| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > algcvgblem | Unicode version | ||
| Description: Lemma for algcvgb 12580. (Contributed by Paul Chapman, 31-Mar-2011.) |
| Ref | Expression |
|---|---|
| algcvgblem |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0z 9474 |
. . . . . . . . 9
| |
| 2 | 0z 9465 |
. . . . . . . . 9
| |
| 3 | zdceq 9530 |
. . . . . . . . 9
| |
| 4 | 1, 2, 3 | sylancl 413 |
. . . . . . . 8
|
| 5 | 4 | dcned 2406 |
. . . . . . 7
|
| 6 | imordc 902 |
. . . . . . 7
| |
| 7 | 5, 6 | syl 14 |
. . . . . 6
|
| 8 | 7 | adantl 277 |
. . . . 5
|
| 9 | nn0z 9474 |
. . . . . . . . . . . . . 14
| |
| 10 | zltnle 9500 |
. . . . . . . . . . . . . 14
| |
| 11 | 2, 9, 10 | sylancr 414 |
. . . . . . . . . . . . 13
|
| 12 | 11 | adantr 276 |
. . . . . . . . . . . 12
|
| 13 | nn0le0eq0 9405 |
. . . . . . . . . . . . . 14
| |
| 14 | 13 | notbid 671 |
. . . . . . . . . . . . 13
|
| 15 | 14 | adantr 276 |
. . . . . . . . . . . 12
|
| 16 | 12, 15 | bitrd 188 |
. . . . . . . . . . 11
|
| 17 | df-ne 2401 |
. . . . . . . . . . 11
| |
| 18 | 16, 17 | bitr4di 198 |
. . . . . . . . . 10
|
| 19 | 18 | anbi2d 464 |
. . . . . . . . 9
|
| 20 | 1 | adantl 277 |
. . . . . . . . . . . . . 14
|
| 21 | 20, 2, 3 | sylancl 413 |
. . . . . . . . . . . . 13
|
| 22 | nnedc 2405 |
. . . . . . . . . . . . 13
| |
| 23 | 21, 22 | syl 14 |
. . . . . . . . . . . 12
|
| 24 | breq1 4086 |
. . . . . . . . . . . 12
| |
| 25 | 23, 24 | biimtrdi 163 |
. . . . . . . . . . 11
|
| 26 | biimpr 130 |
. . . . . . . . . . 11
| |
| 27 | 25, 26 | syl6 33 |
. . . . . . . . . 10
|
| 28 | 27 | impd 254 |
. . . . . . . . 9
|
| 29 | 19, 28 | sylbird 170 |
. . . . . . . 8
|
| 30 | 29 | expd 258 |
. . . . . . 7
|
| 31 | ax-1 6 |
. . . . . . 7
| |
| 32 | 30, 31 | jctir 313 |
. . . . . 6
|
| 33 | jaob 715 |
. . . . . 6
| |
| 34 | 32, 33 | sylibr 134 |
. . . . 5
|
| 35 | 8, 34 | sylbid 150 |
. . . 4
|
| 36 | nn0ge0 9402 |
. . . . . . . 8
| |
| 37 | 36 | adantl 277 |
. . . . . . 7
|
| 38 | nn0re 9386 |
. . . . . . . 8
| |
| 39 | nn0re 9386 |
. . . . . . . 8
| |
| 40 | 0re 8154 |
. . . . . . . . 9
| |
| 41 | lelttr 8243 |
. . . . . . . . 9
| |
| 42 | 40, 41 | mp3an1 1358 |
. . . . . . . 8
|
| 43 | 38, 39, 42 | syl2anr 290 |
. . . . . . 7
|
| 44 | 37, 43 | mpand 429 |
. . . . . 6
|
| 45 | 44, 18 | sylibd 149 |
. . . . 5
|
| 46 | 45 | imim2d 54 |
. . . 4
|
| 47 | 35, 46 | jcad 307 |
. . 3
|
| 48 | pm3.34 346 |
. . 3
| |
| 49 | 47, 48 | impbid1 142 |
. 2
|
| 50 | con34bdc 876 |
. . . . 5
| |
| 51 | 21, 50 | syl 14 |
. . . 4
|
| 52 | df-ne 2401 |
. . . . 5
| |
| 53 | 52, 17 | imbi12i 239 |
. . . 4
|
| 54 | 51, 53 | bitr4di 198 |
. . 3
|
| 55 | 54 | anbi2d 464 |
. 2
|
| 56 | 49, 55 | bitr4d 191 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-cnex 8098 ax-resscn 8099 ax-1cn 8100 ax-1re 8101 ax-icn 8102 ax-addcl 8103 ax-addrcl 8104 ax-mulcl 8105 ax-addcom 8107 ax-addass 8109 ax-distr 8111 ax-i2m1 8112 ax-0lt1 8113 ax-0id 8115 ax-rnegex 8116 ax-cnre 8118 ax-pre-ltirr 8119 ax-pre-ltwlin 8120 ax-pre-lttrn 8121 ax-pre-apti 8122 ax-pre-ltadd 8123 |
| This theorem depends on definitions: df-bi 117 df-stab 836 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-br 4084 df-opab 4146 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-iota 5278 df-fun 5320 df-fv 5326 df-riota 5960 df-ov 6010 df-oprab 6011 df-mpo 6012 df-pnf 8191 df-mnf 8192 df-xr 8193 df-ltxr 8194 df-le 8195 df-sub 8327 df-neg 8328 df-inn 9119 df-n0 9378 df-z 9455 |
| This theorem is referenced by: algcvgb 12580 |
| Copyright terms: Public domain | W3C validator |