ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  aprap Unicode version

Theorem aprap 14244
Description: The relation given by df-apr 14239 for a local ring is an apartness relation. (Contributed by Jim Kingdon, 20-Feb-2025.)
Assertion
Ref Expression
aprap  |-  ( R  e. LRing  ->  (#r `  R ) Ap  (
Base `  R )
)

Proof of Theorem aprap
Dummy variables  r  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-apr 14239 . . . 4  |- #r  =  (
r  e.  _V  |->  {
<. x ,  y >.  |  ( ( x  e.  ( Base `  r
)  /\  y  e.  ( Base `  r )
)  /\  ( x
( -g `  r ) y )  e.  (Unit `  r ) ) } )
2 fveq2 5626 . . . . . . . 8  |-  ( r  =  R  ->  ( Base `  r )  =  ( Base `  R
) )
32eleq2d 2299 . . . . . . 7  |-  ( r  =  R  ->  (
x  e.  ( Base `  r )  <->  x  e.  ( Base `  R )
) )
42eleq2d 2299 . . . . . . 7  |-  ( r  =  R  ->  (
y  e.  ( Base `  r )  <->  y  e.  ( Base `  R )
) )
53, 4anbi12d 473 . . . . . 6  |-  ( r  =  R  ->  (
( x  e.  (
Base `  r )  /\  y  e.  ( Base `  r ) )  <-> 
( x  e.  (
Base `  R )  /\  y  e.  ( Base `  R ) ) ) )
6 fveq2 5626 . . . . . . . 8  |-  ( r  =  R  ->  ( -g `  r )  =  ( -g `  R
) )
76oveqd 6017 . . . . . . 7  |-  ( r  =  R  ->  (
x ( -g `  r
) y )  =  ( x ( -g `  R ) y ) )
8 fveq2 5626 . . . . . . 7  |-  ( r  =  R  ->  (Unit `  r )  =  (Unit `  R ) )
97, 8eleq12d 2300 . . . . . 6  |-  ( r  =  R  ->  (
( x ( -g `  r ) y )  e.  (Unit `  r
)  <->  ( x (
-g `  R )
y )  e.  (Unit `  R ) ) )
105, 9anbi12d 473 . . . . 5  |-  ( r  =  R  ->  (
( ( x  e.  ( Base `  r
)  /\  y  e.  ( Base `  r )
)  /\  ( x
( -g `  r ) y )  e.  (Unit `  r ) )  <->  ( (
x  e.  ( Base `  R )  /\  y  e.  ( Base `  R
) )  /\  (
x ( -g `  R
) y )  e.  (Unit `  R )
) ) )
1110opabbidv 4149 . . . 4  |-  ( r  =  R  ->  { <. x ,  y >.  |  ( ( x  e.  (
Base `  r )  /\  y  e.  ( Base `  r ) )  /\  ( x (
-g `  r )
y )  e.  (Unit `  r ) ) }  =  { <. x ,  y >.  |  ( ( x  e.  (
Base `  R )  /\  y  e.  ( Base `  R ) )  /\  ( x (
-g `  R )
y )  e.  (Unit `  R ) ) } )
12 elex 2811 . . . 4  |-  ( R  e. LRing  ->  R  e.  _V )
13 basfn 13086 . . . . . . . 8  |-  Base  Fn  _V
1413a1i 9 . . . . . . 7  |-  ( R  e. LRing  ->  Base  Fn  _V )
15 funfvex 5643 . . . . . . . 8  |-  ( ( Fun  Base  /\  R  e. 
dom  Base )  ->  ( Base `  R )  e. 
_V )
1615funfni 5422 . . . . . . 7  |-  ( (
Base  Fn  _V  /\  R  e.  _V )  ->  ( Base `  R )  e. 
_V )
1714, 12, 16syl2anc 411 . . . . . 6  |-  ( R  e. LRing  ->  ( Base `  R
)  e.  _V )
18 xpexg 4832 . . . . . 6  |-  ( ( ( Base `  R
)  e.  _V  /\  ( Base `  R )  e.  _V )  ->  (
( Base `  R )  X.  ( Base `  R
) )  e.  _V )
1917, 17, 18syl2anc 411 . . . . 5  |-  ( R  e. LRing  ->  ( ( Base `  R )  X.  ( Base `  R ) )  e.  _V )
20 opabssxp 4792 . . . . . 6  |-  { <. x ,  y >.  |  ( ( x  e.  (
Base `  R )  /\  y  e.  ( Base `  R ) )  /\  ( x (
-g `  R )
y )  e.  (Unit `  R ) ) } 
C_  ( ( Base `  R )  X.  ( Base `  R ) )
2120a1i 9 . . . . 5  |-  ( R  e. LRing  ->  { <. x ,  y >.  |  ( ( x  e.  (
Base `  R )  /\  y  e.  ( Base `  R ) )  /\  ( x (
-g `  R )
y )  e.  (Unit `  R ) ) } 
C_  ( ( Base `  R )  X.  ( Base `  R ) ) )
2219, 21ssexd 4223 . . . 4  |-  ( R  e. LRing  ->  { <. x ,  y >.  |  ( ( x  e.  (
Base `  R )  /\  y  e.  ( Base `  R ) )  /\  ( x (
-g `  R )
y )  e.  (Unit `  R ) ) }  e.  _V )
231, 11, 12, 22fvmptd3 5727 . . 3  |-  ( R  e. LRing  ->  (#r `  R )  =  { <. x ,  y
>.  |  ( (
x  e.  ( Base `  R )  /\  y  e.  ( Base `  R
) )  /\  (
x ( -g `  R
) y )  e.  (Unit `  R )
) } )
2423, 20eqsstrdi 3276 . 2  |-  ( R  e. LRing  ->  (#r `  R )  C_  ( ( Base `  R
)  X.  ( Base `  R ) ) )
25 eqidd 2230 . . . 4  |-  ( ( R  e. LRing  /\  x  e.  ( Base `  R
) )  ->  ( Base `  R )  =  ( Base `  R
) )
26 eqidd 2230 . . . 4  |-  ( ( R  e. LRing  /\  x  e.  ( Base `  R
) )  ->  (#r `  R )  =  (#r `  R ) )
27 lringring 14152 . . . . 5  |-  ( R  e. LRing  ->  R  e.  Ring )
2827adantr 276 . . . 4  |-  ( ( R  e. LRing  /\  x  e.  ( Base `  R
) )  ->  R  e.  Ring )
29 simpr 110 . . . 4  |-  ( ( R  e. LRing  /\  x  e.  ( Base `  R
) )  ->  x  e.  ( Base `  R
) )
30 eqid 2229 . . . . . 6  |-  ( 1r
`  R )  =  ( 1r `  R
)
31 eqid 2229 . . . . . 6  |-  ( 0g
`  R )  =  ( 0g `  R
)
3230, 31lringnz 14153 . . . . 5  |-  ( R  e. LRing  ->  ( 1r `  R )  =/=  ( 0g `  R ) )
3332adantr 276 . . . 4  |-  ( ( R  e. LRing  /\  x  e.  ( Base `  R
) )  ->  ( 1r `  R )  =/=  ( 0g `  R
) )
3425, 26, 28, 29, 33aprirr 14241 . . 3  |-  ( ( R  e. LRing  /\  x  e.  ( Base `  R
) )  ->  -.  x (#r `  R ) x )
3534ralrimiva 2603 . 2  |-  ( R  e. LRing  ->  A. x  e.  (
Base `  R )  -.  x (#r `  R ) x )
36 eqidd 2230 . . . . 5  |-  ( ( R  e. LRing  /\  (
x  e.  ( Base `  R )  /\  y  e.  ( Base `  R
) ) )  -> 
( Base `  R )  =  ( Base `  R
) )
37 eqidd 2230 . . . . 5  |-  ( ( R  e. LRing  /\  (
x  e.  ( Base `  R )  /\  y  e.  ( Base `  R
) ) )  -> 
(#r `  R )  =  (#r `  R ) )
3827adantr 276 . . . . 5  |-  ( ( R  e. LRing  /\  (
x  e.  ( Base `  R )  /\  y  e.  ( Base `  R
) ) )  ->  R  e.  Ring )
39 simprl 529 . . . . 5  |-  ( ( R  e. LRing  /\  (
x  e.  ( Base `  R )  /\  y  e.  ( Base `  R
) ) )  ->  x  e.  ( Base `  R ) )
40 simprr 531 . . . . 5  |-  ( ( R  e. LRing  /\  (
x  e.  ( Base `  R )  /\  y  e.  ( Base `  R
) ) )  -> 
y  e.  ( Base `  R ) )
4136, 37, 38, 39, 40aprsym 14242 . . . 4  |-  ( ( R  e. LRing  /\  (
x  e.  ( Base `  R )  /\  y  e.  ( Base `  R
) ) )  -> 
( x (#r `  R
) y  ->  y
(#r `  R ) x ) )
4241ralrimivva 2612 . . 3  |-  ( R  e. LRing  ->  A. x  e.  (
Base `  R ) A. y  e.  ( Base `  R ) ( x (#r `  R ) y  ->  y (#r `  R
) x ) )
43 eqidd 2230 . . . . 5  |-  ( ( R  e. LRing  /\  (
x  e.  ( Base `  R )  /\  y  e.  ( Base `  R
)  /\  z  e.  ( Base `  R )
) )  ->  ( Base `  R )  =  ( Base `  R
) )
44 eqidd 2230 . . . . 5  |-  ( ( R  e. LRing  /\  (
x  e.  ( Base `  R )  /\  y  e.  ( Base `  R
)  /\  z  e.  ( Base `  R )
) )  ->  (#r `  R )  =  (#r `  R ) )
45 simpl 109 . . . . 5  |-  ( ( R  e. LRing  /\  (
x  e.  ( Base `  R )  /\  y  e.  ( Base `  R
)  /\  z  e.  ( Base `  R )
) )  ->  R  e. LRing )
46 simpr1 1027 . . . . 5  |-  ( ( R  e. LRing  /\  (
x  e.  ( Base `  R )  /\  y  e.  ( Base `  R
)  /\  z  e.  ( Base `  R )
) )  ->  x  e.  ( Base `  R
) )
47 simpr2 1028 . . . . 5  |-  ( ( R  e. LRing  /\  (
x  e.  ( Base `  R )  /\  y  e.  ( Base `  R
)  /\  z  e.  ( Base `  R )
) )  ->  y  e.  ( Base `  R
) )
48 simpr3 1029 . . . . 5  |-  ( ( R  e. LRing  /\  (
x  e.  ( Base `  R )  /\  y  e.  ( Base `  R
)  /\  z  e.  ( Base `  R )
) )  ->  z  e.  ( Base `  R
) )
4943, 44, 45, 46, 47, 48aprcotr 14243 . . . 4  |-  ( ( R  e. LRing  /\  (
x  e.  ( Base `  R )  /\  y  e.  ( Base `  R
)  /\  z  e.  ( Base `  R )
) )  ->  (
x (#r `  R ) y  ->  ( x (#r `  R ) z  \/  y (#r `  R ) z ) ) )
5049ralrimivvva 2613 . . 3  |-  ( R  e. LRing  ->  A. x  e.  (
Base `  R ) A. y  e.  ( Base `  R ) A. z  e.  ( Base `  R ) ( x (#r `  R ) y  ->  ( x (#r `  R ) z  \/  y (#r `  R ) z ) ) )
5142, 50jca 306 . 2  |-  ( R  e. LRing  ->  ( A. x  e.  ( Base `  R
) A. y  e.  ( Base `  R
) ( x (#r `  R ) y  -> 
y (#r `  R ) x )  /\  A. x  e.  ( Base `  R
) A. y  e.  ( Base `  R
) A. z  e.  ( Base `  R
) ( x (#r `  R ) y  -> 
( x (#r `  R
) z  \/  y
(#r `  R ) z ) ) ) )
52 df-pap 7430 . 2  |-  ( (#r `  R ) Ap  ( Base `  R )  <->  ( (
(#r `  R )  C_  ( ( Base `  R
)  X.  ( Base `  R ) )  /\  A. x  e.  ( Base `  R )  -.  x
(#r `  R ) x )  /\  ( A. x  e.  ( Base `  R ) A. y  e.  ( Base `  R
) ( x (#r `  R ) y  -> 
y (#r `  R ) x )  /\  A. x  e.  ( Base `  R
) A. y  e.  ( Base `  R
) A. z  e.  ( Base `  R
) ( x (#r `  R ) y  -> 
( x (#r `  R
) z  \/  y
(#r `  R ) z ) ) ) ) )
5324, 35, 51, 52syl21anbrc 1206 1  |-  ( R  e. LRing  ->  (#r `  R ) Ap  (
Base `  R )
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    \/ wo 713    /\ w3a 1002    = wceq 1395    e. wcel 2200    =/= wne 2400   A.wral 2508   _Vcvv 2799    C_ wss 3197   class class class wbr 4082   {copab 4143    X. cxp 4716    Fn wfn 5312   ` cfv 5317  (class class class)co 6000   Ap wap 7429   Basecbs 13027   0gc0g 13284   -gcsg 13530   1rcur 13917   Ringcrg 13954  Unitcui 14045  LRingclring 14148  #rcapr 14238
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-addcom 8095  ax-addass 8097  ax-i2m1 8100  ax-0lt1 8101  ax-0id 8103  ax-rnegex 8104  ax-pre-ltirr 8107  ax-pre-lttrn 8109  ax-pre-ltadd 8111
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-1st 6284  df-2nd 6285  df-tpos 6389  df-pap 7430  df-pnf 8179  df-mnf 8180  df-ltxr 8182  df-inn 9107  df-2 9165  df-3 9166  df-ndx 13030  df-slot 13031  df-base 13033  df-sets 13034  df-iress 13035  df-plusg 13118  df-mulr 13119  df-0g 13286  df-mgm 13384  df-sgrp 13430  df-mnd 13445  df-grp 13531  df-minusg 13532  df-sbg 13533  df-cmn 13818  df-abl 13819  df-mgp 13879  df-ur 13918  df-srg 13922  df-ring 13956  df-oppr 14026  df-dvdsr 14047  df-unit 14048  df-invr 14079  df-dvr 14090  df-nzr 14138  df-lring 14149  df-apr 14239
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator