ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  aprap Unicode version

Theorem aprap 14019
Description: The relation given by df-apr 14014 for a local ring is an apartness relation. (Contributed by Jim Kingdon, 20-Feb-2025.)
Assertion
Ref Expression
aprap  |-  ( R  e. LRing  ->  (#r `  R ) Ap  (
Base `  R )
)

Proof of Theorem aprap
Dummy variables  r  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-apr 14014 . . . 4  |- #r  =  (
r  e.  _V  |->  {
<. x ,  y >.  |  ( ( x  e.  ( Base `  r
)  /\  y  e.  ( Base `  r )
)  /\  ( x
( -g `  r ) y )  e.  (Unit `  r ) ) } )
2 fveq2 5575 . . . . . . . 8  |-  ( r  =  R  ->  ( Base `  r )  =  ( Base `  R
) )
32eleq2d 2274 . . . . . . 7  |-  ( r  =  R  ->  (
x  e.  ( Base `  r )  <->  x  e.  ( Base `  R )
) )
42eleq2d 2274 . . . . . . 7  |-  ( r  =  R  ->  (
y  e.  ( Base `  r )  <->  y  e.  ( Base `  R )
) )
53, 4anbi12d 473 . . . . . 6  |-  ( r  =  R  ->  (
( x  e.  (
Base `  r )  /\  y  e.  ( Base `  r ) )  <-> 
( x  e.  (
Base `  R )  /\  y  e.  ( Base `  R ) ) ) )
6 fveq2 5575 . . . . . . . 8  |-  ( r  =  R  ->  ( -g `  r )  =  ( -g `  R
) )
76oveqd 5960 . . . . . . 7  |-  ( r  =  R  ->  (
x ( -g `  r
) y )  =  ( x ( -g `  R ) y ) )
8 fveq2 5575 . . . . . . 7  |-  ( r  =  R  ->  (Unit `  r )  =  (Unit `  R ) )
97, 8eleq12d 2275 . . . . . 6  |-  ( r  =  R  ->  (
( x ( -g `  r ) y )  e.  (Unit `  r
)  <->  ( x (
-g `  R )
y )  e.  (Unit `  R ) ) )
105, 9anbi12d 473 . . . . 5  |-  ( r  =  R  ->  (
( ( x  e.  ( Base `  r
)  /\  y  e.  ( Base `  r )
)  /\  ( x
( -g `  r ) y )  e.  (Unit `  r ) )  <->  ( (
x  e.  ( Base `  R )  /\  y  e.  ( Base `  R
) )  /\  (
x ( -g `  R
) y )  e.  (Unit `  R )
) ) )
1110opabbidv 4109 . . . 4  |-  ( r  =  R  ->  { <. x ,  y >.  |  ( ( x  e.  (
Base `  r )  /\  y  e.  ( Base `  r ) )  /\  ( x (
-g `  r )
y )  e.  (Unit `  r ) ) }  =  { <. x ,  y >.  |  ( ( x  e.  (
Base `  R )  /\  y  e.  ( Base `  R ) )  /\  ( x (
-g `  R )
y )  e.  (Unit `  R ) ) } )
12 elex 2782 . . . 4  |-  ( R  e. LRing  ->  R  e.  _V )
13 basfn 12861 . . . . . . . 8  |-  Base  Fn  _V
1413a1i 9 . . . . . . 7  |-  ( R  e. LRing  ->  Base  Fn  _V )
15 funfvex 5592 . . . . . . . 8  |-  ( ( Fun  Base  /\  R  e. 
dom  Base )  ->  ( Base `  R )  e. 
_V )
1615funfni 5375 . . . . . . 7  |-  ( (
Base  Fn  _V  /\  R  e.  _V )  ->  ( Base `  R )  e. 
_V )
1714, 12, 16syl2anc 411 . . . . . 6  |-  ( R  e. LRing  ->  ( Base `  R
)  e.  _V )
18 xpexg 4788 . . . . . 6  |-  ( ( ( Base `  R
)  e.  _V  /\  ( Base `  R )  e.  _V )  ->  (
( Base `  R )  X.  ( Base `  R
) )  e.  _V )
1917, 17, 18syl2anc 411 . . . . 5  |-  ( R  e. LRing  ->  ( ( Base `  R )  X.  ( Base `  R ) )  e.  _V )
20 opabssxp 4748 . . . . . 6  |-  { <. x ,  y >.  |  ( ( x  e.  (
Base `  R )  /\  y  e.  ( Base `  R ) )  /\  ( x (
-g `  R )
y )  e.  (Unit `  R ) ) } 
C_  ( ( Base `  R )  X.  ( Base `  R ) )
2120a1i 9 . . . . 5  |-  ( R  e. LRing  ->  { <. x ,  y >.  |  ( ( x  e.  (
Base `  R )  /\  y  e.  ( Base `  R ) )  /\  ( x (
-g `  R )
y )  e.  (Unit `  R ) ) } 
C_  ( ( Base `  R )  X.  ( Base `  R ) ) )
2219, 21ssexd 4183 . . . 4  |-  ( R  e. LRing  ->  { <. x ,  y >.  |  ( ( x  e.  (
Base `  R )  /\  y  e.  ( Base `  R ) )  /\  ( x (
-g `  R )
y )  e.  (Unit `  R ) ) }  e.  _V )
231, 11, 12, 22fvmptd3 5672 . . 3  |-  ( R  e. LRing  ->  (#r `  R )  =  { <. x ,  y
>.  |  ( (
x  e.  ( Base `  R )  /\  y  e.  ( Base `  R
) )  /\  (
x ( -g `  R
) y )  e.  (Unit `  R )
) } )
2423, 20eqsstrdi 3244 . 2  |-  ( R  e. LRing  ->  (#r `  R )  C_  ( ( Base `  R
)  X.  ( Base `  R ) ) )
25 eqidd 2205 . . . 4  |-  ( ( R  e. LRing  /\  x  e.  ( Base `  R
) )  ->  ( Base `  R )  =  ( Base `  R
) )
26 eqidd 2205 . . . 4  |-  ( ( R  e. LRing  /\  x  e.  ( Base `  R
) )  ->  (#r `  R )  =  (#r `  R ) )
27 lringring 13927 . . . . 5  |-  ( R  e. LRing  ->  R  e.  Ring )
2827adantr 276 . . . 4  |-  ( ( R  e. LRing  /\  x  e.  ( Base `  R
) )  ->  R  e.  Ring )
29 simpr 110 . . . 4  |-  ( ( R  e. LRing  /\  x  e.  ( Base `  R
) )  ->  x  e.  ( Base `  R
) )
30 eqid 2204 . . . . . 6  |-  ( 1r
`  R )  =  ( 1r `  R
)
31 eqid 2204 . . . . . 6  |-  ( 0g
`  R )  =  ( 0g `  R
)
3230, 31lringnz 13928 . . . . 5  |-  ( R  e. LRing  ->  ( 1r `  R )  =/=  ( 0g `  R ) )
3332adantr 276 . . . 4  |-  ( ( R  e. LRing  /\  x  e.  ( Base `  R
) )  ->  ( 1r `  R )  =/=  ( 0g `  R
) )
3425, 26, 28, 29, 33aprirr 14016 . . 3  |-  ( ( R  e. LRing  /\  x  e.  ( Base `  R
) )  ->  -.  x (#r `  R ) x )
3534ralrimiva 2578 . 2  |-  ( R  e. LRing  ->  A. x  e.  (
Base `  R )  -.  x (#r `  R ) x )
36 eqidd 2205 . . . . 5  |-  ( ( R  e. LRing  /\  (
x  e.  ( Base `  R )  /\  y  e.  ( Base `  R
) ) )  -> 
( Base `  R )  =  ( Base `  R
) )
37 eqidd 2205 . . . . 5  |-  ( ( R  e. LRing  /\  (
x  e.  ( Base `  R )  /\  y  e.  ( Base `  R
) ) )  -> 
(#r `  R )  =  (#r `  R ) )
3827adantr 276 . . . . 5  |-  ( ( R  e. LRing  /\  (
x  e.  ( Base `  R )  /\  y  e.  ( Base `  R
) ) )  ->  R  e.  Ring )
39 simprl 529 . . . . 5  |-  ( ( R  e. LRing  /\  (
x  e.  ( Base `  R )  /\  y  e.  ( Base `  R
) ) )  ->  x  e.  ( Base `  R ) )
40 simprr 531 . . . . 5  |-  ( ( R  e. LRing  /\  (
x  e.  ( Base `  R )  /\  y  e.  ( Base `  R
) ) )  -> 
y  e.  ( Base `  R ) )
4136, 37, 38, 39, 40aprsym 14017 . . . 4  |-  ( ( R  e. LRing  /\  (
x  e.  ( Base `  R )  /\  y  e.  ( Base `  R
) ) )  -> 
( x (#r `  R
) y  ->  y
(#r `  R ) x ) )
4241ralrimivva 2587 . . 3  |-  ( R  e. LRing  ->  A. x  e.  (
Base `  R ) A. y  e.  ( Base `  R ) ( x (#r `  R ) y  ->  y (#r `  R
) x ) )
43 eqidd 2205 . . . . 5  |-  ( ( R  e. LRing  /\  (
x  e.  ( Base `  R )  /\  y  e.  ( Base `  R
)  /\  z  e.  ( Base `  R )
) )  ->  ( Base `  R )  =  ( Base `  R
) )
44 eqidd 2205 . . . . 5  |-  ( ( R  e. LRing  /\  (
x  e.  ( Base `  R )  /\  y  e.  ( Base `  R
)  /\  z  e.  ( Base `  R )
) )  ->  (#r `  R )  =  (#r `  R ) )
45 simpl 109 . . . . 5  |-  ( ( R  e. LRing  /\  (
x  e.  ( Base `  R )  /\  y  e.  ( Base `  R
)  /\  z  e.  ( Base `  R )
) )  ->  R  e. LRing )
46 simpr1 1005 . . . . 5  |-  ( ( R  e. LRing  /\  (
x  e.  ( Base `  R )  /\  y  e.  ( Base `  R
)  /\  z  e.  ( Base `  R )
) )  ->  x  e.  ( Base `  R
) )
47 simpr2 1006 . . . . 5  |-  ( ( R  e. LRing  /\  (
x  e.  ( Base `  R )  /\  y  e.  ( Base `  R
)  /\  z  e.  ( Base `  R )
) )  ->  y  e.  ( Base `  R
) )
48 simpr3 1007 . . . . 5  |-  ( ( R  e. LRing  /\  (
x  e.  ( Base `  R )  /\  y  e.  ( Base `  R
)  /\  z  e.  ( Base `  R )
) )  ->  z  e.  ( Base `  R
) )
4943, 44, 45, 46, 47, 48aprcotr 14018 . . . 4  |-  ( ( R  e. LRing  /\  (
x  e.  ( Base `  R )  /\  y  e.  ( Base `  R
)  /\  z  e.  ( Base `  R )
) )  ->  (
x (#r `  R ) y  ->  ( x (#r `  R ) z  \/  y (#r `  R ) z ) ) )
5049ralrimivvva 2588 . . 3  |-  ( R  e. LRing  ->  A. x  e.  (
Base `  R ) A. y  e.  ( Base `  R ) A. z  e.  ( Base `  R ) ( x (#r `  R ) y  ->  ( x (#r `  R ) z  \/  y (#r `  R ) z ) ) )
5142, 50jca 306 . 2  |-  ( R  e. LRing  ->  ( A. x  e.  ( Base `  R
) A. y  e.  ( Base `  R
) ( x (#r `  R ) y  -> 
y (#r `  R ) x )  /\  A. x  e.  ( Base `  R
) A. y  e.  ( Base `  R
) A. z  e.  ( Base `  R
) ( x (#r `  R ) y  -> 
( x (#r `  R
) z  \/  y
(#r `  R ) z ) ) ) )
52 df-pap 7359 . 2  |-  ( (#r `  R ) Ap  ( Base `  R )  <->  ( (
(#r `  R )  C_  ( ( Base `  R
)  X.  ( Base `  R ) )  /\  A. x  e.  ( Base `  R )  -.  x
(#r `  R ) x )  /\  ( A. x  e.  ( Base `  R ) A. y  e.  ( Base `  R
) ( x (#r `  R ) y  -> 
y (#r `  R ) x )  /\  A. x  e.  ( Base `  R
) A. y  e.  ( Base `  R
) A. z  e.  ( Base `  R
) ( x (#r `  R ) y  -> 
( x (#r `  R
) z  \/  y
(#r `  R ) z ) ) ) ) )
5324, 35, 51, 52syl21anbrc 1184 1  |-  ( R  e. LRing  ->  (#r `  R ) Ap  (
Base `  R )
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    \/ wo 709    /\ w3a 980    = wceq 1372    e. wcel 2175    =/= wne 2375   A.wral 2483   _Vcvv 2771    C_ wss 3165   class class class wbr 4043   {copab 4103    X. cxp 4672    Fn wfn 5265   ` cfv 5270  (class class class)co 5943   Ap wap 7358   Basecbs 12803   0gc0g 13059   -gcsg 13305   1rcur 13692   Ringcrg 13729  Unitcui 13820  LRingclring 13923  #rcapr 14013
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-nul 4169  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-setind 4584  ax-cnex 8015  ax-resscn 8016  ax-1cn 8017  ax-1re 8018  ax-icn 8019  ax-addcl 8020  ax-addrcl 8021  ax-mulcl 8022  ax-addcom 8024  ax-addass 8026  ax-i2m1 8029  ax-0lt1 8030  ax-0id 8032  ax-rnegex 8033  ax-pre-ltirr 8036  ax-pre-lttrn 8038  ax-pre-ltadd 8040
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-reu 2490  df-rmo 2491  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-id 4339  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-res 4686  df-ima 4687  df-iota 5231  df-fun 5272  df-fn 5273  df-f 5274  df-f1 5275  df-fo 5276  df-f1o 5277  df-fv 5278  df-riota 5898  df-ov 5946  df-oprab 5947  df-mpo 5948  df-1st 6225  df-2nd 6226  df-tpos 6330  df-pap 7359  df-pnf 8108  df-mnf 8109  df-ltxr 8111  df-inn 9036  df-2 9094  df-3 9095  df-ndx 12806  df-slot 12807  df-base 12809  df-sets 12810  df-iress 12811  df-plusg 12893  df-mulr 12894  df-0g 13061  df-mgm 13159  df-sgrp 13205  df-mnd 13220  df-grp 13306  df-minusg 13307  df-sbg 13308  df-cmn 13593  df-abl 13594  df-mgp 13654  df-ur 13693  df-srg 13697  df-ring 13731  df-oppr 13801  df-dvdsr 13822  df-unit 13823  df-invr 13854  df-dvr 13865  df-nzr 13913  df-lring 13924  df-apr 14014
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator