HomeHome Intuitionistic Logic Explorer
Theorem List (p. 136 of 158)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 13501-13600   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremrngabl 13501 A non-unital ring is an (additive) abelian group. (Contributed by AV, 17-Feb-2020.)
 |-  ( R  e. Rng  ->  R  e.  Abel )
 
Theoremrngmgp 13502 A non-unital ring is a semigroup under multiplication. (Contributed by AV, 17-Feb-2020.)
 |-  G  =  (mulGrp `  R )   =>    |-  ( R  e. Rng  ->  G  e. Smgrp )
 
Theoremrngmgpf 13503 Restricted functionality of the multiplicative group on non-unital rings (mgpf 13577 analog). (Contributed by AV, 22-Feb-2025.)
 |-  (mulGrp  |` Rng ) :Rng -->Smgrp
 
Theoremrnggrp 13504 A non-unital ring is a (additive) group. (Contributed by AV, 16-Feb-2025.)
 |-  ( R  e. Rng  ->  R  e.  Grp )
 
Theoremrngass 13505 Associative law for the multiplication operation of a non-unital ring. (Contributed by NM, 27-Aug-2011.) (Revised by AV, 13-Feb-2025.)
 |-  B  =  ( Base `  R )   &    |-  .x.  =  ( .r `  R )   =>    |-  ( ( R  e. Rng  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B ) )  ->  ( ( X  .x.  Y )  .x.  Z )  =  ( X  .x.  ( Y  .x.  Z ) ) )
 
Theoremrngdi 13506 Distributive law for the multiplication operation of a non-unital ring (left-distributivity). (Contributed by AV, 14-Feb-2025.)
 |-  B  =  ( Base `  R )   &    |-  .+  =  ( +g  `  R )   &    |-  .x.  =  ( .r `  R )   =>    |-  ( ( R  e. Rng  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )
 )  ->  ( X  .x.  ( Y  .+  Z ) )  =  (
 ( X  .x.  Y )  .+  ( X  .x.  Z ) ) )
 
Theoremrngdir 13507 Distributive law for the multiplication operation of a non-unital ring (right-distributivity). (Contributed by AV, 17-Apr-2020.)
 |-  B  =  ( Base `  R )   &    |-  .+  =  ( +g  `  R )   &    |-  .x.  =  ( .r `  R )   =>    |-  ( ( R  e. Rng  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )
 )  ->  ( ( X  .+  Y )  .x.  Z )  =  ( ( X  .x.  Z )  .+  ( Y  .x.  Z ) ) )
 
Theoremrngacl 13508 Closure of the addition operation of a non-unital ring. (Contributed by AV, 16-Feb-2025.)
 |-  B  =  ( Base `  R )   &    |-  .+  =  ( +g  `  R )   =>    |-  ( ( R  e. Rng  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .+  Y )  e.  B )
 
Theoremrng0cl 13509 The zero element of a non-unital ring belongs to its base set. (Contributed by AV, 16-Feb-2025.)
 |-  B  =  ( Base `  R )   &    |-  .0.  =  ( 0g `  R )   =>    |-  ( R  e. Rng  ->  .0.  e.  B )
 
Theoremrngcl 13510 Closure of the multiplication operation of a non-unital ring. (Contributed by AV, 17-Apr-2020.)
 |-  B  =  ( Base `  R )   &    |-  .x.  =  ( .r `  R )   =>    |-  ( ( R  e. Rng  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .x.  Y )  e.  B )
 
Theoremrnglz 13511 The zero of a non-unital ring is a left-absorbing element. (Contributed by FL, 31-Aug-2009.) Generalization of ringlz 13609. (Revised by AV, 17-Apr-2020.)
 |-  B  =  ( Base `  R )   &    |-  .x.  =  ( .r `  R )   &    |-  .0.  =  ( 0g `  R )   =>    |-  ( ( R  e. Rng  /\  X  e.  B ) 
 ->  (  .0.  .x.  X )  =  .0.  )
 
Theoremrngrz 13512 The zero of a non-unital ring is a right-absorbing element. (Contributed by FL, 31-Aug-2009.) Generalization of ringrz 13610. (Revised by AV, 16-Feb-2025.)
 |-  B  =  ( Base `  R )   &    |-  .x.  =  ( .r `  R )   &    |-  .0.  =  ( 0g `  R )   =>    |-  ( ( R  e. Rng  /\  X  e.  B ) 
 ->  ( X  .x.  .0.  )  =  .0.  )
 
Theoremrngmneg1 13513 Negation of a product in a non-unital ring (mulneg1 8423 analog). In contrast to ringmneg1 13619, the proof does not (and cannot) make use of the existence of a ring unity. (Contributed by AV, 17-Feb-2025.)
 |-  B  =  ( Base `  R )   &    |-  .x.  =  ( .r `  R )   &    |-  N  =  ( invg `  R )   &    |-  ( ph  ->  R  e. Rng )   &    |-  ( ph  ->  X  e.  B )   &    |-  ( ph  ->  Y  e.  B )   =>    |-  ( ph  ->  (
 ( N `  X )  .x.  Y )  =  ( N `  ( X  .x.  Y ) ) )
 
Theoremrngmneg2 13514 Negation of a product in a non-unital ring (mulneg2 8424 analog). In contrast to ringmneg2 13620, the proof does not (and cannot) make use of the existence of a ring unity. (Contributed by AV, 17-Feb-2025.)
 |-  B  =  ( Base `  R )   &    |-  .x.  =  ( .r `  R )   &    |-  N  =  ( invg `  R )   &    |-  ( ph  ->  R  e. Rng )   &    |-  ( ph  ->  X  e.  B )   &    |-  ( ph  ->  Y  e.  B )   =>    |-  ( ph  ->  ( X  .x.  ( N `  Y ) )  =  ( N `  ( X  .x.  Y ) ) )
 
Theoremrngm2neg 13515 Double negation of a product in a non-unital ring (mul2neg 8426 analog). (Contributed by Mario Carneiro, 4-Dec-2014.) Generalization of ringm2neg 13621. (Revised by AV, 17-Feb-2025.)
 |-  B  =  ( Base `  R )   &    |-  .x.  =  ( .r `  R )   &    |-  N  =  ( invg `  R )   &    |-  ( ph  ->  R  e. Rng )   &    |-  ( ph  ->  X  e.  B )   &    |-  ( ph  ->  Y  e.  B )   =>    |-  ( ph  ->  (
 ( N `  X )  .x.  ( N `  Y ) )  =  ( X  .x.  Y ) )
 
Theoremrngansg 13516 Every additive subgroup of a non-unital ring is normal. (Contributed by AV, 25-Feb-2025.)
 |-  ( R  e. Rng  ->  (NrmSGrp `  R )  =  (SubGrp `  R ) )
 
Theoremrngsubdi 13517 Ring multiplication distributes over subtraction. (subdi 8413 analog.) (Contributed by Jeff Madsen, 19-Jun-2010.) (Revised by Mario Carneiro, 2-Jul-2014.) Generalization of ringsubdi 13622. (Revised by AV, 23-Feb-2025.)
 |-  B  =  ( Base `  R )   &    |-  .x.  =  ( .r `  R )   &    |-  .-  =  ( -g `  R )   &    |-  ( ph  ->  R  e. Rng )   &    |-  ( ph  ->  X  e.  B )   &    |-  ( ph  ->  Y  e.  B )   &    |-  ( ph  ->  Z  e.  B )   =>    |-  ( ph  ->  ( X  .x.  ( Y  .-  Z ) )  =  ( ( X  .x.  Y )  .-  ( X  .x.  Z ) ) )
 
Theoremrngsubdir 13518 Ring multiplication distributes over subtraction. (subdir 8414 analog.) (Contributed by Jeff Madsen, 19-Jun-2010.) (Revised by Mario Carneiro, 2-Jul-2014.) Generalization of ringsubdir 13623. (Revised by AV, 23-Feb-2025.)
 |-  B  =  ( Base `  R )   &    |-  .x.  =  ( .r `  R )   &    |-  .-  =  ( -g `  R )   &    |-  ( ph  ->  R  e. Rng )   &    |-  ( ph  ->  X  e.  B )   &    |-  ( ph  ->  Y  e.  B )   &    |-  ( ph  ->  Z  e.  B )   =>    |-  ( ph  ->  (
 ( X  .-  Y )  .x.  Z )  =  ( ( X  .x.  Z )  .-  ( Y  .x.  Z ) ) )
 
Theoremisrngd 13519* Properties that determine a non-unital ring. (Contributed by AV, 14-Feb-2025.)
 |-  ( ph  ->  B  =  ( Base `  R )
 )   &    |-  ( ph  ->  .+  =  ( +g  `  R )
 )   &    |-  ( ph  ->  .x.  =  ( .r `  R ) )   &    |-  ( ph  ->  R  e.  Abel )   &    |-  ( ( ph  /\  x  e.  B  /\  y  e.  B )  ->  ( x  .x.  y
 )  e.  B )   &    |-  ( ( ph  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B )
 )  ->  ( ( x  .x.  y )  .x.  z )  =  ( x  .x.  ( y  .x.  z ) ) )   &    |-  ( ( ph  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B )
 )  ->  ( x  .x.  ( y  .+  z
 ) )  =  ( ( x  .x.  y
 )  .+  ( x  .x.  z ) ) )   &    |-  ( ( ph  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B )
 )  ->  ( ( x  .+  y )  .x.  z )  =  (
 ( x  .x.  z
 )  .+  ( y  .x.  z ) ) )   =>    |-  ( ph  ->  R  e. Rng )
 
Theoremrngressid 13520 A non-unital ring restricted to its base set is a non-unital ring. It will usually be the original non-unital ring exactly, of course, but to show that needs additional conditions such as those in strressid 12759. (Contributed by Jim Kingdon, 5-May-2025.)
 |-  B  =  ( Base `  G )   =>    |-  ( G  e. Rng  ->  ( Gs  B )  e. Rng )
 
Theoremrngpropd 13521* If two structures have the same base set, and the values of their group (addition) and ring (multiplication) operations are equal for all pairs of elements of the base set, one is a non-unital ring iff the other one is. (Contributed by AV, 15-Feb-2025.)
 |-  ( ph  ->  B  =  ( Base `  K )
 )   &    |-  ( ph  ->  B  =  ( Base `  L )
 )   &    |-  ( ( ph  /\  ( x  e.  B  /\  y  e.  B )
 )  ->  ( x ( +g  `  K )
 y )  =  ( x ( +g  `  L ) y ) )   &    |-  ( ( ph  /\  ( x  e.  B  /\  y  e.  B )
 )  ->  ( x ( .r `  K ) y )  =  ( x ( .r `  L ) y ) )   =>    |-  ( ph  ->  ( K  e. Rng  <->  L  e. Rng ) )
 
Theoremimasrng 13522* The image structure of a non-unital ring is a non-unital ring (imasring 13630 analog). (Contributed by AV, 22-Feb-2025.)
 |-  ( ph  ->  U  =  ( F  "s  R )
 )   &    |-  ( ph  ->  V  =  ( Base `  R )
 )   &    |- 
 .+  =  ( +g  `  R )   &    |-  .x.  =  ( .r `  R )   &    |-  ( ph  ->  F : V -onto-> B )   &    |-  ( ( ph  /\  ( a  e.  V  /\  b  e.  V )  /\  ( p  e.  V  /\  q  e.  V ) )  ->  ( ( ( F `
  a )  =  ( F `  p )  /\  ( F `  b )  =  ( F `  q ) ) 
 ->  ( F `  (
 a  .+  b )
 )  =  ( F `
  ( p  .+  q ) ) ) )   &    |-  ( ( ph  /\  ( a  e.  V  /\  b  e.  V )  /\  ( p  e.  V  /\  q  e.  V ) )  ->  ( ( ( F `
  a )  =  ( F `  p )  /\  ( F `  b )  =  ( F `  q ) ) 
 ->  ( F `  (
 a  .x.  b )
 )  =  ( F `
  ( p  .x.  q ) ) ) )   &    |-  ( ph  ->  R  e. Rng )   =>    |-  ( ph  ->  U  e. Rng )
 
Theoremimasrngf1 13523 The image of a non-unital ring under an injection is a non-unital ring. (Contributed by AV, 22-Feb-2025.)
 |-  U  =  ( F 
 "s 
 R )   &    |-  V  =  (
 Base `  R )   =>    |-  ( ( F : V -1-1-> B  /\  R  e. Rng )  ->  U  e. Rng )
 
Theoremqusrng 13524* The quotient structure of a non-unital ring is a non-unital ring (qusring2 13632 analog). (Contributed by AV, 23-Feb-2025.)
 |-  ( ph  ->  U  =  ( R  /.s  .~  ) )   &    |-  ( ph  ->  V  =  ( Base `  R )
 )   &    |- 
 .+  =  ( +g  `  R )   &    |-  .x.  =  ( .r `  R )   &    |-  ( ph  ->  .~  Er  V )   &    |-  ( ph  ->  (
 ( a  .~  p  /\  b  .~  q ) 
 ->  ( a  .+  b
 )  .~  ( p  .+  q ) ) )   &    |-  ( ph  ->  ( (
 a  .~  p  /\  b  .~  q )  ->  ( a  .x.  b ) 
 .~  ( p  .x.  q ) ) )   &    |-  ( ph  ->  R  e. Rng )   =>    |-  ( ph  ->  U  e. Rng )
 
7.3.3  Ring unity (multiplicative identity)

In Wikipedia "Identity element", see https://en.wikipedia.org/wiki/Identity_element (18-Jan-2025): "... an identity with respect to multiplication is called a multiplicative identity (often denoted as 1). ... The distinction between additive and multiplicative identity is used most often for sets that support both binary operations, such as rings, integral domains, and fields. The multiplicative identity is often called unity in the latter context (a ring with unity). This should not be confused with a unit in ring theory, which is any element having a multiplicative inverse. By its own definition, unity itself is necessarily a unit."

Calling the multiplicative identity of a ring a unity is taken from the definition of a ring with unity in section 17.3 of [BeauregardFraleigh] p. 135, "A ring ( R , + , . ) is a ring with unity if R is not the zero ring and ( R , . ) is a monoid. In this case, the identity element of ( R , . ) is denoted by 1 and is called the unity of R." This definition of a "ring with unity" corresponds to our definition of a unital ring (see df-ring 13564).

Some authors call the multiplicative identity "unit" or "unit element" (for example in section I, 2.2 of [BourbakiAlg1] p. 14, definition in section 1.3 of [Hall] p. 4, or in section I, 1 of [Lang] p. 3), whereas other authors use the term "unit" for an element having a multiplicative inverse (for example in section 17.3 of [BeauregardFraleigh] p. 135, in definition in [Roman] p. 26, or even in section II, 1 of [Lang] p. 84). Sometimes, the multiplicative identity is simply called "one" (see, for example, chapter 8 in [Schechter] p. 180).

To avoid this ambiguity of the term "unit", also mentioned in Wikipedia, we call the multiplicative identity of a structure with a multiplication (usually a ring) a "ring unity", or straightly "multiplicative identity".

The term "unit" will be used for an element having a multiplicative inverse (see https://us.metamath.org/mpeuni/df-unit.html 13564 in set.mm), and we have "the ring unity is a unit", see https://us.metamath.org/mpeuni/1unit.html 13564.

 
Syntaxcur 13525 Extend class notation with ring unity.
 class  1r
 
Definitiondf-ur 13526 Define the multiplicative identity, i.e., the monoid identity (df-0g 12939) of the multiplicative monoid (df-mgp 13487) of a ring-like structure. This multiplicative identity is also called "ring unity" or "unity element".

This definition works by transferring the multiplicative operation from the  .r slot to the  +g slot and then looking at the element which is then the  0g element, that is an identity with respect to the operation which started out in the  .r slot.

See also dfur2g 13528, which derives the "traditional" definition as the unique element of a ring which is left- and right-neutral under multiplication. (Contributed by NM, 27-Aug-2011.) (Revised by Mario Carneiro, 27-Dec-2014.)

 |- 
 1r  =  ( 0g 
 o. mulGrp )
 
Theoremringidvalg 13527 The value of the unity element of a ring. (Contributed by NM, 27-Aug-2011.) (Revised by Mario Carneiro, 27-Dec-2014.)
 |-  G  =  (mulGrp `  R )   &    |- 
 .1.  =  ( 1r `  R )   =>    |-  ( R  e.  V  ->  .1.  =  ( 0g
 `  G ) )
 
Theoremdfur2g 13528* The multiplicative identity is the unique element of the ring that is left- and right-neutral on all elements under multiplication. (Contributed by Mario Carneiro, 10-Jan-2015.)
 |-  B  =  ( Base `  R )   &    |-  .x.  =  ( .r `  R )   &    |-  .1.  =  ( 1r `  R )   =>    |-  ( R  e.  V  ->  .1.  =  ( iota
 e ( e  e.  B  /\  A. x  e.  B  ( ( e 
 .x.  x )  =  x  /\  ( x 
 .x.  e )  =  x ) ) ) )
 
7.3.4  Semirings
 
Syntaxcsrg 13529 Extend class notation with the class of all semirings.
 class SRing
 
Definitiondf-srg 13530* Define class of all semirings. A semiring is a set equipped with two everywhere-defined internal operations, whose first one is an additive commutative monoid structure and the second one is a multiplicative monoid structure, and where multiplication is (left- and right-) distributive over addition. Like with rings, the additive identity is an absorbing element of the multiplicative law, but in the case of semirings, this has to be part of the definition, as it cannot be deduced from distributivity alone. Definition of [Golan] p. 1. Note that our semirings are unital. Such semirings are sometimes called "rigs", being "rings without negatives". (Contributed by Thierry Arnoux, 21-Mar-2018.)
 |- SRing  =  { f  e. CMnd  |  ( (mulGrp `  f )  e.  Mnd  /\  [. ( Base `  f )  /  r ]. [. ( +g  `  f
 )  /  p ]. [. ( .r `  f )  /  t ]. [. ( 0g
 `  f )  /  n ]. A. x  e.  r  ( A. y  e.  r  A. z  e.  r  ( ( x t ( y p z ) )  =  ( ( x t y ) p ( x t z ) )  /\  ( ( x p y ) t z )  =  ( ( x t z ) p ( y t z ) ) )  /\  (
 ( n t x )  =  n  /\  ( x t n )  =  n ) ) ) }
 
Theoremissrg 13531* The predicate "is a semiring". (Contributed by Thierry Arnoux, 21-Mar-2018.)
 |-  B  =  ( Base `  R )   &    |-  G  =  (mulGrp `  R )   &    |-  .+  =  ( +g  `  R )   &    |-  .x.  =  ( .r `  R )   &    |-  .0.  =  ( 0g `  R )   =>    |-  ( R  e. SRing  <->  ( R  e. CMnd  /\  G  e.  Mnd  /\  A. x  e.  B  (
 A. y  e.  B  A. z  e.  B  ( ( x  .x.  (
 y  .+  z )
 )  =  ( ( x  .x.  y )  .+  ( x  .x.  z
 ) )  /\  (
 ( x  .+  y
 )  .x.  z )  =  ( ( x  .x.  z )  .+  ( y 
 .x.  z ) ) )  /\  ( (  .0.  .x.  x )  =  .0.  /\  ( x  .x.  .0.  )  =  .0.  ) ) ) )
 
Theoremsrgcmn 13532 A semiring is a commutative monoid. (Contributed by Thierry Arnoux, 21-Mar-2018.)
 |-  ( R  e. SRing  ->  R  e. CMnd )
 
Theoremsrgmnd 13533 A semiring is a monoid. (Contributed by Thierry Arnoux, 21-Mar-2018.)
 |-  ( R  e. SRing  ->  R  e.  Mnd )
 
Theoremsrgmgp 13534 A semiring is a monoid under multiplication. (Contributed by Thierry Arnoux, 21-Mar-2018.)
 |-  G  =  (mulGrp `  R )   =>    |-  ( R  e. SRing  ->  G  e.  Mnd )
 
Theoremsrgdilem 13535 Lemma for srgdi 13540 and srgdir 13541. (Contributed by NM, 26-Aug-2011.) (Revised by Mario Carneiro, 6-Jan-2015.) (Revised by Thierry Arnoux, 1-Apr-2018.)
 |-  B  =  ( Base `  R )   &    |-  .+  =  ( +g  `  R )   &    |-  .x.  =  ( .r `  R )   =>    |-  ( ( R  e. SRing  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )
 )  ->  ( ( X  .x.  ( Y  .+  Z ) )  =  ( ( X  .x.  Y )  .+  ( X 
 .x.  Z ) )  /\  ( ( X  .+  Y )  .x.  Z )  =  ( ( X 
 .x.  Z )  .+  ( Y  .x.  Z ) ) ) )
 
Theoremsrgcl 13536 Closure of the multiplication operation of a semiring. (Contributed by NM, 26-Aug-2011.) (Revised by Mario Carneiro, 6-Jan-2015.) (Revised by Thierry Arnoux, 1-Apr-2018.)
 |-  B  =  ( Base `  R )   &    |-  .x.  =  ( .r `  R )   =>    |-  ( ( R  e. SRing  /\  X  e.  B  /\  Y  e.  B ) 
 ->  ( X  .x.  Y )  e.  B )
 
Theoremsrgass 13537 Associative law for the multiplication operation of a semiring. (Contributed by NM, 27-Aug-2011.) (Revised by Mario Carneiro, 6-Jan-2015.) (Revised by Thierry Arnoux, 1-Apr-2018.)
 |-  B  =  ( Base `  R )   &    |-  .x.  =  ( .r `  R )   =>    |-  ( ( R  e. SRing  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B ) )  ->  ( ( X  .x.  Y )  .x.  Z )  =  ( X 
 .x.  ( Y  .x.  Z ) ) )
 
Theoremsrgideu 13538* The unity element of a semiring is unique. (Contributed by NM, 27-Aug-2011.) (Revised by Mario Carneiro, 6-Jan-2015.) (Revised by Thierry Arnoux, 1-Apr-2018.)
 |-  B  =  ( Base `  R )   &    |-  .x.  =  ( .r `  R )   =>    |-  ( R  e. SRing  ->  E! u  e.  B  A. x  e.  B  ( ( u  .x.  x )  =  x  /\  ( x  .x.  u )  =  x ) )
 
Theoremsrgfcl 13539 Functionality of the multiplication operation of a ring. (Contributed by Steve Rodriguez, 9-Sep-2007.) (Revised by AV, 24-Aug-2021.)
 |-  B  =  ( Base `  R )   &    |-  .x.  =  ( .r `  R )   =>    |-  ( ( R  e. SRing  /\  .x.  Fn  ( B  X.  B ) ) 
 ->  .x.  : ( B  X.  B ) --> B )
 
Theoremsrgdi 13540 Distributive law for the multiplication operation of a semiring. (Contributed by Steve Rodriguez, 9-Sep-2007.) (Revised by Thierry Arnoux, 1-Apr-2018.)
 |-  B  =  ( Base `  R )   &    |-  .+  =  ( +g  `  R )   &    |-  .x.  =  ( .r `  R )   =>    |-  ( ( R  e. SRing  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )
 )  ->  ( X  .x.  ( Y  .+  Z ) )  =  (
 ( X  .x.  Y )  .+  ( X  .x.  Z ) ) )
 
Theoremsrgdir 13541 Distributive law for the multiplication operation of a semiring. (Contributed by Steve Rodriguez, 9-Sep-2007.) (Revised by Thierry Arnoux, 1-Apr-2018.)
 |-  B  =  ( Base `  R )   &    |-  .+  =  ( +g  `  R )   &    |-  .x.  =  ( .r `  R )   =>    |-  ( ( R  e. SRing  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )
 )  ->  ( ( X  .+  Y )  .x.  Z )  =  ( ( X  .x.  Z )  .+  ( Y  .x.  Z ) ) )
 
Theoremsrgidcl 13542 The unity element of a semiring belongs to the base set of the semiring. (Contributed by NM, 27-Aug-2011.) (Revised by Mario Carneiro, 27-Dec-2014.) (Revised by Thierry Arnoux, 1-Apr-2018.)
 |-  B  =  ( Base `  R )   &    |-  .1.  =  ( 1r `  R )   =>    |-  ( R  e. SRing  ->  .1.  e.  B )
 
Theoremsrg0cl 13543 The zero element of a semiring belongs to its base set. (Contributed by Mario Carneiro, 12-Jan-2014.) (Revised by Thierry Arnoux, 1-Apr-2018.)
 |-  B  =  ( Base `  R )   &    |-  .0.  =  ( 0g `  R )   =>    |-  ( R  e. SRing  ->  .0.  e.  B )
 
Theoremsrgidmlem 13544 Lemma for srglidm 13545 and srgridm 13546. (Contributed by NM, 15-Sep-2011.) (Revised by Mario Carneiro, 27-Dec-2014.) (Revised by Thierry Arnoux, 1-Apr-2018.)
 |-  B  =  ( Base `  R )   &    |-  .x.  =  ( .r `  R )   &    |-  .1.  =  ( 1r `  R )   =>    |-  ( ( R  e. SRing  /\  X  e.  B ) 
 ->  ( (  .1.  .x.  X )  =  X  /\  ( X  .x.  .1.  )  =  X ) )
 
Theoremsrglidm 13545 The unity element of a semiring is a left multiplicative identity. (Contributed by NM, 15-Sep-2011.) (Revised by Thierry Arnoux, 1-Apr-2018.)
 |-  B  =  ( Base `  R )   &    |-  .x.  =  ( .r `  R )   &    |-  .1.  =  ( 1r `  R )   =>    |-  ( ( R  e. SRing  /\  X  e.  B ) 
 ->  (  .1.  .x.  X )  =  X )
 
Theoremsrgridm 13546 The unity element of a semiring is a right multiplicative identity. (Contributed by NM, 15-Sep-2011.) (Revised by Thierry Arnoux, 1-Apr-2018.)
 |-  B  =  ( Base `  R )   &    |-  .x.  =  ( .r `  R )   &    |-  .1.  =  ( 1r `  R )   =>    |-  ( ( R  e. SRing  /\  X  e.  B ) 
 ->  ( X  .x.  .1.  )  =  X )
 
Theoremissrgid 13547* Properties showing that an element 
I is the unity element of a semiring. (Contributed by NM, 7-Aug-2013.) (Revised by Thierry Arnoux, 1-Apr-2018.)
 |-  B  =  ( Base `  R )   &    |-  .x.  =  ( .r `  R )   &    |-  .1.  =  ( 1r `  R )   =>    |-  ( R  e. SRing  ->  ( ( I  e.  B  /\  A. x  e.  B  ( ( I  .x.  x )  =  x  /\  ( x  .x.  I
 )  =  x ) )  <->  .1.  =  I ) )
 
Theoremsrgacl 13548 Closure of the addition operation of a semiring. (Contributed by Mario Carneiro, 14-Jan-2014.) (Revised by Thierry Arnoux, 1-Apr-2018.)
 |-  B  =  ( Base `  R )   &    |-  .+  =  ( +g  `  R )   =>    |-  ( ( R  e. SRing  /\  X  e.  B  /\  Y  e.  B ) 
 ->  ( X  .+  Y )  e.  B )
 
Theoremsrgcom 13549 Commutativity of the additive group of a semiring. (Contributed by Thierry Arnoux, 1-Apr-2018.)
 |-  B  =  ( Base `  R )   &    |-  .+  =  ( +g  `  R )   =>    |-  ( ( R  e. SRing  /\  X  e.  B  /\  Y  e.  B ) 
 ->  ( X  .+  Y )  =  ( Y  .+  X ) )
 
Theoremsrgrz 13550 The zero of a semiring is a right-absorbing element. (Contributed by Thierry Arnoux, 1-Apr-2018.)
 |-  B  =  ( Base `  R )   &    |-  .x.  =  ( .r `  R )   &    |-  .0.  =  ( 0g `  R )   =>    |-  ( ( R  e. SRing  /\  X  e.  B ) 
 ->  ( X  .x.  .0.  )  =  .0.  )
 
Theoremsrglz 13551 The zero of a semiring is a left-absorbing element. (Contributed by AV, 23-Aug-2019.)
 |-  B  =  ( Base `  R )   &    |-  .x.  =  ( .r `  R )   &    |-  .0.  =  ( 0g `  R )   =>    |-  ( ( R  e. SRing  /\  X  e.  B ) 
 ->  (  .0.  .x.  X )  =  .0.  )
 
Theoremsrgisid 13552* In a semiring, the only left-absorbing element is the additive identity. Remark in [Golan] p. 1. (Contributed by Thierry Arnoux, 1-May-2018.)
 |-  B  =  ( Base `  R )   &    |-  .x.  =  ( .r `  R )   &    |-  .0.  =  ( 0g `  R )   &    |-  ( ph  ->  R  e. SRing )   &    |-  ( ph  ->  Z  e.  B )   &    |-  (
 ( ph  /\  x  e.  B )  ->  ( Z  .x.  x )  =  Z )   =>    |-  ( ph  ->  Z  =  .0.  )
 
Theoremsrg1zr 13553 The only semiring with a base set consisting of one element is the zero ring (at least if its operations are internal binary operations). (Contributed by FL, 13-Feb-2010.) (Revised by AV, 25-Jan-2020.)
 |-  B  =  ( Base `  R )   &    |-  .+  =  ( +g  `  R )   &    |-  .*  =  ( .r `  R )   =>    |-  ( ( ( R  e. SRing  /\  .+  Fn  ( B  X.  B )  /\  .* 
 Fn  ( B  X.  B ) )  /\  Z  e.  B )  ->  ( B  =  { Z }  <->  (  .+  =  { <.
 <. Z ,  Z >. ,  Z >. }  /\  .*  =  { <. <. Z ,  Z >. ,  Z >. } )
 ) )
 
Theoremsrgen1zr 13554 The only semiring with one element is the zero ring (at least if its operations are internal binary operations). (Contributed by FL, 14-Feb-2010.) (Revised by AV, 25-Jan-2020.)
 |-  B  =  ( Base `  R )   &    |-  .+  =  ( +g  `  R )   &    |-  .*  =  ( .r `  R )   &    |-  Z  =  ( 0g
 `  R )   =>    |-  ( ( R  e. SRing  /\  .+  Fn  ( B  X.  B )  /\  .* 
 Fn  ( B  X.  B ) )  ->  ( B  ~~  1o  <->  (  .+  =  { <.
 <. Z ,  Z >. ,  Z >. }  /\  .*  =  { <. <. Z ,  Z >. ,  Z >. } )
 ) )
 
Theoremsrgmulgass 13555 An associative property between group multiple and ring multiplication for semirings. (Contributed by AV, 23-Aug-2019.)
 |-  B  =  ( Base `  R )   &    |-  .x.  =  (.g `  R )   &    |-  .X.  =  ( .r `  R )   =>    |-  ( ( R  e. SRing  /\  ( N  e.  NN0  /\  X  e.  B  /\  Y  e.  B )
 )  ->  ( ( N  .x.  X )  .X.  Y )  =  ( N 
 .x.  ( X  .X.  Y ) ) )
 
Theoremsrgpcomp 13556 If two elements of a semiring commute, they also commute if one of the elements is raised to a higher power. (Contributed by AV, 23-Aug-2019.)
 |-  S  =  ( Base `  R )   &    |-  .X.  =  ( .r `  R )   &    |-  G  =  (mulGrp `  R )   &    |-  .^  =  (.g `  G )   &    |-  ( ph  ->  R  e. SRing )   &    |-  ( ph  ->  A  e.  S )   &    |-  ( ph  ->  B  e.  S )   &    |-  ( ph  ->  K  e.  NN0 )   &    |-  ( ph  ->  ( A  .X.  B )  =  ( B  .X.  A ) )   =>    |-  ( ph  ->  (
 ( K  .^  B )  .X.  A )  =  ( A  .X.  ( K  .^  B ) ) )
 
Theoremsrgpcompp 13557 If two elements of a semiring commute, they also commute if the elements are raised to a higher power. (Contributed by AV, 23-Aug-2019.)
 |-  S  =  ( Base `  R )   &    |-  .X.  =  ( .r `  R )   &    |-  G  =  (mulGrp `  R )   &    |-  .^  =  (.g `  G )   &    |-  ( ph  ->  R  e. SRing )   &    |-  ( ph  ->  A  e.  S )   &    |-  ( ph  ->  B  e.  S )   &    |-  ( ph  ->  K  e.  NN0 )   &    |-  ( ph  ->  ( A  .X.  B )  =  ( B  .X.  A ) )   &    |-  ( ph  ->  N  e.  NN0 )   =>    |-  ( ph  ->  (
 ( ( N  .^  A )  .X.  ( K 
 .^  B ) ) 
 .X.  A )  =  ( ( ( N  +  1 )  .^  A ) 
 .X.  ( K  .^  B ) ) )
 
Theoremsrgpcomppsc 13558 If two elements of a semiring commute, they also commute if the elements are raised to a higher power and a scalar multiplication is involved. (Contributed by AV, 23-Aug-2019.)
 |-  S  =  ( Base `  R )   &    |-  .X.  =  ( .r `  R )   &    |-  G  =  (mulGrp `  R )   &    |-  .^  =  (.g `  G )   &    |-  ( ph  ->  R  e. SRing )   &    |-  ( ph  ->  A  e.  S )   &    |-  ( ph  ->  B  e.  S )   &    |-  ( ph  ->  K  e.  NN0 )   &    |-  ( ph  ->  ( A  .X.  B )  =  ( B  .X.  A ) )   &    |-  ( ph  ->  N  e.  NN0 )   &    |-  .x.  =  (.g `  R )   &    |-  ( ph  ->  C  e.  NN0 )   =>    |-  ( ph  ->  (
 ( C  .x.  (
 ( N  .^  A )  .X.  ( K  .^  B ) ) ) 
 .X.  A )  =  ( C  .x.  ( (
 ( N  +  1 )  .^  A )  .X.  ( K  .^  B ) ) ) )
 
Theoremsrglmhm 13559* Left-multiplication in a semiring by a fixed element of the ring is a monoid homomorphism. (Contributed by AV, 23-Aug-2019.)
 |-  B  =  ( Base `  R )   &    |-  .x.  =  ( .r `  R )   =>    |-  ( ( R  e. SRing  /\  X  e.  B )  ->  ( x  e.  B  |->  ( X  .x.  x ) )  e.  ( R MndHom  R )
 )
 
Theoremsrgrmhm 13560* Right-multiplication in a semiring by a fixed element of the ring is a monoid homomorphism. (Contributed by AV, 23-Aug-2019.)
 |-  B  =  ( Base `  R )   &    |-  .x.  =  ( .r `  R )   =>    |-  ( ( R  e. SRing  /\  X  e.  B )  ->  ( x  e.  B  |->  ( x  .x.  X ) )  e.  ( R MndHom  R ) )
 
Theoremsrg1expzeq1 13561 The exponentiation (by a nonnegative integer) of the multiplicative identity of a semiring, analogous to mulgnn0z 13289. (Contributed by AV, 25-Nov-2019.)
 |-  G  =  (mulGrp `  R )   &    |- 
 .x.  =  (.g `  G )   &    |- 
 .1.  =  ( 1r `  R )   =>    |-  ( ( R  e. SRing  /\  N  e.  NN0 )  ->  ( N  .x.  .1.  )  =  .1.  )
 
7.3.5  Definition and basic properties of unital rings
 
Syntaxcrg 13562 Extend class notation with class of all (unital) rings.
 class  Ring
 
Syntaxccrg 13563 Extend class notation with class of all (unital) commutative rings.
 class  CRing
 
Definitiondf-ring 13564* Define class of all (unital) rings. A unital ring is a set equipped with two everywhere-defined internal operations, whose first one is an additive group structure and the second one is a multiplicative monoid structure, and where the addition is left- and right-distributive for the multiplication. Definition 1 in [BourbakiAlg1] p. 92 or definition of a ring with identity in part Preliminaries of [Roman] p. 19. So that the additive structure must be abelian (see ringcom 13597), care must be taken that in the case of a non-unital ring, the commutativity of addition must be postulated and cannot be proved from the other conditions. (Contributed by NM, 18-Oct-2012.) (Revised by Mario Carneiro, 27-Dec-2014.)
 |- 
 Ring  =  { f  e.  Grp  |  ( (mulGrp `  f )  e.  Mnd  /\  [. ( Base `  f )  /  r ]. [. ( +g  `  f )  /  p ]. [. ( .r
 `  f )  /  t ]. A. x  e.  r  A. y  e.  r  A. z  e.  r  ( ( x t ( y p z ) )  =  ( ( x t y ) p ( x t z ) )  /\  ( ( x p y ) t z )  =  ( ( x t z ) p ( y t z ) ) ) ) }
 
Definitiondf-cring 13565 Define class of all commutative rings. (Contributed by Mario Carneiro, 7-Jan-2015.)
 |- 
 CRing  =  { f  e.  Ring  |  (mulGrp `  f
 )  e. CMnd }
 
Theoremisring 13566* The predicate "is a (unital) ring". Definition of "ring with unit" in [Schechter] p. 187. (Contributed by NM, 18-Oct-2012.) (Revised by Mario Carneiro, 6-Jan-2015.)
 |-  B  =  ( Base `  R )   &    |-  G  =  (mulGrp `  R )   &    |-  .+  =  ( +g  `  R )   &    |-  .x.  =  ( .r `  R )   =>    |-  ( R  e.  Ring  <->  ( R  e.  Grp  /\  G  e.  Mnd  /\  A. x  e.  B  A. y  e.  B  A. z  e.  B  ( ( x 
 .x.  ( y  .+  z ) )  =  ( ( x  .x.  y )  .+  ( x 
 .x.  z ) ) 
 /\  ( ( x 
 .+  y )  .x.  z )  =  (
 ( x  .x.  z
 )  .+  ( y  .x.  z ) ) ) ) )
 
Theoremringgrp 13567 A ring is a group. (Contributed by NM, 15-Sep-2011.)
 |-  ( R  e.  Ring  ->  R  e.  Grp )
 
Theoremringmgp 13568 A ring is a monoid under multiplication. (Contributed by Mario Carneiro, 6-Jan-2015.)
 |-  G  =  (mulGrp `  R )   =>    |-  ( R  e.  Ring  ->  G  e.  Mnd )
 
Theoremiscrng 13569 A commutative ring is a ring whose multiplication is a commutative monoid. (Contributed by Mario Carneiro, 7-Jan-2015.)
 |-  G  =  (mulGrp `  R )   =>    |-  ( R  e.  CRing  <->  ( R  e.  Ring  /\  G  e. CMnd ) )
 
Theoremcrngmgp 13570 A commutative ring's multiplication operation is commutative. (Contributed by Mario Carneiro, 7-Jan-2015.)
 |-  G  =  (mulGrp `  R )   =>    |-  ( R  e.  CRing  ->  G  e. CMnd )
 
Theoremringgrpd 13571 A ring is a group. (Contributed by SN, 16-May-2024.)
 |-  ( ph  ->  R  e.  Ring )   =>    |-  ( ph  ->  R  e.  Grp )
 
Theoremringmnd 13572 A ring is a monoid under addition. (Contributed by Mario Carneiro, 7-Jan-2015.)
 |-  ( R  e.  Ring  ->  R  e.  Mnd )
 
Theoremringmgm 13573 A ring is a magma. (Contributed by AV, 31-Jan-2020.)
 |-  ( R  e.  Ring  ->  R  e. Mgm )
 
Theoremcrngring 13574 A commutative ring is a ring. (Contributed by Mario Carneiro, 7-Jan-2015.)
 |-  ( R  e.  CRing  ->  R  e.  Ring )
 
Theoremcrngringd 13575 A commutative ring is a ring. (Contributed by SN, 16-May-2024.)
 |-  ( ph  ->  R  e.  CRing )   =>    |-  ( ph  ->  R  e.  Ring )
 
Theoremcrnggrpd 13576 A commutative ring is a group. (Contributed by SN, 16-May-2024.)
 |-  ( ph  ->  R  e.  CRing )   =>    |-  ( ph  ->  R  e.  Grp )
 
Theoremmgpf 13577 Restricted functionality of the multiplicative group on rings. (Contributed by Mario Carneiro, 11-Mar-2015.)
 |-  (mulGrp  |`  Ring ) : Ring --> Mnd
 
Theoremringdilem 13578 Properties of a unital ring. (Contributed by NM, 26-Aug-2011.) (Revised by Mario Carneiro, 6-Jan-2015.)
 |-  B  =  ( Base `  R )   &    |-  .+  =  ( +g  `  R )   &    |-  .x.  =  ( .r `  R )   =>    |-  ( ( R  e.  Ring  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )
 )  ->  ( ( X  .x.  ( Y  .+  Z ) )  =  ( ( X  .x.  Y )  .+  ( X 
 .x.  Z ) )  /\  ( ( X  .+  Y )  .x.  Z )  =  ( ( X 
 .x.  Z )  .+  ( Y  .x.  Z ) ) ) )
 
Theoremringcl 13579 Closure of the multiplication operation of a ring. (Contributed by NM, 26-Aug-2011.) (Revised by Mario Carneiro, 6-Jan-2015.)
 |-  B  =  ( Base `  R )   &    |-  .x.  =  ( .r `  R )   =>    |-  ( ( R  e.  Ring  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .x.  Y )  e.  B )
 
Theoremcrngcom 13580 A commutative ring's multiplication operation is commutative. (Contributed by Mario Carneiro, 7-Jan-2015.)
 |-  B  =  ( Base `  R )   &    |-  .x.  =  ( .r `  R )   =>    |-  ( ( R  e.  CRing  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .x.  Y )  =  ( Y 
 .x.  X ) )
 
Theoremiscrng2 13581* A commutative ring is a ring whose multiplication is a commutative monoid. (Contributed by Mario Carneiro, 15-Jun-2015.)
 |-  B  =  ( Base `  R )   &    |-  .x.  =  ( .r `  R )   =>    |-  ( R  e.  CRing  <->  ( R  e.  Ring  /\  A. x  e.  B  A. y  e.  B  ( x  .x.  y )  =  (
 y  .x.  x )
 ) )
 
Theoremringass 13582 Associative law for multiplication in a ring. (Contributed by NM, 27-Aug-2011.) (Revised by Mario Carneiro, 6-Jan-2015.)
 |-  B  =  ( Base `  R )   &    |-  .x.  =  ( .r `  R )   =>    |-  ( ( R  e.  Ring  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B ) )  ->  ( ( X  .x.  Y )  .x.  Z )  =  ( X  .x.  ( Y  .x.  Z ) ) )
 
Theoremringideu 13583* The unity element of a ring is unique. (Contributed by NM, 27-Aug-2011.) (Revised by Mario Carneiro, 6-Jan-2015.)
 |-  B  =  ( Base `  R )   &    |-  .x.  =  ( .r `  R )   =>    |-  ( R  e.  Ring 
 ->  E! u  e.  B  A. x  e.  B  ( ( u  .x.  x )  =  x  /\  ( x  .x.  u )  =  x ) )
 
Theoremringdi 13584 Distributive law for the multiplication operation of a ring (left-distributivity). (Contributed by Steve Rodriguez, 9-Sep-2007.)
 |-  B  =  ( Base `  R )   &    |-  .+  =  ( +g  `  R )   &    |-  .x.  =  ( .r `  R )   =>    |-  ( ( R  e.  Ring  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )
 )  ->  ( X  .x.  ( Y  .+  Z ) )  =  (
 ( X  .x.  Y )  .+  ( X  .x.  Z ) ) )
 
Theoremringdir 13585 Distributive law for the multiplication operation of a ring (right-distributivity). (Contributed by Steve Rodriguez, 9-Sep-2007.)
 |-  B  =  ( Base `  R )   &    |-  .+  =  ( +g  `  R )   &    |-  .x.  =  ( .r `  R )   =>    |-  ( ( R  e.  Ring  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )
 )  ->  ( ( X  .+  Y )  .x.  Z )  =  ( ( X  .x.  Z )  .+  ( Y  .x.  Z ) ) )
 
Theoremringidcl 13586 The unity element of a ring belongs to the base set of the ring. (Contributed by NM, 27-Aug-2011.) (Revised by Mario Carneiro, 27-Dec-2014.)
 |-  B  =  ( Base `  R )   &    |-  .1.  =  ( 1r `  R )   =>    |-  ( R  e.  Ring  ->  .1. 
 e.  B )
 
Theoremring0cl 13587 The zero element of a ring belongs to its base set. (Contributed by Mario Carneiro, 12-Jan-2014.)
 |-  B  =  ( Base `  R )   &    |-  .0.  =  ( 0g `  R )   =>    |-  ( R  e.  Ring  ->  .0. 
 e.  B )
 
Theoremringidmlem 13588 Lemma for ringlidm 13589 and ringridm 13590. (Contributed by NM, 15-Sep-2011.) (Revised by Mario Carneiro, 27-Dec-2014.)
 |-  B  =  ( Base `  R )   &    |-  .x.  =  ( .r `  R )   &    |-  .1.  =  ( 1r `  R )   =>    |-  ( ( R  e.  Ring  /\  X  e.  B ) 
 ->  ( (  .1.  .x.  X )  =  X  /\  ( X  .x.  .1.  )  =  X ) )
 
Theoremringlidm 13589 The unity element of a ring is a left multiplicative identity. (Contributed by NM, 15-Sep-2011.)
 |-  B  =  ( Base `  R )   &    |-  .x.  =  ( .r `  R )   &    |-  .1.  =  ( 1r `  R )   =>    |-  ( ( R  e.  Ring  /\  X  e.  B ) 
 ->  (  .1.  .x.  X )  =  X )
 
Theoremringridm 13590 The unity element of a ring is a right multiplicative identity. (Contributed by NM, 15-Sep-2011.)
 |-  B  =  ( Base `  R )   &    |-  .x.  =  ( .r `  R )   &    |-  .1.  =  ( 1r `  R )   =>    |-  ( ( R  e.  Ring  /\  X  e.  B ) 
 ->  ( X  .x.  .1.  )  =  X )
 
Theoremisringid 13591* Properties showing that an element 
I is the unity element of a ring. (Contributed by NM, 7-Aug-2013.)
 |-  B  =  ( Base `  R )   &    |-  .x.  =  ( .r `  R )   &    |-  .1.  =  ( 1r `  R )   =>    |-  ( R  e.  Ring  ->  ( ( I  e.  B  /\  A. x  e.  B  ( ( I 
 .x.  x )  =  x  /\  ( x 
 .x.  I )  =  x ) )  <->  .1.  =  I ) )
 
Theoremringid 13592* The multiplication operation of a unital ring has (one or more) identity elements. (Contributed by Steve Rodriguez, 9-Sep-2007.) (Revised by Mario Carneiro, 22-Dec-2013.) (Revised by AV, 24-Aug-2021.)
 |-  B  =  ( Base `  R )   &    |-  .x.  =  ( .r `  R )   =>    |-  ( ( R  e.  Ring  /\  X  e.  B )  ->  E. u  e.  B  ( ( u 
 .x.  X )  =  X  /\  ( X  .x.  u )  =  X )
 )
 
Theoremringadd2 13593* A ring element plus itself is two times the element. (Contributed by Steve Rodriguez, 9-Sep-2007.) (Revised by Mario Carneiro, 22-Dec-2013.) (Revised by AV, 24-Aug-2021.)
 |-  B  =  ( Base `  R )   &    |-  .+  =  ( +g  `  R )   &    |-  .x.  =  ( .r `  R )   =>    |-  ( ( R  e.  Ring  /\  X  e.  B ) 
 ->  E. x  e.  B  ( X  .+  X )  =  ( ( x 
 .+  x )  .x.  X ) )
 
Theoremringo2times 13594 A ring element plus itself is two times the element. "Two" in an arbitrary unital ring is the sum of the unity element with itself. (Contributed by AV, 24-Aug-2021.)
 |-  B  =  ( Base `  R )   &    |-  .+  =  ( +g  `  R )   &    |-  .x.  =  ( .r `  R )   &    |-  .1.  =  ( 1r `  R )   =>    |-  ( ( R  e.  Ring  /\  A  e.  B ) 
 ->  ( A  .+  A )  =  ( (  .1.  .+  .1.  )  .x.  A ) )
 
Theoremringidss 13595 A subset of the multiplicative group has the multiplicative identity as its identity if the identity is in the subset. (Contributed by Mario Carneiro, 27-Dec-2014.) (Revised by Mario Carneiro, 30-Apr-2015.)
 |-  M  =  ( (mulGrp `  R )s  A )   &    |-  B  =  (
 Base `  R )   &    |-  .1.  =  ( 1r `  R )   =>    |-  ( ( R  e.  Ring  /\  A  C_  B  /\  .1.  e.  A )  ->  .1.  =  ( 0g `  M ) )
 
Theoremringacl 13596 Closure of the addition operation of a ring. (Contributed by Mario Carneiro, 14-Jan-2014.)
 |-  B  =  ( Base `  R )   &    |-  .+  =  ( +g  `  R )   =>    |-  ( ( R  e.  Ring  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .+  Y )  e.  B )
 
Theoremringcom 13597 Commutativity of the additive group of a ring. (Contributed by Gérard Lang, 4-Dec-2014.)
 |-  B  =  ( Base `  R )   &    |-  .+  =  ( +g  `  R )   =>    |-  ( ( R  e.  Ring  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .+  Y )  =  ( Y  .+  X ) )
 
Theoremringabl 13598 A ring is an Abelian group. (Contributed by NM, 26-Aug-2011.)
 |-  ( R  e.  Ring  ->  R  e.  Abel )
 
Theoremringcmn 13599 A ring is a commutative monoid. (Contributed by Mario Carneiro, 7-Jan-2015.)
 |-  ( R  e.  Ring  ->  R  e. CMnd )
 
Theoremringabld 13600 A ring is an Abelian group. (Contributed by SN, 1-Jun-2024.)
 |-  ( ph  ->  R  e.  Ring )   =>    |-  ( ph  ->  R  e.  Abel )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15738
  Copyright terms: Public domain < Previous  Next >