ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  aprval Unicode version

Theorem aprval 13377
Description: Expand Definition df-apr 13376. (Contributed by Jim Kingdon, 17-Feb-2025.)
Hypotheses
Ref Expression
aprval.b  |-  ( ph  ->  B  =  ( Base `  R ) )
aprval.ap  |-  ( ph  -> #  =  (#r `  R ) )
aprval.s  |-  ( ph  ->  .-  =  ( -g `  R ) )
aprval.u  |-  ( ph  ->  U  =  (Unit `  R ) )
aprval.r  |-  ( ph  ->  R  e.  Ring )
aprval.x  |-  ( ph  ->  X  e.  B )
aprval.y  |-  ( ph  ->  Y  e.  B )
Assertion
Ref Expression
aprval  |-  ( ph  ->  ( X #  Y  <->  ( X  .-  Y )  e.  U
) )

Proof of Theorem aprval
Dummy variables  r  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-br 4006 . . 3  |-  ( X #  Y  <->  <. X ,  Y >.  e. #  )
2 aprval.ap . . . . . 6  |-  ( ph  -> #  =  (#r `  R ) )
3 df-apr 13376 . . . . . . 7  |- #r  =  (
r  e.  _V  |->  {
<. x ,  y >.  |  ( ( x  e.  ( Base `  r
)  /\  y  e.  ( Base `  r )
)  /\  ( x
( -g `  r ) y )  e.  (Unit `  r ) ) } )
4 fveq2 5517 . . . . . . . . . . 11  |-  ( r  =  R  ->  ( Base `  r )  =  ( Base `  R
) )
54eleq2d 2247 . . . . . . . . . 10  |-  ( r  =  R  ->  (
x  e.  ( Base `  r )  <->  x  e.  ( Base `  R )
) )
64eleq2d 2247 . . . . . . . . . 10  |-  ( r  =  R  ->  (
y  e.  ( Base `  r )  <->  y  e.  ( Base `  R )
) )
75, 6anbi12d 473 . . . . . . . . 9  |-  ( r  =  R  ->  (
( x  e.  (
Base `  r )  /\  y  e.  ( Base `  r ) )  <-> 
( x  e.  (
Base `  R )  /\  y  e.  ( Base `  R ) ) ) )
8 fveq2 5517 . . . . . . . . . . 11  |-  ( r  =  R  ->  ( -g `  r )  =  ( -g `  R
) )
98oveqd 5894 . . . . . . . . . 10  |-  ( r  =  R  ->  (
x ( -g `  r
) y )  =  ( x ( -g `  R ) y ) )
10 fveq2 5517 . . . . . . . . . 10  |-  ( r  =  R  ->  (Unit `  r )  =  (Unit `  R ) )
119, 10eleq12d 2248 . . . . . . . . 9  |-  ( r  =  R  ->  (
( x ( -g `  r ) y )  e.  (Unit `  r
)  <->  ( x (
-g `  R )
y )  e.  (Unit `  R ) ) )
127, 11anbi12d 473 . . . . . . . 8  |-  ( r  =  R  ->  (
( ( x  e.  ( Base `  r
)  /\  y  e.  ( Base `  r )
)  /\  ( x
( -g `  r ) y )  e.  (Unit `  r ) )  <->  ( (
x  e.  ( Base `  R )  /\  y  e.  ( Base `  R
) )  /\  (
x ( -g `  R
) y )  e.  (Unit `  R )
) ) )
1312opabbidv 4071 . . . . . . 7  |-  ( r  =  R  ->  { <. x ,  y >.  |  ( ( x  e.  (
Base `  r )  /\  y  e.  ( Base `  r ) )  /\  ( x (
-g `  r )
y )  e.  (Unit `  r ) ) }  =  { <. x ,  y >.  |  ( ( x  e.  (
Base `  R )  /\  y  e.  ( Base `  R ) )  /\  ( x (
-g `  R )
y )  e.  (Unit `  R ) ) } )
14 aprval.r . . . . . . . 8  |-  ( ph  ->  R  e.  Ring )
1514elexd 2752 . . . . . . 7  |-  ( ph  ->  R  e.  _V )
16 basfn 12522 . . . . . . . . . 10  |-  Base  Fn  _V
17 funfvex 5534 . . . . . . . . . . 11  |-  ( ( Fun  Base  /\  R  e. 
dom  Base )  ->  ( Base `  R )  e. 
_V )
1817funfni 5318 . . . . . . . . . 10  |-  ( (
Base  Fn  _V  /\  R  e.  _V )  ->  ( Base `  R )  e. 
_V )
1916, 15, 18sylancr 414 . . . . . . . . 9  |-  ( ph  ->  ( Base `  R
)  e.  _V )
20 xpexg 4742 . . . . . . . . 9  |-  ( ( ( Base `  R
)  e.  _V  /\  ( Base `  R )  e.  _V )  ->  (
( Base `  R )  X.  ( Base `  R
) )  e.  _V )
2119, 19, 20syl2anc 411 . . . . . . . 8  |-  ( ph  ->  ( ( Base `  R
)  X.  ( Base `  R ) )  e. 
_V )
22 opabssxp 4702 . . . . . . . . 9  |-  { <. x ,  y >.  |  ( ( x  e.  (
Base `  R )  /\  y  e.  ( Base `  R ) )  /\  ( x (
-g `  R )
y )  e.  (Unit `  R ) ) } 
C_  ( ( Base `  R )  X.  ( Base `  R ) )
2322a1i 9 . . . . . . . 8  |-  ( ph  ->  { <. x ,  y
>.  |  ( (
x  e.  ( Base `  R )  /\  y  e.  ( Base `  R
) )  /\  (
x ( -g `  R
) y )  e.  (Unit `  R )
) }  C_  (
( Base `  R )  X.  ( Base `  R
) ) )
2421, 23ssexd 4145 . . . . . . 7  |-  ( ph  ->  { <. x ,  y
>.  |  ( (
x  e.  ( Base `  R )  /\  y  e.  ( Base `  R
) )  /\  (
x ( -g `  R
) y )  e.  (Unit `  R )
) }  e.  _V )
253, 13, 15, 24fvmptd3 5611 . . . . . 6  |-  ( ph  ->  (#r `  R )  =  { <. x ,  y
>.  |  ( (
x  e.  ( Base `  R )  /\  y  e.  ( Base `  R
) )  /\  (
x ( -g `  R
) y )  e.  (Unit `  R )
) } )
262, 25eqtrd 2210 . . . . 5  |-  ( ph  -> #  =  { <. x ,  y
>.  |  ( (
x  e.  ( Base `  R )  /\  y  e.  ( Base `  R
) )  /\  (
x ( -g `  R
) y )  e.  (Unit `  R )
) } )
2726eleq2d 2247 . . . 4  |-  ( ph  ->  ( <. X ,  Y >.  e. #  <->  <. X ,  Y >.  e.  { <. x ,  y >.  |  ( ( x  e.  (
Base `  R )  /\  y  e.  ( Base `  R ) )  /\  ( x (
-g `  R )
y )  e.  (Unit `  R ) ) } ) )
28 aprval.x . . . . . 6  |-  ( ph  ->  X  e.  B )
29 aprval.b . . . . . 6  |-  ( ph  ->  B  =  ( Base `  R ) )
3028, 29eleqtrd 2256 . . . . 5  |-  ( ph  ->  X  e.  ( Base `  R ) )
31 aprval.y . . . . . 6  |-  ( ph  ->  Y  e.  B )
3231, 29eleqtrd 2256 . . . . 5  |-  ( ph  ->  Y  e.  ( Base `  R ) )
33 oveq12 5886 . . . . . . 7  |-  ( ( x  =  X  /\  y  =  Y )  ->  ( x ( -g `  R ) y )  =  ( X (
-g `  R ) Y ) )
3433eleq1d 2246 . . . . . 6  |-  ( ( x  =  X  /\  y  =  Y )  ->  ( ( x (
-g `  R )
y )  e.  (Unit `  R )  <->  ( X
( -g `  R ) Y )  e.  (Unit `  R ) ) )
3534opelopab2a 4267 . . . . 5  |-  ( ( X  e.  ( Base `  R )  /\  Y  e.  ( Base `  R
) )  ->  ( <. X ,  Y >.  e. 
{ <. x ,  y
>.  |  ( (
x  e.  ( Base `  R )  /\  y  e.  ( Base `  R
) )  /\  (
x ( -g `  R
) y )  e.  (Unit `  R )
) }  <->  ( X
( -g `  R ) Y )  e.  (Unit `  R ) ) )
3630, 32, 35syl2anc 411 . . . 4  |-  ( ph  ->  ( <. X ,  Y >.  e.  { <. x ,  y >.  |  ( ( x  e.  (
Base `  R )  /\  y  e.  ( Base `  R ) )  /\  ( x (
-g `  R )
y )  e.  (Unit `  R ) ) }  <-> 
( X ( -g `  R ) Y )  e.  (Unit `  R
) ) )
3727, 36bitrd 188 . . 3  |-  ( ph  ->  ( <. X ,  Y >.  e. #  <->  ( X
( -g `  R ) Y )  e.  (Unit `  R ) ) )
381, 37bitrid 192 . 2  |-  ( ph  ->  ( X #  Y  <->  ( X
( -g `  R ) Y )  e.  (Unit `  R ) ) )
39 aprval.s . . . 4  |-  ( ph  ->  .-  =  ( -g `  R ) )
4039oveqd 5894 . . 3  |-  ( ph  ->  ( X  .-  Y
)  =  ( X ( -g `  R
) Y ) )
41 aprval.u . . 3  |-  ( ph  ->  U  =  (Unit `  R ) )
4240, 41eleq12d 2248 . 2  |-  ( ph  ->  ( ( X  .-  Y )  e.  U  <->  ( X ( -g `  R
) Y )  e.  (Unit `  R )
) )
4338, 42bitr4d 191 1  |-  ( ph  ->  ( X #  Y  <->  ( X  .-  Y )  e.  U
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1353    e. wcel 2148   _Vcvv 2739    C_ wss 3131   <.cop 3597   class class class wbr 4005   {copab 4065    X. cxp 4626    Fn wfn 5213   ` cfv 5218  (class class class)co 5877   Basecbs 12464   -gcsg 12884   Ringcrg 13184  Unitcui 13261  #rcapr 13375
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-cnex 7904  ax-resscn 7905  ax-1re 7907  ax-addrcl 7910
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2741  df-sbc 2965  df-csb 3060  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-iota 5180  df-fun 5220  df-fn 5221  df-fv 5226  df-ov 5880  df-inn 8922  df-ndx 12467  df-slot 12468  df-base 12470  df-apr 13376
This theorem is referenced by:  aprirr  13378  aprsym  13379  aprcotr  13380
  Copyright terms: Public domain W3C validator