| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > aprval | Unicode version | ||
| Description: Expand Definition df-apr 14118. (Contributed by Jim Kingdon, 17-Feb-2025.) |
| Ref | Expression |
|---|---|
| aprval.b |
|
| aprval.ap |
|
| aprval.s |
|
| aprval.u |
|
| aprval.r |
|
| aprval.x |
|
| aprval.y |
|
| Ref | Expression |
|---|---|
| aprval |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-br 4052 |
. . 3
| |
| 2 | aprval.ap |
. . . . . 6
| |
| 3 | df-apr 14118 |
. . . . . . 7
| |
| 4 | fveq2 5589 |
. . . . . . . . . . 11
| |
| 5 | 4 | eleq2d 2276 |
. . . . . . . . . 10
|
| 6 | 4 | eleq2d 2276 |
. . . . . . . . . 10
|
| 7 | 5, 6 | anbi12d 473 |
. . . . . . . . 9
|
| 8 | fveq2 5589 |
. . . . . . . . . . 11
| |
| 9 | 8 | oveqd 5974 |
. . . . . . . . . 10
|
| 10 | fveq2 5589 |
. . . . . . . . . 10
| |
| 11 | 9, 10 | eleq12d 2277 |
. . . . . . . . 9
|
| 12 | 7, 11 | anbi12d 473 |
. . . . . . . 8
|
| 13 | 12 | opabbidv 4118 |
. . . . . . 7
|
| 14 | aprval.r |
. . . . . . . 8
| |
| 15 | 14 | elexd 2787 |
. . . . . . 7
|
| 16 | basfn 12965 |
. . . . . . . . . 10
| |
| 17 | funfvex 5606 |
. . . . . . . . . . 11
| |
| 18 | 17 | funfni 5385 |
. . . . . . . . . 10
|
| 19 | 16, 15, 18 | sylancr 414 |
. . . . . . . . 9
|
| 20 | xpexg 4797 |
. . . . . . . . 9
| |
| 21 | 19, 19, 20 | syl2anc 411 |
. . . . . . . 8
|
| 22 | opabssxp 4757 |
. . . . . . . . 9
| |
| 23 | 22 | a1i 9 |
. . . . . . . 8
|
| 24 | 21, 23 | ssexd 4192 |
. . . . . . 7
|
| 25 | 3, 13, 15, 24 | fvmptd3 5686 |
. . . . . 6
|
| 26 | 2, 25 | eqtrd 2239 |
. . . . 5
|
| 27 | 26 | eleq2d 2276 |
. . . 4
|
| 28 | aprval.x |
. . . . . 6
| |
| 29 | aprval.b |
. . . . . 6
| |
| 30 | 28, 29 | eleqtrd 2285 |
. . . . 5
|
| 31 | aprval.y |
. . . . . 6
| |
| 32 | 31, 29 | eleqtrd 2285 |
. . . . 5
|
| 33 | oveq12 5966 |
. . . . . . 7
| |
| 34 | 33 | eleq1d 2275 |
. . . . . 6
|
| 35 | 34 | opelopab2a 4319 |
. . . . 5
|
| 36 | 30, 32, 35 | syl2anc 411 |
. . . 4
|
| 37 | 27, 36 | bitrd 188 |
. . 3
|
| 38 | 1, 37 | bitrid 192 |
. 2
|
| 39 | aprval.s |
. . . 4
| |
| 40 | 39 | oveqd 5974 |
. . 3
|
| 41 | aprval.u |
. . 3
| |
| 42 | 40, 41 | eleq12d 2277 |
. 2
|
| 43 | 38, 42 | bitr4d 191 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4170 ax-pow 4226 ax-pr 4261 ax-un 4488 ax-cnex 8036 ax-resscn 8037 ax-1re 8039 ax-addrcl 8042 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-sbc 3003 df-csb 3098 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-int 3892 df-br 4052 df-opab 4114 df-mpt 4115 df-id 4348 df-xp 4689 df-rel 4690 df-cnv 4691 df-co 4692 df-dm 4693 df-rn 4694 df-res 4695 df-iota 5241 df-fun 5282 df-fn 5283 df-fv 5288 df-ov 5960 df-inn 9057 df-ndx 12910 df-slot 12911 df-base 12913 df-apr 14118 |
| This theorem is referenced by: aprirr 14120 aprsym 14121 aprcotr 14122 |
| Copyright terms: Public domain | W3C validator |