ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  aprap Unicode version

Theorem aprap 13918
Description: The relation given by df-apr 13913 for a local ring is an apartness relation. (Contributed by Jim Kingdon, 20-Feb-2025.)
Assertion
Ref Expression
aprap  |-  ( R  e. LRing  ->  (#r `  R ) Ap  (
Base `  R )
)

Proof of Theorem aprap
Dummy variables  r  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-apr 13913 . . . 4  |- #r  =  (
r  e.  _V  |->  {
<. x ,  y >.  |  ( ( x  e.  ( Base `  r
)  /\  y  e.  ( Base `  r )
)  /\  ( x
( -g `  r ) y )  e.  (Unit `  r ) ) } )
2 fveq2 5561 . . . . . . . 8  |-  ( r  =  R  ->  ( Base `  r )  =  ( Base `  R
) )
32eleq2d 2266 . . . . . . 7  |-  ( r  =  R  ->  (
x  e.  ( Base `  r )  <->  x  e.  ( Base `  R )
) )
42eleq2d 2266 . . . . . . 7  |-  ( r  =  R  ->  (
y  e.  ( Base `  r )  <->  y  e.  ( Base `  R )
) )
53, 4anbi12d 473 . . . . . 6  |-  ( r  =  R  ->  (
( x  e.  (
Base `  r )  /\  y  e.  ( Base `  r ) )  <-> 
( x  e.  (
Base `  R )  /\  y  e.  ( Base `  R ) ) ) )
6 fveq2 5561 . . . . . . . 8  |-  ( r  =  R  ->  ( -g `  r )  =  ( -g `  R
) )
76oveqd 5942 . . . . . . 7  |-  ( r  =  R  ->  (
x ( -g `  r
) y )  =  ( x ( -g `  R ) y ) )
8 fveq2 5561 . . . . . . 7  |-  ( r  =  R  ->  (Unit `  r )  =  (Unit `  R ) )
97, 8eleq12d 2267 . . . . . 6  |-  ( r  =  R  ->  (
( x ( -g `  r ) y )  e.  (Unit `  r
)  <->  ( x (
-g `  R )
y )  e.  (Unit `  R ) ) )
105, 9anbi12d 473 . . . . 5  |-  ( r  =  R  ->  (
( ( x  e.  ( Base `  r
)  /\  y  e.  ( Base `  r )
)  /\  ( x
( -g `  r ) y )  e.  (Unit `  r ) )  <->  ( (
x  e.  ( Base `  R )  /\  y  e.  ( Base `  R
) )  /\  (
x ( -g `  R
) y )  e.  (Unit `  R )
) ) )
1110opabbidv 4100 . . . 4  |-  ( r  =  R  ->  { <. x ,  y >.  |  ( ( x  e.  (
Base `  r )  /\  y  e.  ( Base `  r ) )  /\  ( x (
-g `  r )
y )  e.  (Unit `  r ) ) }  =  { <. x ,  y >.  |  ( ( x  e.  (
Base `  R )  /\  y  e.  ( Base `  R ) )  /\  ( x (
-g `  R )
y )  e.  (Unit `  R ) ) } )
12 elex 2774 . . . 4  |-  ( R  e. LRing  ->  R  e.  _V )
13 basfn 12761 . . . . . . . 8  |-  Base  Fn  _V
1413a1i 9 . . . . . . 7  |-  ( R  e. LRing  ->  Base  Fn  _V )
15 funfvex 5578 . . . . . . . 8  |-  ( ( Fun  Base  /\  R  e. 
dom  Base )  ->  ( Base `  R )  e. 
_V )
1615funfni 5361 . . . . . . 7  |-  ( (
Base  Fn  _V  /\  R  e.  _V )  ->  ( Base `  R )  e. 
_V )
1714, 12, 16syl2anc 411 . . . . . 6  |-  ( R  e. LRing  ->  ( Base `  R
)  e.  _V )
18 xpexg 4778 . . . . . 6  |-  ( ( ( Base `  R
)  e.  _V  /\  ( Base `  R )  e.  _V )  ->  (
( Base `  R )  X.  ( Base `  R
) )  e.  _V )
1917, 17, 18syl2anc 411 . . . . 5  |-  ( R  e. LRing  ->  ( ( Base `  R )  X.  ( Base `  R ) )  e.  _V )
20 opabssxp 4738 . . . . . 6  |-  { <. x ,  y >.  |  ( ( x  e.  (
Base `  R )  /\  y  e.  ( Base `  R ) )  /\  ( x (
-g `  R )
y )  e.  (Unit `  R ) ) } 
C_  ( ( Base `  R )  X.  ( Base `  R ) )
2120a1i 9 . . . . 5  |-  ( R  e. LRing  ->  { <. x ,  y >.  |  ( ( x  e.  (
Base `  R )  /\  y  e.  ( Base `  R ) )  /\  ( x (
-g `  R )
y )  e.  (Unit `  R ) ) } 
C_  ( ( Base `  R )  X.  ( Base `  R ) ) )
2219, 21ssexd 4174 . . . 4  |-  ( R  e. LRing  ->  { <. x ,  y >.  |  ( ( x  e.  (
Base `  R )  /\  y  e.  ( Base `  R ) )  /\  ( x (
-g `  R )
y )  e.  (Unit `  R ) ) }  e.  _V )
231, 11, 12, 22fvmptd3 5658 . . 3  |-  ( R  e. LRing  ->  (#r `  R )  =  { <. x ,  y
>.  |  ( (
x  e.  ( Base `  R )  /\  y  e.  ( Base `  R
) )  /\  (
x ( -g `  R
) y )  e.  (Unit `  R )
) } )
2423, 20eqsstrdi 3236 . 2  |-  ( R  e. LRing  ->  (#r `  R )  C_  ( ( Base `  R
)  X.  ( Base `  R ) ) )
25 eqidd 2197 . . . 4  |-  ( ( R  e. LRing  /\  x  e.  ( Base `  R
) )  ->  ( Base `  R )  =  ( Base `  R
) )
26 eqidd 2197 . . . 4  |-  ( ( R  e. LRing  /\  x  e.  ( Base `  R
) )  ->  (#r `  R )  =  (#r `  R ) )
27 lringring 13826 . . . . 5  |-  ( R  e. LRing  ->  R  e.  Ring )
2827adantr 276 . . . 4  |-  ( ( R  e. LRing  /\  x  e.  ( Base `  R
) )  ->  R  e.  Ring )
29 simpr 110 . . . 4  |-  ( ( R  e. LRing  /\  x  e.  ( Base `  R
) )  ->  x  e.  ( Base `  R
) )
30 eqid 2196 . . . . . 6  |-  ( 1r
`  R )  =  ( 1r `  R
)
31 eqid 2196 . . . . . 6  |-  ( 0g
`  R )  =  ( 0g `  R
)
3230, 31lringnz 13827 . . . . 5  |-  ( R  e. LRing  ->  ( 1r `  R )  =/=  ( 0g `  R ) )
3332adantr 276 . . . 4  |-  ( ( R  e. LRing  /\  x  e.  ( Base `  R
) )  ->  ( 1r `  R )  =/=  ( 0g `  R
) )
3425, 26, 28, 29, 33aprirr 13915 . . 3  |-  ( ( R  e. LRing  /\  x  e.  ( Base `  R
) )  ->  -.  x (#r `  R ) x )
3534ralrimiva 2570 . 2  |-  ( R  e. LRing  ->  A. x  e.  (
Base `  R )  -.  x (#r `  R ) x )
36 eqidd 2197 . . . . 5  |-  ( ( R  e. LRing  /\  (
x  e.  ( Base `  R )  /\  y  e.  ( Base `  R
) ) )  -> 
( Base `  R )  =  ( Base `  R
) )
37 eqidd 2197 . . . . 5  |-  ( ( R  e. LRing  /\  (
x  e.  ( Base `  R )  /\  y  e.  ( Base `  R
) ) )  -> 
(#r `  R )  =  (#r `  R ) )
3827adantr 276 . . . . 5  |-  ( ( R  e. LRing  /\  (
x  e.  ( Base `  R )  /\  y  e.  ( Base `  R
) ) )  ->  R  e.  Ring )
39 simprl 529 . . . . 5  |-  ( ( R  e. LRing  /\  (
x  e.  ( Base `  R )  /\  y  e.  ( Base `  R
) ) )  ->  x  e.  ( Base `  R ) )
40 simprr 531 . . . . 5  |-  ( ( R  e. LRing  /\  (
x  e.  ( Base `  R )  /\  y  e.  ( Base `  R
) ) )  -> 
y  e.  ( Base `  R ) )
4136, 37, 38, 39, 40aprsym 13916 . . . 4  |-  ( ( R  e. LRing  /\  (
x  e.  ( Base `  R )  /\  y  e.  ( Base `  R
) ) )  -> 
( x (#r `  R
) y  ->  y
(#r `  R ) x ) )
4241ralrimivva 2579 . . 3  |-  ( R  e. LRing  ->  A. x  e.  (
Base `  R ) A. y  e.  ( Base `  R ) ( x (#r `  R ) y  ->  y (#r `  R
) x ) )
43 eqidd 2197 . . . . 5  |-  ( ( R  e. LRing  /\  (
x  e.  ( Base `  R )  /\  y  e.  ( Base `  R
)  /\  z  e.  ( Base `  R )
) )  ->  ( Base `  R )  =  ( Base `  R
) )
44 eqidd 2197 . . . . 5  |-  ( ( R  e. LRing  /\  (
x  e.  ( Base `  R )  /\  y  e.  ( Base `  R
)  /\  z  e.  ( Base `  R )
) )  ->  (#r `  R )  =  (#r `  R ) )
45 simpl 109 . . . . 5  |-  ( ( R  e. LRing  /\  (
x  e.  ( Base `  R )  /\  y  e.  ( Base `  R
)  /\  z  e.  ( Base `  R )
) )  ->  R  e. LRing )
46 simpr1 1005 . . . . 5  |-  ( ( R  e. LRing  /\  (
x  e.  ( Base `  R )  /\  y  e.  ( Base `  R
)  /\  z  e.  ( Base `  R )
) )  ->  x  e.  ( Base `  R
) )
47 simpr2 1006 . . . . 5  |-  ( ( R  e. LRing  /\  (
x  e.  ( Base `  R )  /\  y  e.  ( Base `  R
)  /\  z  e.  ( Base `  R )
) )  ->  y  e.  ( Base `  R
) )
48 simpr3 1007 . . . . 5  |-  ( ( R  e. LRing  /\  (
x  e.  ( Base `  R )  /\  y  e.  ( Base `  R
)  /\  z  e.  ( Base `  R )
) )  ->  z  e.  ( Base `  R
) )
4943, 44, 45, 46, 47, 48aprcotr 13917 . . . 4  |-  ( ( R  e. LRing  /\  (
x  e.  ( Base `  R )  /\  y  e.  ( Base `  R
)  /\  z  e.  ( Base `  R )
) )  ->  (
x (#r `  R ) y  ->  ( x (#r `  R ) z  \/  y (#r `  R ) z ) ) )
5049ralrimivvva 2580 . . 3  |-  ( R  e. LRing  ->  A. x  e.  (
Base `  R ) A. y  e.  ( Base `  R ) A. z  e.  ( Base `  R ) ( x (#r `  R ) y  ->  ( x (#r `  R ) z  \/  y (#r `  R ) z ) ) )
5142, 50jca 306 . 2  |-  ( R  e. LRing  ->  ( A. x  e.  ( Base `  R
) A. y  e.  ( Base `  R
) ( x (#r `  R ) y  -> 
y (#r `  R ) x )  /\  A. x  e.  ( Base `  R
) A. y  e.  ( Base `  R
) A. z  e.  ( Base `  R
) ( x (#r `  R ) y  -> 
( x (#r `  R
) z  \/  y
(#r `  R ) z ) ) ) )
52 df-pap 7331 . 2  |-  ( (#r `  R ) Ap  ( Base `  R )  <->  ( (
(#r `  R )  C_  ( ( Base `  R
)  X.  ( Base `  R ) )  /\  A. x  e.  ( Base `  R )  -.  x
(#r `  R ) x )  /\  ( A. x  e.  ( Base `  R ) A. y  e.  ( Base `  R
) ( x (#r `  R ) y  -> 
y (#r `  R ) x )  /\  A. x  e.  ( Base `  R
) A. y  e.  ( Base `  R
) A. z  e.  ( Base `  R
) ( x (#r `  R ) y  -> 
( x (#r `  R
) z  \/  y
(#r `  R ) z ) ) ) ) )
5324, 35, 51, 52syl21anbrc 1184 1  |-  ( R  e. LRing  ->  (#r `  R ) Ap  (
Base `  R )
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    \/ wo 709    /\ w3a 980    = wceq 1364    e. wcel 2167    =/= wne 2367   A.wral 2475   _Vcvv 2763    C_ wss 3157   class class class wbr 4034   {copab 4094    X. cxp 4662    Fn wfn 5254   ` cfv 5259  (class class class)co 5925   Ap wap 7330   Basecbs 12703   0gc0g 12958   -gcsg 13204   1rcur 13591   Ringcrg 13628  Unitcui 13719  LRingclring 13822  #rcapr 13912
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-addcom 7996  ax-addass 7998  ax-i2m1 8001  ax-0lt1 8002  ax-0id 8004  ax-rnegex 8005  ax-pre-ltirr 8008  ax-pre-lttrn 8010  ax-pre-ltadd 8012
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-tpos 6312  df-pap 7331  df-pnf 8080  df-mnf 8081  df-ltxr 8083  df-inn 9008  df-2 9066  df-3 9067  df-ndx 12706  df-slot 12707  df-base 12709  df-sets 12710  df-iress 12711  df-plusg 12793  df-mulr 12794  df-0g 12960  df-mgm 13058  df-sgrp 13104  df-mnd 13119  df-grp 13205  df-minusg 13206  df-sbg 13207  df-cmn 13492  df-abl 13493  df-mgp 13553  df-ur 13592  df-srg 13596  df-ring 13630  df-oppr 13700  df-dvdsr 13721  df-unit 13722  df-invr 13753  df-dvr 13764  df-nzr 13812  df-lring 13823  df-apr 13913
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator