  =/=  0  ->  N  <  M )  <->  ( ( M  =/=  0  ->  N  <  M )  /\  ( N  =/=  0  ->  M  =/=  0 ) ) ) )
50 con34bdc 876 . . . . 5  |-  (DECID  N  =  0  ->  ( ( M  =  0  ->  N  =  0 )  <->  ( -.  N  =  0  ->  -.  M  =  0 ) ) )
5121, 50syl 14 . . . 4  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( ( M  =  0  ->  N  = 
0 )  <->  ( -.  N  =  0  ->  -.  M  =  0 ) ) )
52 df-ne 2401 . . . . 5  |-  ( N  =/=  0  <->  -.  N  =  0 )
5352, 17imbi12i 239 . . . 4  |-  ( ( N  =/=  0  ->  M  =/=  0 )  <->  ( -.  N  =  0  ->  -.  M  =  0 ) )
5451, 53bitr4di 198 . . 3  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( ( M  =  0  ->  N  = 
0 )  <->  ( N  =/=  0  ->  M  =/=  0 ) ) )
5554anbi2d 464 . 2  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( ( ( M  =/=  0  ->  N  <  M )  /\  ( M  =  0  ->  N  =  0 ) )  <-> 
( ( M  =/=  0  ->  N  <  M )  /\  ( N  =/=  0  ->  M  =/=  0 ) ) ) )
5649, 55bitr4d 191 1  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( ( N  =/=  0  ->  N  <  M )  <->  ( ( M  =/=  0  ->  N  <  M )  /\  ( M  =  0  ->  N  =  0 ) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 713  DECID wdc 839    = wceq 1395    e. wcel 2200    =/= wne 2400   class class class wbr 4082   RRcr 7986   0cc0 7987    < clt 8169    <_ cle 8170   NN0cn0 9357   ZZcz 9434
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4521  ax-setind 4626  ax-cnex 8078  ax-resscn 8079  ax-1cn 8080  ax-1re 8081  ax-icn 8082  ax-addcl 8083  ax-addrcl 8084  ax-mulcl 8085  ax-addcom 8087  ax-addass 8089  ax-distr 8091  ax-i2m1 8092  ax-0lt1 8093  ax-0id 8095  ax-rnegex 8096  ax-cnre 8098  ax-pre-ltirr 8099  ax-pre-ltwlin 8100  ax-pre-lttrn 8101  ax-pre-apti 8102  ax-pre-ltadd 8103
This theorem depends on definitions:  df-bi 117  df-stab 836  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-br 4083  df-opab 4145  df-id 4381  df-xp 4722  df-rel 4723  df-cnv 4724  df-co 4725  df-dm 4726  df-iota 5274  df-fun 5316  df-fv 5322  df-riota 5947  df-ov 5997  df-oprab 5998  df-mpo 5999  df-pnf 8171  df-mnf 8172  df-xr 8173  df-ltxr 8174  df-le 8175  df-sub 8307  df-neg 8308  df-inn 9099  df-n0 9358  df-z 9435
This theorem is referenced by:  algcvgb  12558
  Copyright terms: Public domain W3C validator