ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-icnfld Unicode version

Definition df-icnfld 13738
Description: The field of complex numbers. Other number fields and rings can be constructed by applying the ↾s restriction operator.

The contract of this set is defined entirely by cnfldex 13740, cnfldadd 13742, cnfldmul 13743, cnfldcj 13744, and cnfldbas 13741.

We may add additional members to this in the future.

At least for now, this structure does not include a topology, order, a distance function, or function mapping metrics.

(Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Thierry Arnoux, 15-Dec-2017.) (New usage is discouraged.)

Assertion
Ref Expression
df-icnfld  |-fld  =  ( { <. ( Base `  ndx ) ,  CC >. ,  <. ( +g  `  ndx ) ,  +  >. ,  <. ( .r `  ndx ) ,  x.  >. }  u.  {
<. ( *r `  ndx ) ,  * >. } )

Detailed syntax breakdown of Definition df-icnfld
StepHypRef Expression
1 ccnfld 13737 . 2  classfld
2 cnx 12473 . . . . . 6  class  ndx
3 cbs 12476 . . . . . 6  class  Base
42, 3cfv 5228 . . . . 5  class  ( Base `  ndx )
5 cc 7823 . . . . 5  class  CC
64, 5cop 3607 . . . 4  class  <. ( Base `  ndx ) ,  CC >.
7 cplusg 12551 . . . . . 6  class  +g
82, 7cfv 5228 . . . . 5  class  ( +g  ` 
ndx )
9 caddc 7828 . . . . 5  class  +
108, 9cop 3607 . . . 4  class  <. ( +g  `  ndx ) ,  +  >.
11 cmulr 12552 . . . . . 6  class  .r
122, 11cfv 5228 . . . . 5  class  ( .r
`  ndx )
13 cmul 7830 . . . . 5  class  x.
1412, 13cop 3607 . . . 4  class  <. ( .r `  ndx ) ,  x.  >.
156, 10, 14ctp 3606 . . 3  class  { <. (
Base `  ndx ) ,  CC >. ,  <. ( +g  `  ndx ) ,  +  >. ,  <. ( .r `  ndx ) ,  x.  >. }
16 cstv 12553 . . . . . 6  class  *r
172, 16cfv 5228 . . . . 5  class  ( *r `  ndx )
18 ccj 10862 . . . . 5  class  *
1917, 18cop 3607 . . . 4  class  <. (
*r `  ndx ) ,  * >.
2019csn 3604 . . 3  class  { <. ( *r `  ndx ) ,  * >. }
2115, 20cun 3139 . 2  class  ( {
<. ( Base `  ndx ) ,  CC >. ,  <. ( +g  `  ndx ) ,  +  >. ,  <. ( .r `  ndx ) ,  x.  >. }  u.  {
<. ( *r `  ndx ) ,  * >. } )
221, 21wceq 1363 1  wfffld  =  ( { <. ( Base `  ndx ) ,  CC >. ,  <. ( +g  `  ndx ) ,  +  >. ,  <. ( .r `  ndx ) ,  x.  >. }  u.  {
<. ( *r `  ndx ) ,  * >. } )
Colors of variables: wff set class
This definition is referenced by:  cnfldstr  13739  cnfldbas  13741  cnfldadd  13742  cnfldmul  13743  cnfldcj  13744
  Copyright terms: Public domain W3C validator