ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  aprap Unicode version

Theorem aprap 13376
Description: The relation given by df-apr 13371 for a local ring is an apartness relation. (Contributed by Jim Kingdon, 20-Feb-2025.)
Assertion
Ref Expression
aprap  |-  ( R  e. LRing  ->  (#r `  R ) Ap  (
Base `  R )
)

Proof of Theorem aprap
Dummy variables  r  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-apr 13371 . . . 4  |- #r  =  (
r  e.  _V  |->  {
<. x ,  y >.  |  ( ( x  e.  ( Base `  r
)  /\  y  e.  ( Base `  r )
)  /\  ( x
( -g `  r ) y )  e.  (Unit `  r ) ) } )
2 fveq2 5516 . . . . . . . 8  |-  ( r  =  R  ->  ( Base `  r )  =  ( Base `  R
) )
32eleq2d 2247 . . . . . . 7  |-  ( r  =  R  ->  (
x  e.  ( Base `  r )  <->  x  e.  ( Base `  R )
) )
42eleq2d 2247 . . . . . . 7  |-  ( r  =  R  ->  (
y  e.  ( Base `  r )  <->  y  e.  ( Base `  R )
) )
53, 4anbi12d 473 . . . . . 6  |-  ( r  =  R  ->  (
( x  e.  (
Base `  r )  /\  y  e.  ( Base `  r ) )  <-> 
( x  e.  (
Base `  R )  /\  y  e.  ( Base `  R ) ) ) )
6 fveq2 5516 . . . . . . . 8  |-  ( r  =  R  ->  ( -g `  r )  =  ( -g `  R
) )
76oveqd 5892 . . . . . . 7  |-  ( r  =  R  ->  (
x ( -g `  r
) y )  =  ( x ( -g `  R ) y ) )
8 fveq2 5516 . . . . . . 7  |-  ( r  =  R  ->  (Unit `  r )  =  (Unit `  R ) )
97, 8eleq12d 2248 . . . . . 6  |-  ( r  =  R  ->  (
( x ( -g `  r ) y )  e.  (Unit `  r
)  <->  ( x (
-g `  R )
y )  e.  (Unit `  R ) ) )
105, 9anbi12d 473 . . . . 5  |-  ( r  =  R  ->  (
( ( x  e.  ( Base `  r
)  /\  y  e.  ( Base `  r )
)  /\  ( x
( -g `  r ) y )  e.  (Unit `  r ) )  <->  ( (
x  e.  ( Base `  R )  /\  y  e.  ( Base `  R
) )  /\  (
x ( -g `  R
) y )  e.  (Unit `  R )
) ) )
1110opabbidv 4070 . . . 4  |-  ( r  =  R  ->  { <. x ,  y >.  |  ( ( x  e.  (
Base `  r )  /\  y  e.  ( Base `  r ) )  /\  ( x (
-g `  r )
y )  e.  (Unit `  r ) ) }  =  { <. x ,  y >.  |  ( ( x  e.  (
Base `  R )  /\  y  e.  ( Base `  R ) )  /\  ( x (
-g `  R )
y )  e.  (Unit `  R ) ) } )
12 elex 2749 . . . 4  |-  ( R  e. LRing  ->  R  e.  _V )
13 basfn 12520 . . . . . . . 8  |-  Base  Fn  _V
1413a1i 9 . . . . . . 7  |-  ( R  e. LRing  ->  Base  Fn  _V )
15 funfvex 5533 . . . . . . . 8  |-  ( ( Fun  Base  /\  R  e. 
dom  Base )  ->  ( Base `  R )  e. 
_V )
1615funfni 5317 . . . . . . 7  |-  ( (
Base  Fn  _V  /\  R  e.  _V )  ->  ( Base `  R )  e. 
_V )
1714, 12, 16syl2anc 411 . . . . . 6  |-  ( R  e. LRing  ->  ( Base `  R
)  e.  _V )
18 xpexg 4741 . . . . . 6  |-  ( ( ( Base `  R
)  e.  _V  /\  ( Base `  R )  e.  _V )  ->  (
( Base `  R )  X.  ( Base `  R
) )  e.  _V )
1917, 17, 18syl2anc 411 . . . . 5  |-  ( R  e. LRing  ->  ( ( Base `  R )  X.  ( Base `  R ) )  e.  _V )
20 opabssxp 4701 . . . . . 6  |-  { <. x ,  y >.  |  ( ( x  e.  (
Base `  R )  /\  y  e.  ( Base `  R ) )  /\  ( x (
-g `  R )
y )  e.  (Unit `  R ) ) } 
C_  ( ( Base `  R )  X.  ( Base `  R ) )
2120a1i 9 . . . . 5  |-  ( R  e. LRing  ->  { <. x ,  y >.  |  ( ( x  e.  (
Base `  R )  /\  y  e.  ( Base `  R ) )  /\  ( x (
-g `  R )
y )  e.  (Unit `  R ) ) } 
C_  ( ( Base `  R )  X.  ( Base `  R ) ) )
2219, 21ssexd 4144 . . . 4  |-  ( R  e. LRing  ->  { <. x ,  y >.  |  ( ( x  e.  (
Base `  R )  /\  y  e.  ( Base `  R ) )  /\  ( x (
-g `  R )
y )  e.  (Unit `  R ) ) }  e.  _V )
231, 11, 12, 22fvmptd3 5610 . . 3  |-  ( R  e. LRing  ->  (#r `  R )  =  { <. x ,  y
>.  |  ( (
x  e.  ( Base `  R )  /\  y  e.  ( Base `  R
) )  /\  (
x ( -g `  R
) y )  e.  (Unit `  R )
) } )
2423, 20eqsstrdi 3208 . 2  |-  ( R  e. LRing  ->  (#r `  R )  C_  ( ( Base `  R
)  X.  ( Base `  R ) ) )
25 eqidd 2178 . . . 4  |-  ( ( R  e. LRing  /\  x  e.  ( Base `  R
) )  ->  ( Base `  R )  =  ( Base `  R
) )
26 eqidd 2178 . . . 4  |-  ( ( R  e. LRing  /\  x  e.  ( Base `  R
) )  ->  (#r `  R )  =  (#r `  R ) )
27 lringring 13335 . . . . 5  |-  ( R  e. LRing  ->  R  e.  Ring )
2827adantr 276 . . . 4  |-  ( ( R  e. LRing  /\  x  e.  ( Base `  R
) )  ->  R  e.  Ring )
29 simpr 110 . . . 4  |-  ( ( R  e. LRing  /\  x  e.  ( Base `  R
) )  ->  x  e.  ( Base `  R
) )
30 eqid 2177 . . . . . 6  |-  ( 1r
`  R )  =  ( 1r `  R
)
31 eqid 2177 . . . . . 6  |-  ( 0g
`  R )  =  ( 0g `  R
)
3230, 31lringnz 13336 . . . . 5  |-  ( R  e. LRing  ->  ( 1r `  R )  =/=  ( 0g `  R ) )
3332adantr 276 . . . 4  |-  ( ( R  e. LRing  /\  x  e.  ( Base `  R
) )  ->  ( 1r `  R )  =/=  ( 0g `  R
) )
3425, 26, 28, 29, 33aprirr 13373 . . 3  |-  ( ( R  e. LRing  /\  x  e.  ( Base `  R
) )  ->  -.  x (#r `  R ) x )
3534ralrimiva 2550 . 2  |-  ( R  e. LRing  ->  A. x  e.  (
Base `  R )  -.  x (#r `  R ) x )
36 eqidd 2178 . . . . 5  |-  ( ( R  e. LRing  /\  (
x  e.  ( Base `  R )  /\  y  e.  ( Base `  R
) ) )  -> 
( Base `  R )  =  ( Base `  R
) )
37 eqidd 2178 . . . . 5  |-  ( ( R  e. LRing  /\  (
x  e.  ( Base `  R )  /\  y  e.  ( Base `  R
) ) )  -> 
(#r `  R )  =  (#r `  R ) )
3827adantr 276 . . . . 5  |-  ( ( R  e. LRing  /\  (
x  e.  ( Base `  R )  /\  y  e.  ( Base `  R
) ) )  ->  R  e.  Ring )
39 simprl 529 . . . . 5  |-  ( ( R  e. LRing  /\  (
x  e.  ( Base `  R )  /\  y  e.  ( Base `  R
) ) )  ->  x  e.  ( Base `  R ) )
40 simprr 531 . . . . 5  |-  ( ( R  e. LRing  /\  (
x  e.  ( Base `  R )  /\  y  e.  ( Base `  R
) ) )  -> 
y  e.  ( Base `  R ) )
4136, 37, 38, 39, 40aprsym 13374 . . . 4  |-  ( ( R  e. LRing  /\  (
x  e.  ( Base `  R )  /\  y  e.  ( Base `  R
) ) )  -> 
( x (#r `  R
) y  ->  y
(#r `  R ) x ) )
4241ralrimivva 2559 . . 3  |-  ( R  e. LRing  ->  A. x  e.  (
Base `  R ) A. y  e.  ( Base `  R ) ( x (#r `  R ) y  ->  y (#r `  R
) x ) )
43 eqidd 2178 . . . . 5  |-  ( ( R  e. LRing  /\  (
x  e.  ( Base `  R )  /\  y  e.  ( Base `  R
)  /\  z  e.  ( Base `  R )
) )  ->  ( Base `  R )  =  ( Base `  R
) )
44 eqidd 2178 . . . . 5  |-  ( ( R  e. LRing  /\  (
x  e.  ( Base `  R )  /\  y  e.  ( Base `  R
)  /\  z  e.  ( Base `  R )
) )  ->  (#r `  R )  =  (#r `  R ) )
45 simpl 109 . . . . 5  |-  ( ( R  e. LRing  /\  (
x  e.  ( Base `  R )  /\  y  e.  ( Base `  R
)  /\  z  e.  ( Base `  R )
) )  ->  R  e. LRing )
46 simpr1 1003 . . . . 5  |-  ( ( R  e. LRing  /\  (
x  e.  ( Base `  R )  /\  y  e.  ( Base `  R
)  /\  z  e.  ( Base `  R )
) )  ->  x  e.  ( Base `  R
) )
47 simpr2 1004 . . . . 5  |-  ( ( R  e. LRing  /\  (
x  e.  ( Base `  R )  /\  y  e.  ( Base `  R
)  /\  z  e.  ( Base `  R )
) )  ->  y  e.  ( Base `  R
) )
48 simpr3 1005 . . . . 5  |-  ( ( R  e. LRing  /\  (
x  e.  ( Base `  R )  /\  y  e.  ( Base `  R
)  /\  z  e.  ( Base `  R )
) )  ->  z  e.  ( Base `  R
) )
4943, 44, 45, 46, 47, 48aprcotr 13375 . . . 4  |-  ( ( R  e. LRing  /\  (
x  e.  ( Base `  R )  /\  y  e.  ( Base `  R
)  /\  z  e.  ( Base `  R )
) )  ->  (
x (#r `  R ) y  ->  ( x (#r `  R ) z  \/  y (#r `  R ) z ) ) )
5049ralrimivvva 2560 . . 3  |-  ( R  e. LRing  ->  A. x  e.  (
Base `  R ) A. y  e.  ( Base `  R ) A. z  e.  ( Base `  R ) ( x (#r `  R ) y  ->  ( x (#r `  R ) z  \/  y (#r `  R ) z ) ) )
5142, 50jca 306 . 2  |-  ( R  e. LRing  ->  ( A. x  e.  ( Base `  R
) A. y  e.  ( Base `  R
) ( x (#r `  R ) y  -> 
y (#r `  R ) x )  /\  A. x  e.  ( Base `  R
) A. y  e.  ( Base `  R
) A. z  e.  ( Base `  R
) ( x (#r `  R ) y  -> 
( x (#r `  R
) z  \/  y
(#r `  R ) z ) ) ) )
52 df-pap 7247 . 2  |-  ( (#r `  R ) Ap  ( Base `  R )  <->  ( (
(#r `  R )  C_  ( ( Base `  R
)  X.  ( Base `  R ) )  /\  A. x  e.  ( Base `  R )  -.  x
(#r `  R ) x )  /\  ( A. x  e.  ( Base `  R ) A. y  e.  ( Base `  R
) ( x (#r `  R ) y  -> 
y (#r `  R ) x )  /\  A. x  e.  ( Base `  R
) A. y  e.  ( Base `  R
) A. z  e.  ( Base `  R
) ( x (#r `  R ) y  -> 
( x (#r `  R
) z  \/  y
(#r `  R ) z ) ) ) ) )
5324, 35, 51, 52syl21anbrc 1182 1  |-  ( R  e. LRing  ->  (#r `  R ) Ap  (
Base `  R )
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    \/ wo 708    /\ w3a 978    = wceq 1353    e. wcel 2148    =/= wne 2347   A.wral 2455   _Vcvv 2738    C_ wss 3130   class class class wbr 4004   {copab 4064    X. cxp 4625    Fn wfn 5212   ` cfv 5217  (class class class)co 5875   Ap wap 7246   Basecbs 12462   0gc0g 12705   -gcsg 12879   1rcur 13142   Ringcrg 13179  Unitcui 13256  LRingclring 13331  #rcapr 13370
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4119  ax-sep 4122  ax-nul 4130  ax-pow 4175  ax-pr 4210  ax-un 4434  ax-setind 4537  ax-cnex 7902  ax-resscn 7903  ax-1cn 7904  ax-1re 7905  ax-icn 7906  ax-addcl 7907  ax-addrcl 7908  ax-mulcl 7909  ax-addcom 7911  ax-addass 7913  ax-i2m1 7916  ax-0lt1 7917  ax-0id 7919  ax-rnegex 7920  ax-pre-ltirr 7923  ax-pre-lttrn 7925  ax-pre-ltadd 7927
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2740  df-sbc 2964  df-csb 3059  df-dif 3132  df-un 3134  df-in 3136  df-ss 3143  df-nul 3424  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-int 3846  df-iun 3889  df-br 4005  df-opab 4066  df-mpt 4067  df-id 4294  df-xp 4633  df-rel 4634  df-cnv 4635  df-co 4636  df-dm 4637  df-rn 4638  df-res 4639  df-ima 4640  df-iota 5179  df-fun 5219  df-fn 5220  df-f 5221  df-f1 5222  df-fo 5223  df-f1o 5224  df-fv 5225  df-riota 5831  df-ov 5878  df-oprab 5879  df-mpo 5880  df-1st 6141  df-2nd 6142  df-tpos 6246  df-pap 7247  df-pnf 7994  df-mnf 7995  df-ltxr 7997  df-inn 8920  df-2 8978  df-3 8979  df-ndx 12465  df-slot 12466  df-base 12468  df-sets 12469  df-iress 12470  df-plusg 12549  df-mulr 12550  df-0g 12707  df-mgm 12775  df-sgrp 12808  df-mnd 12818  df-grp 12880  df-minusg 12881  df-sbg 12882  df-cmn 13090  df-abl 13091  df-mgp 13131  df-ur 13143  df-srg 13147  df-ring 13181  df-oppr 13240  df-dvdsr 13258  df-unit 13259  df-invr 13290  df-dvr 13301  df-nzr 13324  df-lring 13332  df-apr 13371
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator