| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > aprval | Unicode version | ||
| Description: Expand Definition df-apr 14239. (Contributed by Jim Kingdon, 17-Feb-2025.) |
| Ref | Expression |
|---|---|
| aprval.b |
|
| aprval.ap |
|
| aprval.s |
|
| aprval.u |
|
| aprval.r |
|
| aprval.x |
|
| aprval.y |
|
| Ref | Expression |
|---|---|
| aprval |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-br 4083 |
. . 3
| |
| 2 | aprval.ap |
. . . . . 6
| |
| 3 | df-apr 14239 |
. . . . . . 7
| |
| 4 | fveq2 5626 |
. . . . . . . . . . 11
| |
| 5 | 4 | eleq2d 2299 |
. . . . . . . . . 10
|
| 6 | 4 | eleq2d 2299 |
. . . . . . . . . 10
|
| 7 | 5, 6 | anbi12d 473 |
. . . . . . . . 9
|
| 8 | fveq2 5626 |
. . . . . . . . . . 11
| |
| 9 | 8 | oveqd 6017 |
. . . . . . . . . 10
|
| 10 | fveq2 5626 |
. . . . . . . . . 10
| |
| 11 | 9, 10 | eleq12d 2300 |
. . . . . . . . 9
|
| 12 | 7, 11 | anbi12d 473 |
. . . . . . . 8
|
| 13 | 12 | opabbidv 4149 |
. . . . . . 7
|
| 14 | aprval.r |
. . . . . . . 8
| |
| 15 | 14 | elexd 2813 |
. . . . . . 7
|
| 16 | basfn 13086 |
. . . . . . . . . 10
| |
| 17 | funfvex 5643 |
. . . . . . . . . . 11
| |
| 18 | 17 | funfni 5422 |
. . . . . . . . . 10
|
| 19 | 16, 15, 18 | sylancr 414 |
. . . . . . . . 9
|
| 20 | xpexg 4832 |
. . . . . . . . 9
| |
| 21 | 19, 19, 20 | syl2anc 411 |
. . . . . . . 8
|
| 22 | opabssxp 4792 |
. . . . . . . . 9
| |
| 23 | 22 | a1i 9 |
. . . . . . . 8
|
| 24 | 21, 23 | ssexd 4223 |
. . . . . . 7
|
| 25 | 3, 13, 15, 24 | fvmptd3 5727 |
. . . . . 6
|
| 26 | 2, 25 | eqtrd 2262 |
. . . . 5
|
| 27 | 26 | eleq2d 2299 |
. . . 4
|
| 28 | aprval.x |
. . . . . 6
| |
| 29 | aprval.b |
. . . . . 6
| |
| 30 | 28, 29 | eleqtrd 2308 |
. . . . 5
|
| 31 | aprval.y |
. . . . . 6
| |
| 32 | 31, 29 | eleqtrd 2308 |
. . . . 5
|
| 33 | oveq12 6009 |
. . . . . . 7
| |
| 34 | 33 | eleq1d 2298 |
. . . . . 6
|
| 35 | 34 | opelopab2a 4352 |
. . . . 5
|
| 36 | 30, 32, 35 | syl2anc 411 |
. . . 4
|
| 37 | 27, 36 | bitrd 188 |
. . 3
|
| 38 | 1, 37 | bitrid 192 |
. 2
|
| 39 | aprval.s |
. . . 4
| |
| 40 | 39 | oveqd 6017 |
. . 3
|
| 41 | aprval.u |
. . 3
| |
| 42 | 40, 41 | eleq12d 2300 |
. 2
|
| 43 | 38, 42 | bitr4d 191 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-cnex 8086 ax-resscn 8087 ax-1re 8089 ax-addrcl 8092 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-sbc 3029 df-csb 3125 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4383 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-iota 5277 df-fun 5319 df-fn 5320 df-fv 5325 df-ov 6003 df-inn 9107 df-ndx 13030 df-slot 13031 df-base 13033 df-apr 14239 |
| This theorem is referenced by: aprirr 14241 aprsym 14242 aprcotr 14243 |
| Copyright terms: Public domain | W3C validator |