ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  aprval Unicode version

Theorem aprval 14240
Description: Expand Definition df-apr 14239. (Contributed by Jim Kingdon, 17-Feb-2025.)
Hypotheses
Ref Expression
aprval.b  |-  ( ph  ->  B  =  ( Base `  R ) )
aprval.ap  |-  ( ph  -> #  =  (#r `  R ) )
aprval.s  |-  ( ph  ->  .-  =  ( -g `  R ) )
aprval.u  |-  ( ph  ->  U  =  (Unit `  R ) )
aprval.r  |-  ( ph  ->  R  e.  Ring )
aprval.x  |-  ( ph  ->  X  e.  B )
aprval.y  |-  ( ph  ->  Y  e.  B )
Assertion
Ref Expression
aprval  |-  ( ph  ->  ( X #  Y  <->  ( X  .-  Y )  e.  U
) )

Proof of Theorem aprval
Dummy variables  r  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-br 4083 . . 3  |-  ( X #  Y  <->  <. X ,  Y >.  e. #  )
2 aprval.ap . . . . . 6  |-  ( ph  -> #  =  (#r `  R ) )
3 df-apr 14239 . . . . . . 7  |- #r  =  (
r  e.  _V  |->  {
<. x ,  y >.  |  ( ( x  e.  ( Base `  r
)  /\  y  e.  ( Base `  r )
)  /\  ( x
( -g `  r ) y )  e.  (Unit `  r ) ) } )
4 fveq2 5626 . . . . . . . . . . 11  |-  ( r  =  R  ->  ( Base `  r )  =  ( Base `  R
) )
54eleq2d 2299 . . . . . . . . . 10  |-  ( r  =  R  ->  (
x  e.  ( Base `  r )  <->  x  e.  ( Base `  R )
) )
64eleq2d 2299 . . . . . . . . . 10  |-  ( r  =  R  ->  (
y  e.  ( Base `  r )  <->  y  e.  ( Base `  R )
) )
75, 6anbi12d 473 . . . . . . . . 9  |-  ( r  =  R  ->  (
( x  e.  (
Base `  r )  /\  y  e.  ( Base `  r ) )  <-> 
( x  e.  (
Base `  R )  /\  y  e.  ( Base `  R ) ) ) )
8 fveq2 5626 . . . . . . . . . . 11  |-  ( r  =  R  ->  ( -g `  r )  =  ( -g `  R
) )
98oveqd 6017 . . . . . . . . . 10  |-  ( r  =  R  ->  (
x ( -g `  r
) y )  =  ( x ( -g `  R ) y ) )
10 fveq2 5626 . . . . . . . . . 10  |-  ( r  =  R  ->  (Unit `  r )  =  (Unit `  R ) )
119, 10eleq12d 2300 . . . . . . . . 9  |-  ( r  =  R  ->  (
( x ( -g `  r ) y )  e.  (Unit `  r
)  <->  ( x (
-g `  R )
y )  e.  (Unit `  R ) ) )
127, 11anbi12d 473 . . . . . . . 8  |-  ( r  =  R  ->  (
( ( x  e.  ( Base `  r
)  /\  y  e.  ( Base `  r )
)  /\  ( x
( -g `  r ) y )  e.  (Unit `  r ) )  <->  ( (
x  e.  ( Base `  R )  /\  y  e.  ( Base `  R
) )  /\  (
x ( -g `  R
) y )  e.  (Unit `  R )
) ) )
1312opabbidv 4149 . . . . . . 7  |-  ( r  =  R  ->  { <. x ,  y >.  |  ( ( x  e.  (
Base `  r )  /\  y  e.  ( Base `  r ) )  /\  ( x (
-g `  r )
y )  e.  (Unit `  r ) ) }  =  { <. x ,  y >.  |  ( ( x  e.  (
Base `  R )  /\  y  e.  ( Base `  R ) )  /\  ( x (
-g `  R )
y )  e.  (Unit `  R ) ) } )
14 aprval.r . . . . . . . 8  |-  ( ph  ->  R  e.  Ring )
1514elexd 2813 . . . . . . 7  |-  ( ph  ->  R  e.  _V )
16 basfn 13086 . . . . . . . . . 10  |-  Base  Fn  _V
17 funfvex 5643 . . . . . . . . . . 11  |-  ( ( Fun  Base  /\  R  e. 
dom  Base )  ->  ( Base `  R )  e. 
_V )
1817funfni 5422 . . . . . . . . . 10  |-  ( (
Base  Fn  _V  /\  R  e.  _V )  ->  ( Base `  R )  e. 
_V )
1916, 15, 18sylancr 414 . . . . . . . . 9  |-  ( ph  ->  ( Base `  R
)  e.  _V )
20 xpexg 4832 . . . . . . . . 9  |-  ( ( ( Base `  R
)  e.  _V  /\  ( Base `  R )  e.  _V )  ->  (
( Base `  R )  X.  ( Base `  R
) )  e.  _V )
2119, 19, 20syl2anc 411 . . . . . . . 8  |-  ( ph  ->  ( ( Base `  R
)  X.  ( Base `  R ) )  e. 
_V )
22 opabssxp 4792 . . . . . . . . 9  |-  { <. x ,  y >.  |  ( ( x  e.  (
Base `  R )  /\  y  e.  ( Base `  R ) )  /\  ( x (
-g `  R )
y )  e.  (Unit `  R ) ) } 
C_  ( ( Base `  R )  X.  ( Base `  R ) )
2322a1i 9 . . . . . . . 8  |-  ( ph  ->  { <. x ,  y
>.  |  ( (
x  e.  ( Base `  R )  /\  y  e.  ( Base `  R
) )  /\  (
x ( -g `  R
) y )  e.  (Unit `  R )
) }  C_  (
( Base `  R )  X.  ( Base `  R
) ) )
2421, 23ssexd 4223 . . . . . . 7  |-  ( ph  ->  { <. x ,  y
>.  |  ( (
x  e.  ( Base `  R )  /\  y  e.  ( Base `  R
) )  /\  (
x ( -g `  R
) y )  e.  (Unit `  R )
) }  e.  _V )
253, 13, 15, 24fvmptd3 5727 . . . . . 6  |-  ( ph  ->  (#r `  R )  =  { <. x ,  y
>.  |  ( (
x  e.  ( Base `  R )  /\  y  e.  ( Base `  R
) )  /\  (
x ( -g `  R
) y )  e.  (Unit `  R )
) } )
262, 25eqtrd 2262 . . . . 5  |-  ( ph  -> #  =  { <. x ,  y
>.  |  ( (
x  e.  ( Base `  R )  /\  y  e.  ( Base `  R
) )  /\  (
x ( -g `  R
) y )  e.  (Unit `  R )
) } )
2726eleq2d 2299 . . . 4  |-  ( ph  ->  ( <. X ,  Y >.  e. #  <->  <. X ,  Y >.  e.  { <. x ,  y >.  |  ( ( x  e.  (
Base `  R )  /\  y  e.  ( Base `  R ) )  /\  ( x (
-g `  R )
y )  e.  (Unit `  R ) ) } ) )
28 aprval.x . . . . . 6  |-  ( ph  ->  X  e.  B )
29 aprval.b . . . . . 6  |-  ( ph  ->  B  =  ( Base `  R ) )
3028, 29eleqtrd 2308 . . . . 5  |-  ( ph  ->  X  e.  ( Base `  R ) )
31 aprval.y . . . . . 6  |-  ( ph  ->  Y  e.  B )
3231, 29eleqtrd 2308 . . . . 5  |-  ( ph  ->  Y  e.  ( Base `  R ) )
33 oveq12 6009 . . . . . . 7  |-  ( ( x  =  X  /\  y  =  Y )  ->  ( x ( -g `  R ) y )  =  ( X (
-g `  R ) Y ) )
3433eleq1d 2298 . . . . . 6  |-  ( ( x  =  X  /\  y  =  Y )  ->  ( ( x (
-g `  R )
y )  e.  (Unit `  R )  <->  ( X
( -g `  R ) Y )  e.  (Unit `  R ) ) )
3534opelopab2a 4352 . . . . 5  |-  ( ( X  e.  ( Base `  R )  /\  Y  e.  ( Base `  R
) )  ->  ( <. X ,  Y >.  e. 
{ <. x ,  y
>.  |  ( (
x  e.  ( Base `  R )  /\  y  e.  ( Base `  R
) )  /\  (
x ( -g `  R
) y )  e.  (Unit `  R )
) }  <->  ( X
( -g `  R ) Y )  e.  (Unit `  R ) ) )
3630, 32, 35syl2anc 411 . . . 4  |-  ( ph  ->  ( <. X ,  Y >.  e.  { <. x ,  y >.  |  ( ( x  e.  (
Base `  R )  /\  y  e.  ( Base `  R ) )  /\  ( x (
-g `  R )
y )  e.  (Unit `  R ) ) }  <-> 
( X ( -g `  R ) Y )  e.  (Unit `  R
) ) )
3727, 36bitrd 188 . . 3  |-  ( ph  ->  ( <. X ,  Y >.  e. #  <->  ( X
( -g `  R ) Y )  e.  (Unit `  R ) ) )
381, 37bitrid 192 . 2  |-  ( ph  ->  ( X #  Y  <->  ( X
( -g `  R ) Y )  e.  (Unit `  R ) ) )
39 aprval.s . . . 4  |-  ( ph  ->  .-  =  ( -g `  R ) )
4039oveqd 6017 . . 3  |-  ( ph  ->  ( X  .-  Y
)  =  ( X ( -g `  R
) Y ) )
41 aprval.u . . 3  |-  ( ph  ->  U  =  (Unit `  R ) )
4240, 41eleq12d 2300 . 2  |-  ( ph  ->  ( ( X  .-  Y )  e.  U  <->  ( X ( -g `  R
) Y )  e.  (Unit `  R )
) )
4338, 42bitr4d 191 1  |-  ( ph  ->  ( X #  Y  <->  ( X  .-  Y )  e.  U
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1395    e. wcel 2200   _Vcvv 2799    C_ wss 3197   <.cop 3669   class class class wbr 4082   {copab 4143    X. cxp 4716    Fn wfn 5312   ` cfv 5317  (class class class)co 6000   Basecbs 13027   -gcsg 13530   Ringcrg 13954  Unitcui 14045  #rcapr 14238
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-cnex 8086  ax-resscn 8087  ax-1re 8089  ax-addrcl 8092
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-sbc 3029  df-csb 3125  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-iota 5277  df-fun 5319  df-fn 5320  df-fv 5325  df-ov 6003  df-inn 9107  df-ndx 13030  df-slot 13031  df-base 13033  df-apr 14239
This theorem is referenced by:  aprirr  14241  aprsym  14242  aprcotr  14243
  Copyright terms: Public domain W3C validator