ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-icnfld Unicode version

Definition df-icnfld 14048
Description: The field of complex numbers. Other number fields and rings can be constructed by applying the ↾s restriction operator.

The contract of this set is defined entirely by cnfldex 14050, cnfldadd 14052, cnfldmul 14054, cnfldcj 14056, and cnfldbas 14051.

We may add additional members to this in the future.

At least for now, this structure does not include a topology, order, a distance function, or function mapping metrics.

(Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Thierry Arnoux, 15-Dec-2017.) (New usage is discouraged.)

Assertion
Ref Expression
df-icnfld  |-fld  =  ( { <. ( Base `  ndx ) ,  CC >. ,  <. ( +g  `  ndx ) ,  +  >. ,  <. ( .r `  ndx ) ,  x.  >. }  u.  {
<. ( *r `  ndx ) ,  * >. } )

Detailed syntax breakdown of Definition df-icnfld
StepHypRef Expression
1 ccnfld 14047 . 2  classfld
2 cnx 12615 . . . . . 6  class  ndx
3 cbs 12618 . . . . . 6  class  Base
42, 3cfv 5254 . . . . 5  class  ( Base `  ndx )
5 cc 7870 . . . . 5  class  CC
64, 5cop 3621 . . . 4  class  <. ( Base `  ndx ) ,  CC >.
7 cplusg 12695 . . . . . 6  class  +g
82, 7cfv 5254 . . . . 5  class  ( +g  ` 
ndx )
9 caddc 7875 . . . . 5  class  +
108, 9cop 3621 . . . 4  class  <. ( +g  `  ndx ) ,  +  >.
11 cmulr 12696 . . . . . 6  class  .r
122, 11cfv 5254 . . . . 5  class  ( .r
`  ndx )
13 cmul 7877 . . . . 5  class  x.
1412, 13cop 3621 . . . 4  class  <. ( .r `  ndx ) ,  x.  >.
156, 10, 14ctp 3620 . . 3  class  { <. (
Base `  ndx ) ,  CC >. ,  <. ( +g  `  ndx ) ,  +  >. ,  <. ( .r `  ndx ) ,  x.  >. }
16 cstv 12697 . . . . . 6  class  *r
172, 16cfv 5254 . . . . 5  class  ( *r `  ndx )
18 ccj 10983 . . . . 5  class  *
1917, 18cop 3621 . . . 4  class  <. (
*r `  ndx ) ,  * >.
2019csn 3618 . . 3  class  { <. ( *r `  ndx ) ,  * >. }
2115, 20cun 3151 . 2  class  ( {
<. ( Base `  ndx ) ,  CC >. ,  <. ( +g  `  ndx ) ,  +  >. ,  <. ( .r `  ndx ) ,  x.  >. }  u.  {
<. ( *r `  ndx ) ,  * >. } )
221, 21wceq 1364 1  wfffld  =  ( { <. ( Base `  ndx ) ,  CC >. ,  <. ( +g  `  ndx ) ,  +  >. ,  <. ( .r `  ndx ) ,  x.  >. }  u.  {
<. ( *r `  ndx ) ,  * >. } )
Colors of variables: wff set class
This definition is referenced by:  cnfldstr  14049  cnfldbas  14051  cnfldadd  14052  cnfldmul  14054  cnfldcj  14056
  Copyright terms: Public domain W3C validator