ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  aprap Unicode version

Theorem aprap 13785
Description: The relation given by df-apr 13780 for a local ring is an apartness relation. (Contributed by Jim Kingdon, 20-Feb-2025.)
Assertion
Ref Expression
aprap  |-  ( R  e. LRing  ->  (#r `  R ) Ap  (
Base `  R )
)

Proof of Theorem aprap
Dummy variables  r  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-apr 13780 . . . 4  |- #r  =  (
r  e.  _V  |->  {
<. x ,  y >.  |  ( ( x  e.  ( Base `  r
)  /\  y  e.  ( Base `  r )
)  /\  ( x
( -g `  r ) y )  e.  (Unit `  r ) ) } )
2 fveq2 5555 . . . . . . . 8  |-  ( r  =  R  ->  ( Base `  r )  =  ( Base `  R
) )
32eleq2d 2263 . . . . . . 7  |-  ( r  =  R  ->  (
x  e.  ( Base `  r )  <->  x  e.  ( Base `  R )
) )
42eleq2d 2263 . . . . . . 7  |-  ( r  =  R  ->  (
y  e.  ( Base `  r )  <->  y  e.  ( Base `  R )
) )
53, 4anbi12d 473 . . . . . 6  |-  ( r  =  R  ->  (
( x  e.  (
Base `  r )  /\  y  e.  ( Base `  r ) )  <-> 
( x  e.  (
Base `  R )  /\  y  e.  ( Base `  R ) ) ) )
6 fveq2 5555 . . . . . . . 8  |-  ( r  =  R  ->  ( -g `  r )  =  ( -g `  R
) )
76oveqd 5936 . . . . . . 7  |-  ( r  =  R  ->  (
x ( -g `  r
) y )  =  ( x ( -g `  R ) y ) )
8 fveq2 5555 . . . . . . 7  |-  ( r  =  R  ->  (Unit `  r )  =  (Unit `  R ) )
97, 8eleq12d 2264 . . . . . 6  |-  ( r  =  R  ->  (
( x ( -g `  r ) y )  e.  (Unit `  r
)  <->  ( x (
-g `  R )
y )  e.  (Unit `  R ) ) )
105, 9anbi12d 473 . . . . 5  |-  ( r  =  R  ->  (
( ( x  e.  ( Base `  r
)  /\  y  e.  ( Base `  r )
)  /\  ( x
( -g `  r ) y )  e.  (Unit `  r ) )  <->  ( (
x  e.  ( Base `  R )  /\  y  e.  ( Base `  R
) )  /\  (
x ( -g `  R
) y )  e.  (Unit `  R )
) ) )
1110opabbidv 4096 . . . 4  |-  ( r  =  R  ->  { <. x ,  y >.  |  ( ( x  e.  (
Base `  r )  /\  y  e.  ( Base `  r ) )  /\  ( x (
-g `  r )
y )  e.  (Unit `  r ) ) }  =  { <. x ,  y >.  |  ( ( x  e.  (
Base `  R )  /\  y  e.  ( Base `  R ) )  /\  ( x (
-g `  R )
y )  e.  (Unit `  R ) ) } )
12 elex 2771 . . . 4  |-  ( R  e. LRing  ->  R  e.  _V )
13 basfn 12679 . . . . . . . 8  |-  Base  Fn  _V
1413a1i 9 . . . . . . 7  |-  ( R  e. LRing  ->  Base  Fn  _V )
15 funfvex 5572 . . . . . . . 8  |-  ( ( Fun  Base  /\  R  e. 
dom  Base )  ->  ( Base `  R )  e. 
_V )
1615funfni 5355 . . . . . . 7  |-  ( (
Base  Fn  _V  /\  R  e.  _V )  ->  ( Base `  R )  e. 
_V )
1714, 12, 16syl2anc 411 . . . . . 6  |-  ( R  e. LRing  ->  ( Base `  R
)  e.  _V )
18 xpexg 4774 . . . . . 6  |-  ( ( ( Base `  R
)  e.  _V  /\  ( Base `  R )  e.  _V )  ->  (
( Base `  R )  X.  ( Base `  R
) )  e.  _V )
1917, 17, 18syl2anc 411 . . . . 5  |-  ( R  e. LRing  ->  ( ( Base `  R )  X.  ( Base `  R ) )  e.  _V )
20 opabssxp 4734 . . . . . 6  |-  { <. x ,  y >.  |  ( ( x  e.  (
Base `  R )  /\  y  e.  ( Base `  R ) )  /\  ( x (
-g `  R )
y )  e.  (Unit `  R ) ) } 
C_  ( ( Base `  R )  X.  ( Base `  R ) )
2120a1i 9 . . . . 5  |-  ( R  e. LRing  ->  { <. x ,  y >.  |  ( ( x  e.  (
Base `  R )  /\  y  e.  ( Base `  R ) )  /\  ( x (
-g `  R )
y )  e.  (Unit `  R ) ) } 
C_  ( ( Base `  R )  X.  ( Base `  R ) ) )
2219, 21ssexd 4170 . . . 4  |-  ( R  e. LRing  ->  { <. x ,  y >.  |  ( ( x  e.  (
Base `  R )  /\  y  e.  ( Base `  R ) )  /\  ( x (
-g `  R )
y )  e.  (Unit `  R ) ) }  e.  _V )
231, 11, 12, 22fvmptd3 5652 . . 3  |-  ( R  e. LRing  ->  (#r `  R )  =  { <. x ,  y
>.  |  ( (
x  e.  ( Base `  R )  /\  y  e.  ( Base `  R
) )  /\  (
x ( -g `  R
) y )  e.  (Unit `  R )
) } )
2423, 20eqsstrdi 3232 . 2  |-  ( R  e. LRing  ->  (#r `  R )  C_  ( ( Base `  R
)  X.  ( Base `  R ) ) )
25 eqidd 2194 . . . 4  |-  ( ( R  e. LRing  /\  x  e.  ( Base `  R
) )  ->  ( Base `  R )  =  ( Base `  R
) )
26 eqidd 2194 . . . 4  |-  ( ( R  e. LRing  /\  x  e.  ( Base `  R
) )  ->  (#r `  R )  =  (#r `  R ) )
27 lringring 13693 . . . . 5  |-  ( R  e. LRing  ->  R  e.  Ring )
2827adantr 276 . . . 4  |-  ( ( R  e. LRing  /\  x  e.  ( Base `  R
) )  ->  R  e.  Ring )
29 simpr 110 . . . 4  |-  ( ( R  e. LRing  /\  x  e.  ( Base `  R
) )  ->  x  e.  ( Base `  R
) )
30 eqid 2193 . . . . . 6  |-  ( 1r
`  R )  =  ( 1r `  R
)
31 eqid 2193 . . . . . 6  |-  ( 0g
`  R )  =  ( 0g `  R
)
3230, 31lringnz 13694 . . . . 5  |-  ( R  e. LRing  ->  ( 1r `  R )  =/=  ( 0g `  R ) )
3332adantr 276 . . . 4  |-  ( ( R  e. LRing  /\  x  e.  ( Base `  R
) )  ->  ( 1r `  R )  =/=  ( 0g `  R
) )
3425, 26, 28, 29, 33aprirr 13782 . . 3  |-  ( ( R  e. LRing  /\  x  e.  ( Base `  R
) )  ->  -.  x (#r `  R ) x )
3534ralrimiva 2567 . 2  |-  ( R  e. LRing  ->  A. x  e.  (
Base `  R )  -.  x (#r `  R ) x )
36 eqidd 2194 . . . . 5  |-  ( ( R  e. LRing  /\  (
x  e.  ( Base `  R )  /\  y  e.  ( Base `  R
) ) )  -> 
( Base `  R )  =  ( Base `  R
) )
37 eqidd 2194 . . . . 5  |-  ( ( R  e. LRing  /\  (
x  e.  ( Base `  R )  /\  y  e.  ( Base `  R
) ) )  -> 
(#r `  R )  =  (#r `  R ) )
3827adantr 276 . . . . 5  |-  ( ( R  e. LRing  /\  (
x  e.  ( Base `  R )  /\  y  e.  ( Base `  R
) ) )  ->  R  e.  Ring )
39 simprl 529 . . . . 5  |-  ( ( R  e. LRing  /\  (
x  e.  ( Base `  R )  /\  y  e.  ( Base `  R
) ) )  ->  x  e.  ( Base `  R ) )
40 simprr 531 . . . . 5  |-  ( ( R  e. LRing  /\  (
x  e.  ( Base `  R )  /\  y  e.  ( Base `  R
) ) )  -> 
y  e.  ( Base `  R ) )
4136, 37, 38, 39, 40aprsym 13783 . . . 4  |-  ( ( R  e. LRing  /\  (
x  e.  ( Base `  R )  /\  y  e.  ( Base `  R
) ) )  -> 
( x (#r `  R
) y  ->  y
(#r `  R ) x ) )
4241ralrimivva 2576 . . 3  |-  ( R  e. LRing  ->  A. x  e.  (
Base `  R ) A. y  e.  ( Base `  R ) ( x (#r `  R ) y  ->  y (#r `  R
) x ) )
43 eqidd 2194 . . . . 5  |-  ( ( R  e. LRing  /\  (
x  e.  ( Base `  R )  /\  y  e.  ( Base `  R
)  /\  z  e.  ( Base `  R )
) )  ->  ( Base `  R )  =  ( Base `  R
) )
44 eqidd 2194 . . . . 5  |-  ( ( R  e. LRing  /\  (
x  e.  ( Base `  R )  /\  y  e.  ( Base `  R
)  /\  z  e.  ( Base `  R )
) )  ->  (#r `  R )  =  (#r `  R ) )
45 simpl 109 . . . . 5  |-  ( ( R  e. LRing  /\  (
x  e.  ( Base `  R )  /\  y  e.  ( Base `  R
)  /\  z  e.  ( Base `  R )
) )  ->  R  e. LRing )
46 simpr1 1005 . . . . 5  |-  ( ( R  e. LRing  /\  (
x  e.  ( Base `  R )  /\  y  e.  ( Base `  R
)  /\  z  e.  ( Base `  R )
) )  ->  x  e.  ( Base `  R
) )
47 simpr2 1006 . . . . 5  |-  ( ( R  e. LRing  /\  (
x  e.  ( Base `  R )  /\  y  e.  ( Base `  R
)  /\  z  e.  ( Base `  R )
) )  ->  y  e.  ( Base `  R
) )
48 simpr3 1007 . . . . 5  |-  ( ( R  e. LRing  /\  (
x  e.  ( Base `  R )  /\  y  e.  ( Base `  R
)  /\  z  e.  ( Base `  R )
) )  ->  z  e.  ( Base `  R
) )
4943, 44, 45, 46, 47, 48aprcotr 13784 . . . 4  |-  ( ( R  e. LRing  /\  (
x  e.  ( Base `  R )  /\  y  e.  ( Base `  R
)  /\  z  e.  ( Base `  R )
) )  ->  (
x (#r `  R ) y  ->  ( x (#r `  R ) z  \/  y (#r `  R ) z ) ) )
5049ralrimivvva 2577 . . 3  |-  ( R  e. LRing  ->  A. x  e.  (
Base `  R ) A. y  e.  ( Base `  R ) A. z  e.  ( Base `  R ) ( x (#r `  R ) y  ->  ( x (#r `  R ) z  \/  y (#r `  R ) z ) ) )
5142, 50jca 306 . 2  |-  ( R  e. LRing  ->  ( A. x  e.  ( Base `  R
) A. y  e.  ( Base `  R
) ( x (#r `  R ) y  -> 
y (#r `  R ) x )  /\  A. x  e.  ( Base `  R
) A. y  e.  ( Base `  R
) A. z  e.  ( Base `  R
) ( x (#r `  R ) y  -> 
( x (#r `  R
) z  \/  y
(#r `  R ) z ) ) ) )
52 df-pap 7310 . 2  |-  ( (#r `  R ) Ap  ( Base `  R )  <->  ( (
(#r `  R )  C_  ( ( Base `  R
)  X.  ( Base `  R ) )  /\  A. x  e.  ( Base `  R )  -.  x
(#r `  R ) x )  /\  ( A. x  e.  ( Base `  R ) A. y  e.  ( Base `  R
) ( x (#r `  R ) y  -> 
y (#r `  R ) x )  /\  A. x  e.  ( Base `  R
) A. y  e.  ( Base `  R
) A. z  e.  ( Base `  R
) ( x (#r `  R ) y  -> 
( x (#r `  R
) z  \/  y
(#r `  R ) z ) ) ) ) )
5324, 35, 51, 52syl21anbrc 1184 1  |-  ( R  e. LRing  ->  (#r `  R ) Ap  (
Base `  R )
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    \/ wo 709    /\ w3a 980    = wceq 1364    e. wcel 2164    =/= wne 2364   A.wral 2472   _Vcvv 2760    C_ wss 3154   class class class wbr 4030   {copab 4090    X. cxp 4658    Fn wfn 5250   ` cfv 5255  (class class class)co 5919   Ap wap 7309   Basecbs 12621   0gc0g 12870   -gcsg 13077   1rcur 13458   Ringcrg 13495  Unitcui 13586  LRingclring 13689  #rcapr 13779
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-addcom 7974  ax-addass 7976  ax-i2m1 7979  ax-0lt1 7980  ax-0id 7982  ax-rnegex 7983  ax-pre-ltirr 7986  ax-pre-lttrn 7988  ax-pre-ltadd 7990
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-tpos 6300  df-pap 7310  df-pnf 8058  df-mnf 8059  df-ltxr 8061  df-inn 8985  df-2 9043  df-3 9044  df-ndx 12624  df-slot 12625  df-base 12627  df-sets 12628  df-iress 12629  df-plusg 12711  df-mulr 12712  df-0g 12872  df-mgm 12942  df-sgrp 12988  df-mnd 13001  df-grp 13078  df-minusg 13079  df-sbg 13080  df-cmn 13359  df-abl 13360  df-mgp 13420  df-ur 13459  df-srg 13463  df-ring 13497  df-oppr 13567  df-dvdsr 13588  df-unit 13589  df-invr 13620  df-dvr 13631  df-nzr 13679  df-lring 13690  df-apr 13780
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator