ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-icnfld Unicode version

Definition df-icnfld 13541
Description: The field of complex numbers. Other number fields and rings can be constructed by applying the ↾s restriction operator.

The contract of this set is defined entirely by cnfldex 13543, cnfldadd 13545, cnfldmul 13546, cnfldcj 13547, and cnfldbas 13544.

We may add additional members to this in the future.

At least for now, this structure does not include a topology, order, a distance function, or function mapping metrics.

(Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Thierry Arnoux, 15-Dec-2017.) (New usage is discouraged.)

Assertion
Ref Expression
df-icnfld  |-fld  =  ( { <. ( Base `  ndx ) ,  CC >. ,  <. ( +g  `  ndx ) ,  +  >. ,  <. ( .r `  ndx ) ,  x.  >. }  u.  {
<. ( *r `  ndx ) ,  * >. } )

Detailed syntax breakdown of Definition df-icnfld
StepHypRef Expression
1 ccnfld 13540 . 2  classfld
2 cnx 12461 . . . . . 6  class  ndx
3 cbs 12464 . . . . . 6  class  Base
42, 3cfv 5218 . . . . 5  class  ( Base `  ndx )
5 cc 7811 . . . . 5  class  CC
64, 5cop 3597 . . . 4  class  <. ( Base `  ndx ) ,  CC >.
7 cplusg 12538 . . . . . 6  class  +g
82, 7cfv 5218 . . . . 5  class  ( +g  ` 
ndx )
9 caddc 7816 . . . . 5  class  +
108, 9cop 3597 . . . 4  class  <. ( +g  `  ndx ) ,  +  >.
11 cmulr 12539 . . . . . 6  class  .r
122, 11cfv 5218 . . . . 5  class  ( .r
`  ndx )
13 cmul 7818 . . . . 5  class  x.
1412, 13cop 3597 . . . 4  class  <. ( .r `  ndx ) ,  x.  >.
156, 10, 14ctp 3596 . . 3  class  { <. (
Base `  ndx ) ,  CC >. ,  <. ( +g  `  ndx ) ,  +  >. ,  <. ( .r `  ndx ) ,  x.  >. }
16 cstv 12540 . . . . . 6  class  *r
172, 16cfv 5218 . . . . 5  class  ( *r `  ndx )
18 ccj 10850 . . . . 5  class  *
1917, 18cop 3597 . . . 4  class  <. (
*r `  ndx ) ,  * >.
2019csn 3594 . . 3  class  { <. ( *r `  ndx ) ,  * >. }
2115, 20cun 3129 . 2  class  ( {
<. ( Base `  ndx ) ,  CC >. ,  <. ( +g  `  ndx ) ,  +  >. ,  <. ( .r `  ndx ) ,  x.  >. }  u.  {
<. ( *r `  ndx ) ,  * >. } )
221, 21wceq 1353 1  wfffld  =  ( { <. ( Base `  ndx ) ,  CC >. ,  <. ( +g  `  ndx ) ,  +  >. ,  <. ( .r `  ndx ) ,  x.  >. }  u.  {
<. ( *r `  ndx ) ,  * >. } )
Colors of variables: wff set class
This definition is referenced by:  cnfldstr  13542  cnfldbas  13544  cnfldadd  13545  cnfldmul  13546  cnfldcj  13547
  Copyright terms: Public domain W3C validator