ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  aprval Unicode version

Theorem aprval 13838
Description: Expand Definition df-apr 13837. (Contributed by Jim Kingdon, 17-Feb-2025.)
Hypotheses
Ref Expression
aprval.b  |-  ( ph  ->  B  =  ( Base `  R ) )
aprval.ap  |-  ( ph  -> #  =  (#r `  R ) )
aprval.s  |-  ( ph  ->  .-  =  ( -g `  R ) )
aprval.u  |-  ( ph  ->  U  =  (Unit `  R ) )
aprval.r  |-  ( ph  ->  R  e.  Ring )
aprval.x  |-  ( ph  ->  X  e.  B )
aprval.y  |-  ( ph  ->  Y  e.  B )
Assertion
Ref Expression
aprval  |-  ( ph  ->  ( X #  Y  <->  ( X  .-  Y )  e.  U
) )

Proof of Theorem aprval
Dummy variables  r  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-br 4034 . . 3  |-  ( X #  Y  <->  <. X ,  Y >.  e. #  )
2 aprval.ap . . . . . 6  |-  ( ph  -> #  =  (#r `  R ) )
3 df-apr 13837 . . . . . . 7  |- #r  =  (
r  e.  _V  |->  {
<. x ,  y >.  |  ( ( x  e.  ( Base `  r
)  /\  y  e.  ( Base `  r )
)  /\  ( x
( -g `  r ) y )  e.  (Unit `  r ) ) } )
4 fveq2 5558 . . . . . . . . . . 11  |-  ( r  =  R  ->  ( Base `  r )  =  ( Base `  R
) )
54eleq2d 2266 . . . . . . . . . 10  |-  ( r  =  R  ->  (
x  e.  ( Base `  r )  <->  x  e.  ( Base `  R )
) )
64eleq2d 2266 . . . . . . . . . 10  |-  ( r  =  R  ->  (
y  e.  ( Base `  r )  <->  y  e.  ( Base `  R )
) )
75, 6anbi12d 473 . . . . . . . . 9  |-  ( r  =  R  ->  (
( x  e.  (
Base `  r )  /\  y  e.  ( Base `  r ) )  <-> 
( x  e.  (
Base `  R )  /\  y  e.  ( Base `  R ) ) ) )
8 fveq2 5558 . . . . . . . . . . 11  |-  ( r  =  R  ->  ( -g `  r )  =  ( -g `  R
) )
98oveqd 5939 . . . . . . . . . 10  |-  ( r  =  R  ->  (
x ( -g `  r
) y )  =  ( x ( -g `  R ) y ) )
10 fveq2 5558 . . . . . . . . . 10  |-  ( r  =  R  ->  (Unit `  r )  =  (Unit `  R ) )
119, 10eleq12d 2267 . . . . . . . . 9  |-  ( r  =  R  ->  (
( x ( -g `  r ) y )  e.  (Unit `  r
)  <->  ( x (
-g `  R )
y )  e.  (Unit `  R ) ) )
127, 11anbi12d 473 . . . . . . . 8  |-  ( r  =  R  ->  (
( ( x  e.  ( Base `  r
)  /\  y  e.  ( Base `  r )
)  /\  ( x
( -g `  r ) y )  e.  (Unit `  r ) )  <->  ( (
x  e.  ( Base `  R )  /\  y  e.  ( Base `  R
) )  /\  (
x ( -g `  R
) y )  e.  (Unit `  R )
) ) )
1312opabbidv 4099 . . . . . . 7  |-  ( r  =  R  ->  { <. x ,  y >.  |  ( ( x  e.  (
Base `  r )  /\  y  e.  ( Base `  r ) )  /\  ( x (
-g `  r )
y )  e.  (Unit `  r ) ) }  =  { <. x ,  y >.  |  ( ( x  e.  (
Base `  R )  /\  y  e.  ( Base `  R ) )  /\  ( x (
-g `  R )
y )  e.  (Unit `  R ) ) } )
14 aprval.r . . . . . . . 8  |-  ( ph  ->  R  e.  Ring )
1514elexd 2776 . . . . . . 7  |-  ( ph  ->  R  e.  _V )
16 basfn 12736 . . . . . . . . . 10  |-  Base  Fn  _V
17 funfvex 5575 . . . . . . . . . . 11  |-  ( ( Fun  Base  /\  R  e. 
dom  Base )  ->  ( Base `  R )  e. 
_V )
1817funfni 5358 . . . . . . . . . 10  |-  ( (
Base  Fn  _V  /\  R  e.  _V )  ->  ( Base `  R )  e. 
_V )
1916, 15, 18sylancr 414 . . . . . . . . 9  |-  ( ph  ->  ( Base `  R
)  e.  _V )
20 xpexg 4777 . . . . . . . . 9  |-  ( ( ( Base `  R
)  e.  _V  /\  ( Base `  R )  e.  _V )  ->  (
( Base `  R )  X.  ( Base `  R
) )  e.  _V )
2119, 19, 20syl2anc 411 . . . . . . . 8  |-  ( ph  ->  ( ( Base `  R
)  X.  ( Base `  R ) )  e. 
_V )
22 opabssxp 4737 . . . . . . . . 9  |-  { <. x ,  y >.  |  ( ( x  e.  (
Base `  R )  /\  y  e.  ( Base `  R ) )  /\  ( x (
-g `  R )
y )  e.  (Unit `  R ) ) } 
C_  ( ( Base `  R )  X.  ( Base `  R ) )
2322a1i 9 . . . . . . . 8  |-  ( ph  ->  { <. x ,  y
>.  |  ( (
x  e.  ( Base `  R )  /\  y  e.  ( Base `  R
) )  /\  (
x ( -g `  R
) y )  e.  (Unit `  R )
) }  C_  (
( Base `  R )  X.  ( Base `  R
) ) )
2421, 23ssexd 4173 . . . . . . 7  |-  ( ph  ->  { <. x ,  y
>.  |  ( (
x  e.  ( Base `  R )  /\  y  e.  ( Base `  R
) )  /\  (
x ( -g `  R
) y )  e.  (Unit `  R )
) }  e.  _V )
253, 13, 15, 24fvmptd3 5655 . . . . . 6  |-  ( ph  ->  (#r `  R )  =  { <. x ,  y
>.  |  ( (
x  e.  ( Base `  R )  /\  y  e.  ( Base `  R
) )  /\  (
x ( -g `  R
) y )  e.  (Unit `  R )
) } )
262, 25eqtrd 2229 . . . . 5  |-  ( ph  -> #  =  { <. x ,  y
>.  |  ( (
x  e.  ( Base `  R )  /\  y  e.  ( Base `  R
) )  /\  (
x ( -g `  R
) y )  e.  (Unit `  R )
) } )
2726eleq2d 2266 . . . 4  |-  ( ph  ->  ( <. X ,  Y >.  e. #  <->  <. X ,  Y >.  e.  { <. x ,  y >.  |  ( ( x  e.  (
Base `  R )  /\  y  e.  ( Base `  R ) )  /\  ( x (
-g `  R )
y )  e.  (Unit `  R ) ) } ) )
28 aprval.x . . . . . 6  |-  ( ph  ->  X  e.  B )
29 aprval.b . . . . . 6  |-  ( ph  ->  B  =  ( Base `  R ) )
3028, 29eleqtrd 2275 . . . . 5  |-  ( ph  ->  X  e.  ( Base `  R ) )
31 aprval.y . . . . . 6  |-  ( ph  ->  Y  e.  B )
3231, 29eleqtrd 2275 . . . . 5  |-  ( ph  ->  Y  e.  ( Base `  R ) )
33 oveq12 5931 . . . . . . 7  |-  ( ( x  =  X  /\  y  =  Y )  ->  ( x ( -g `  R ) y )  =  ( X (
-g `  R ) Y ) )
3433eleq1d 2265 . . . . . 6  |-  ( ( x  =  X  /\  y  =  Y )  ->  ( ( x (
-g `  R )
y )  e.  (Unit `  R )  <->  ( X
( -g `  R ) Y )  e.  (Unit `  R ) ) )
3534opelopab2a 4299 . . . . 5  |-  ( ( X  e.  ( Base `  R )  /\  Y  e.  ( Base `  R
) )  ->  ( <. X ,  Y >.  e. 
{ <. x ,  y
>.  |  ( (
x  e.  ( Base `  R )  /\  y  e.  ( Base `  R
) )  /\  (
x ( -g `  R
) y )  e.  (Unit `  R )
) }  <->  ( X
( -g `  R ) Y )  e.  (Unit `  R ) ) )
3630, 32, 35syl2anc 411 . . . 4  |-  ( ph  ->  ( <. X ,  Y >.  e.  { <. x ,  y >.  |  ( ( x  e.  (
Base `  R )  /\  y  e.  ( Base `  R ) )  /\  ( x (
-g `  R )
y )  e.  (Unit `  R ) ) }  <-> 
( X ( -g `  R ) Y )  e.  (Unit `  R
) ) )
3727, 36bitrd 188 . . 3  |-  ( ph  ->  ( <. X ,  Y >.  e. #  <->  ( X
( -g `  R ) Y )  e.  (Unit `  R ) ) )
381, 37bitrid 192 . 2  |-  ( ph  ->  ( X #  Y  <->  ( X
( -g `  R ) Y )  e.  (Unit `  R ) ) )
39 aprval.s . . . 4  |-  ( ph  ->  .-  =  ( -g `  R ) )
4039oveqd 5939 . . 3  |-  ( ph  ->  ( X  .-  Y
)  =  ( X ( -g `  R
) Y ) )
41 aprval.u . . 3  |-  ( ph  ->  U  =  (Unit `  R ) )
4240, 41eleq12d 2267 . 2  |-  ( ph  ->  ( ( X  .-  Y )  e.  U  <->  ( X ( -g `  R
) Y )  e.  (Unit `  R )
) )
4338, 42bitr4d 191 1  |-  ( ph  ->  ( X #  Y  <->  ( X  .-  Y )  e.  U
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2167   _Vcvv 2763    C_ wss 3157   <.cop 3625   class class class wbr 4033   {copab 4093    X. cxp 4661    Fn wfn 5253   ` cfv 5258  (class class class)co 5922   Basecbs 12678   -gcsg 13134   Ringcrg 13552  Unitcui 13643  #rcapr 13836
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-cnex 7970  ax-resscn 7971  ax-1re 7973  ax-addrcl 7976
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-sbc 2990  df-csb 3085  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-iota 5219  df-fun 5260  df-fn 5261  df-fv 5266  df-ov 5925  df-inn 8991  df-ndx 12681  df-slot 12682  df-base 12684  df-apr 13837
This theorem is referenced by:  aprirr  13839  aprsym  13840  aprcotr  13841
  Copyright terms: Public domain W3C validator