HomeHome Intuitionistic Logic Explorer
Theorem List (p. 136 of 153)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 13501-13600   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremlringring 13501 A local ring is a ring. (Contributed by Jim Kingdon, 20-Feb-2025.) (Revised by SN, 23-Feb-2025.)
 |-  ( R  e. LRing  ->  R  e.  Ring )
 
Theoremlringnz 13502 A local ring is a nonzero ring. (Contributed by Jim Kingdon, 20-Feb-2025.) (Revised by SN, 23-Feb-2025.)
 |- 
 .1.  =  ( 1r `  R )   &    |-  .0.  =  ( 0g `  R )   =>    |-  ( R  e. LRing  ->  .1.  =/=  .0.  )
 
Theoremlringuplu 13503 If the sum of two elements of a local ring is invertible, then at least one of the summands must be invertible. (Contributed by Jim Kingdon, 18-Feb-2025.) (Revised by SN, 23-Feb-2025.)
 |-  ( ph  ->  B  =  ( Base `  R )
 )   &    |-  ( ph  ->  U  =  (Unit `  R )
 )   &    |-  ( ph  ->  .+  =  ( +g  `  R )
 )   &    |-  ( ph  ->  R  e. LRing )   &    |-  ( ph  ->  ( X  .+  Y )  e.  U )   &    |-  ( ph  ->  X  e.  B )   &    |-  ( ph  ->  Y  e.  B )   =>    |-  ( ph  ->  ( X  e.  U  \/  Y  e.  U )
 )
 
7.3.11  Subrings
 
7.3.11.1  Subrings of non-unital rings
 
Syntaxcsubrng 13504 Extend class notation with all subrings of a non-unital ring.
 class SubRng
 
Definitiondf-subrng 13505* Define a subring of a non-unital ring as a set of elements that is a non-unital ring in its own right. In this section, a subring of a non-unital ring is simply called "subring", unless it causes any ambiguity with SubRing. (Contributed by AV, 14-Feb-2025.)
 |- SubRng  =  ( w  e. Rng  |->  { s  e.  ~P ( Base `  w )  |  ( ws  s
 )  e. Rng } )
 
Theoremissubrng 13506 The subring of non-unital ring predicate. (Contributed by AV, 14-Feb-2025.)
 |-  B  =  ( Base `  R )   =>    |-  ( A  e.  (SubRng `  R )  <->  ( R  e. Rng  /\  ( Rs  A )  e. Rng  /\  A  C_  B ) )
 
Theoremsubrngss 13507 A subring is a subset. (Contributed by AV, 14-Feb-2025.)
 |-  B  =  ( Base `  R )   =>    |-  ( A  e.  (SubRng `  R )  ->  A  C_  B )
 
Theoremsubrngid 13508 Every non-unital ring is a subring of itself. (Contributed by AV, 14-Feb-2025.)
 |-  B  =  ( Base `  R )   =>    |-  ( R  e. Rng  ->  B  e.  (SubRng `  R ) )
 
Theoremsubrngrng 13509 A subring is a non-unital ring. (Contributed by AV, 14-Feb-2025.)
 |-  S  =  ( Rs  A )   =>    |-  ( A  e.  (SubRng `  R )  ->  S  e. Rng )
 
Theoremsubrngrcl 13510 Reverse closure for a subring predicate. (Contributed by AV, 14-Feb-2025.)
 |-  ( A  e.  (SubRng `  R )  ->  R  e. Rng )
 
Theoremsubrngsubg 13511 A subring is a subgroup. (Contributed by AV, 14-Feb-2025.)
 |-  ( A  e.  (SubRng `  R )  ->  A  e.  (SubGrp `  R )
 )
 
Theoremsubrngringnsg 13512 A subring is a normal subgroup. (Contributed by AV, 25-Feb-2025.)
 |-  ( A  e.  (SubRng `  R )  ->  A  e.  (NrmSGrp `  R )
 )
 
Theoremsubrngbas 13513 Base set of a subring structure. (Contributed by AV, 14-Feb-2025.)
 |-  S  =  ( Rs  A )   =>    |-  ( A  e.  (SubRng `  R )  ->  A  =  ( Base `  S )
 )
 
Theoremsubrng0 13514 A subring always has the same additive identity. (Contributed by AV, 14-Feb-2025.)
 |-  S  =  ( Rs  A )   &    |-  .0.  =  ( 0g `  R )   =>    |-  ( A  e.  (SubRng `  R )  ->  .0.  =  ( 0g `  S ) )
 
Theoremsubrngacl 13515 A subring is closed under addition. (Contributed by AV, 14-Feb-2025.)
 |- 
 .+  =  ( +g  `  R )   =>    |-  ( ( A  e.  (SubRng `  R )  /\  X  e.  A  /\  Y  e.  A )  ->  ( X  .+  Y )  e.  A )
 
Theoremsubrngmcl 13516 A subgroup is closed under multiplication. (Contributed by Mario Carneiro, 2-Dec-2014.) Generalization of subrgmcl 13540. (Revised by AV, 14-Feb-2025.)
 |- 
 .x.  =  ( .r `  R )   =>    |-  ( ( A  e.  (SubRng `  R )  /\  X  e.  A  /\  Y  e.  A )  ->  ( X  .x.  Y )  e.  A )
 
Theoremissubrng2 13517* Characterize the subrings of a ring by closure properties. (Contributed by AV, 15-Feb-2025.)
 |-  B  =  ( Base `  R )   &    |-  .x.  =  ( .r `  R )   =>    |-  ( R  e. Rng  ->  ( A  e.  (SubRng `  R )  <->  ( A  e.  (SubGrp `  R )  /\  A. x  e.  A  A. y  e.  A  ( x  .x.  y )  e.  A ) ) )
 
Theoremopprsubrngg 13518 Being a subring is a symmetric property. (Contributed by AV, 15-Feb-2025.)
 |-  O  =  (oppr `  R )   =>    |-  ( R  e.  V  ->  (SubRng `  R )  =  (SubRng `  O )
 )
 
Theoremsubrngintm 13519* The intersection of a nonempty collection of subrings is a subring. (Contributed by AV, 15-Feb-2025.)
 |-  ( ( S  C_  (SubRng `  R )  /\  E. j  j  e.  S )  ->  |^| S  e.  (SubRng `  R ) )
 
Theoremsubrngin 13520 The intersection of two subrings is a subring. (Contributed by AV, 15-Feb-2025.)
 |-  ( ( A  e.  (SubRng `  R )  /\  B  e.  (SubRng `  R ) )  ->  ( A  i^i  B )  e.  (SubRng `  R )
 )
 
Theoremsubsubrng 13521 A subring of a subring is a subring. (Contributed by AV, 15-Feb-2025.)
 |-  S  =  ( Rs  A )   =>    |-  ( A  e.  (SubRng `  R )  ->  ( B  e.  (SubRng `  S ) 
 <->  ( B  e.  (SubRng `  R )  /\  B  C_  A ) ) )
 
Theoremsubsubrng2 13522 The set of subrings of a subring are the smaller subrings. (Contributed by AV, 15-Feb-2025.)
 |-  S  =  ( Rs  A )   =>    |-  ( A  e.  (SubRng `  R )  ->  (SubRng `  S )  =  ( (SubRng `  R )  i^i  ~P A ) )
 
Theoremsubrngpropd 13523* If two structures have the same ring components (properties), they have the same set of subrings. (Contributed by AV, 17-Feb-2025.)
 |-  ( ph  ->  B  =  ( Base `  K )
 )   &    |-  ( ph  ->  B  =  ( Base `  L )
 )   &    |-  ( ( ph  /\  ( x  e.  B  /\  y  e.  B )
 )  ->  ( x ( +g  `  K )
 y )  =  ( x ( +g  `  L ) y ) )   &    |-  ( ( ph  /\  ( x  e.  B  /\  y  e.  B )
 )  ->  ( x ( .r `  K ) y )  =  ( x ( .r `  L ) y ) )   =>    |-  ( ph  ->  (SubRng `  K )  =  (SubRng `  L ) )
 
7.3.11.2  Subrings of unital rings
 
Syntaxcsubrg 13524 Extend class notation with all subrings of a ring.
 class SubRing
 
Syntaxcrgspn 13525 Extend class notation with span of a set of elements over a ring.
 class RingSpan
 
Definitiondf-subrg 13526* Define a subring of a ring as a set of elements that is a ring in its own right and contains the multiplicative identity.

The additional constraint is necessary because the multiplicative identity of a ring, unlike the additive identity of a ring/group or the multiplicative identity of a field, cannot be identified by a local property. Thus, it is possible for a subset of a ring to be a ring while not containing the true identity if it contains a false identity. For instance, the subset  ( ZZ  X.  {
0 } ) of  ( ZZ  X.  ZZ ) (where multiplication is componentwise) contains the false identity  <. 1 ,  0 >. which preserves every element of the subset and thus appears to be the identity of the subset, but is not the identity of the larger ring. (Contributed by Stefan O'Rear, 27-Nov-2014.)

 |- SubRing  =  ( w  e.  Ring  |->  { s  e.  ~P ( Base `  w )  |  ( ( ws  s )  e.  Ring  /\  ( 1r
 `  w )  e.  s ) } )
 
Definitiondf-rgspn 13527* The ring-span of a set of elements in a ring is the smallest subring which contains all of them. (Contributed by Stefan O'Rear, 7-Dec-2014.)
 |- RingSpan  =  ( w  e.  _V  |->  ( s  e.  ~P ( Base `  w )  |-> 
 |^| { t  e.  (SubRing `  w )  |  s 
 C_  t } )
 )
 
Theoremissubrg 13528 The subring predicate. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Proof shortened by AV, 12-Oct-2020.)
 |-  B  =  ( Base `  R )   &    |-  .1.  =  ( 1r `  R )   =>    |-  ( A  e.  (SubRing `  R )  <->  ( ( R  e.  Ring  /\  ( Rs  A )  e.  Ring )  /\  ( A  C_  B  /\  .1.  e.  A ) ) )
 
Theoremsubrgss 13529 A subring is a subset. (Contributed by Stefan O'Rear, 27-Nov-2014.)
 |-  B  =  ( Base `  R )   =>    |-  ( A  e.  (SubRing `  R )  ->  A  C_  B )
 
Theoremsubrgid 13530 Every ring is a subring of itself. (Contributed by Stefan O'Rear, 30-Nov-2014.)
 |-  B  =  ( Base `  R )   =>    |-  ( R  e.  Ring  ->  B  e.  (SubRing `  R ) )
 
Theoremsubrgring 13531 A subring is a ring. (Contributed by Stefan O'Rear, 27-Nov-2014.)
 |-  S  =  ( Rs  A )   =>    |-  ( A  e.  (SubRing `  R )  ->  S  e.  Ring )
 
Theoremsubrgcrng 13532 A subring of a commutative ring is a commutative ring. (Contributed by Mario Carneiro, 10-Jan-2015.)
 |-  S  =  ( Rs  A )   =>    |-  ( ( R  e.  CRing  /\  A  e.  (SubRing `  R ) )  ->  S  e.  CRing
 )
 
Theoremsubrgrcl 13533 Reverse closure for a subring predicate. (Contributed by Mario Carneiro, 3-Dec-2014.)
 |-  ( A  e.  (SubRing `  R )  ->  R  e.  Ring )
 
Theoremsubrgsubg 13534 A subring is a subgroup. (Contributed by Mario Carneiro, 3-Dec-2014.)
 |-  ( A  e.  (SubRing `  R )  ->  A  e.  (SubGrp `  R )
 )
 
Theoremsubrg0 13535 A subring always has the same additive identity. (Contributed by Stefan O'Rear, 27-Nov-2014.)
 |-  S  =  ( Rs  A )   &    |-  .0.  =  ( 0g `  R )   =>    |-  ( A  e.  (SubRing `  R )  ->  .0.  =  ( 0g `  S ) )
 
Theoremsubrg1cl 13536 A subring contains the multiplicative identity. (Contributed by Stefan O'Rear, 27-Nov-2014.)
 |- 
 .1.  =  ( 1r `  R )   =>    |-  ( A  e.  (SubRing `  R )  ->  .1.  e.  A )
 
Theoremsubrgbas 13537 Base set of a subring structure. (Contributed by Stefan O'Rear, 27-Nov-2014.)
 |-  S  =  ( Rs  A )   =>    |-  ( A  e.  (SubRing `  R )  ->  A  =  ( Base `  S )
 )
 
Theoremsubrg1 13538 A subring always has the same multiplicative identity. (Contributed by Stefan O'Rear, 27-Nov-2014.)
 |-  S  =  ( Rs  A )   &    |-  .1.  =  ( 1r `  R )   =>    |-  ( A  e.  (SubRing `  R )  ->  .1.  =  ( 1r `  S ) )
 
Theoremsubrgacl 13539 A subring is closed under addition. (Contributed by Mario Carneiro, 2-Dec-2014.)
 |- 
 .+  =  ( +g  `  R )   =>    |-  ( ( A  e.  (SubRing `  R )  /\  X  e.  A  /\  Y  e.  A )  ->  ( X  .+  Y )  e.  A )
 
Theoremsubrgmcl 13540 A subgroup is closed under multiplication. (Contributed by Mario Carneiro, 2-Dec-2014.)
 |- 
 .x.  =  ( .r `  R )   =>    |-  ( ( A  e.  (SubRing `  R )  /\  X  e.  A  /\  Y  e.  A )  ->  ( X  .x.  Y )  e.  A )
 
Theoremsubrgsubm 13541 A subring is a submonoid of the multiplicative monoid. (Contributed by Mario Carneiro, 15-Jun-2015.)
 |-  M  =  (mulGrp `  R )   =>    |-  ( A  e.  (SubRing `  R )  ->  A  e.  (SubMnd `  M )
 )
 
Theoremsubrgdvds 13542 If an element divides another in a subring, then it also divides the other in the parent ring. (Contributed by Mario Carneiro, 4-Dec-2014.)
 |-  S  =  ( Rs  A )   &    |-  .||  =  ( ||r `  R )   &    |-  E  =  ( ||r `  S )   =>    |-  ( A  e.  (SubRing `  R )  ->  E  C_  .||  )
 
Theoremsubrguss 13543 A unit of a subring is a unit of the parent ring. (Contributed by Mario Carneiro, 4-Dec-2014.)
 |-  S  =  ( Rs  A )   &    |-  U  =  (Unit `  R )   &    |-  V  =  (Unit `  S )   =>    |-  ( A  e.  (SubRing `  R )  ->  V  C_  U )
 
Theoremsubrginv 13544 A subring always has the same inversion function, for elements that are invertible. (Contributed by Mario Carneiro, 4-Dec-2014.)
 |-  S  =  ( Rs  A )   &    |-  I  =  (
 invr `  R )   &    |-  U  =  (Unit `  S )   &    |-  J  =  ( invr `  S )   =>    |-  (
 ( A  e.  (SubRing `  R )  /\  X  e.  U )  ->  ( I `  X )  =  ( J `  X ) )
 
Theoremsubrgdv 13545 A subring always has the same division function, for elements that are invertible. (Contributed by Mario Carneiro, 4-Dec-2014.)
 |-  S  =  ( Rs  A )   &    |-  ./  =  (/r `  R )   &    |-  U  =  (Unit `  S )   &    |-  E  =  (/r `  S )   =>    |-  ( ( A  e.  (SubRing `  R )  /\  X  e.  A  /\  Y  e.  U )  ->  ( X  ./  Y )  =  ( X E Y ) )
 
Theoremsubrgunit 13546 An element of a ring is a unit of a subring iff it is a unit of the parent ring and both it and its inverse are in the subring. (Contributed by Mario Carneiro, 4-Dec-2014.)
 |-  S  =  ( Rs  A )   &    |-  U  =  (Unit `  R )   &    |-  V  =  (Unit `  S )   &    |-  I  =  (
 invr `  R )   =>    |-  ( A  e.  (SubRing `  R )  ->  ( X  e.  V  <->  ( X  e.  U  /\  X  e.  A  /\  ( I `  X )  e.  A ) ) )
 
Theoremsubrgugrp 13547 The units of a subring form a subgroup of the unit group of the original ring. (Contributed by Mario Carneiro, 4-Dec-2014.)
 |-  S  =  ( Rs  A )   &    |-  U  =  (Unit `  R )   &    |-  V  =  (Unit `  S )   &    |-  G  =  ( (mulGrp `  R )s  U )   =>    |-  ( A  e.  (SubRing `  R )  ->  V  e.  (SubGrp `  G )
 )
 
Theoremissubrg2 13548* Characterize the subrings of a ring by closure properties. (Contributed by Mario Carneiro, 3-Dec-2014.)
 |-  B  =  ( Base `  R )   &    |-  .1.  =  ( 1r `  R )   &    |-  .x. 
 =  ( .r `  R )   =>    |-  ( R  e.  Ring  ->  ( A  e.  (SubRing `  R )  <->  ( A  e.  (SubGrp `  R )  /\  .1.  e.  A  /\  A. x  e.  A  A. y  e.  A  ( x  .x.  y )  e.  A ) ) )
 
Theoremsubrgnzr 13549 A subring of a nonzero ring is nonzero. (Contributed by Mario Carneiro, 15-Jun-2015.)
 |-  S  =  ( Rs  A )   =>    |-  ( ( R  e. NzRing  /\  A  e.  (SubRing `  R ) )  ->  S  e. NzRing )
 
Theoremsubrgintm 13550* The intersection of an inhabited collection of subrings is a subring. (Contributed by Stefan O'Rear, 30-Nov-2014.) (Revised by Mario Carneiro, 7-Dec-2014.)
 |-  ( ( S  C_  (SubRing `  R )  /\  E. w  w  e.  S )  ->  |^| S  e.  (SubRing `  R ) )
 
Theoremsubrgin 13551 The intersection of two subrings is a subring. (Contributed by Stefan O'Rear, 30-Nov-2014.) (Revised by Mario Carneiro, 7-Dec-2014.)
 |-  ( ( A  e.  (SubRing `  R )  /\  B  e.  (SubRing `  R ) )  ->  ( A  i^i  B )  e.  (SubRing `  R )
 )
 
Theoremsubsubrg 13552 A subring of a subring is a subring. (Contributed by Mario Carneiro, 4-Dec-2014.)
 |-  S  =  ( Rs  A )   =>    |-  ( A  e.  (SubRing `  R )  ->  ( B  e.  (SubRing `  S ) 
 <->  ( B  e.  (SubRing `  R )  /\  B  C_  A ) ) )
 
Theoremsubsubrg2 13553 The set of subrings of a subring are the smaller subrings. (Contributed by Stefan O'Rear, 9-Mar-2015.)
 |-  S  =  ( Rs  A )   =>    |-  ( A  e.  (SubRing `  R )  ->  (SubRing `  S )  =  ( (SubRing `  R )  i^i  ~P A ) )
 
Theoremissubrg3 13554 A subring is an additive subgroup which is also a multiplicative submonoid. (Contributed by Mario Carneiro, 7-Mar-2015.)
 |-  M  =  (mulGrp `  R )   =>    |-  ( R  e.  Ring  ->  ( S  e.  (SubRing `  R )  <->  ( S  e.  (SubGrp `  R )  /\  S  e.  (SubMnd `  M ) ) ) )
 
Theoremsubrgpropd 13555* If two structures have the same group components (properties), they have the same set of subrings. (Contributed by Mario Carneiro, 9-Feb-2015.)
 |-  ( ph  ->  B  =  ( Base `  K )
 )   &    |-  ( ph  ->  B  =  ( Base `  L )
 )   &    |-  ( ( ph  /\  ( x  e.  B  /\  y  e.  B )
 )  ->  ( x ( +g  `  K )
 y )  =  ( x ( +g  `  L ) y ) )   &    |-  ( ( ph  /\  ( x  e.  B  /\  y  e.  B )
 )  ->  ( x ( .r `  K ) y )  =  ( x ( .r `  L ) y ) )   =>    |-  ( ph  ->  (SubRing `  K )  =  (SubRing `  L ) )
 
7.4  Division rings and fields
 
7.4.1  Ring apartness
 
Syntaxcapr 13556 Extend class notation with ring apartness.
 class #r
 
Definitiondf-apr 13557* The relation between elements whose difference is invertible, which for a local ring is an apartness relation by aprap 13562. (Contributed by Jim Kingdon, 13-Feb-2025.)
 |- #r  =  ( w  e.  _V  |->  {
 <. x ,  y >.  |  ( ( x  e.  ( Base `  w )  /\  y  e.  ( Base `  w ) ) 
 /\  ( x (
 -g `  w )
 y )  e.  (Unit `  w ) ) }
 )
 
Theoremaprval 13558 Expand Definition df-apr 13557. (Contributed by Jim Kingdon, 17-Feb-2025.)
 |-  ( ph  ->  B  =  ( Base `  R )
 )   &    |-  ( ph  -> #  =  (#r `  R ) )   &    |-  ( ph  ->  .-  =  ( -g `  R ) )   &    |-  ( ph  ->  U  =  (Unit `  R ) )   &    |-  ( ph  ->  R  e.  Ring
 )   &    |-  ( ph  ->  X  e.  B )   &    |-  ( ph  ->  Y  e.  B )   =>    |-  ( ph  ->  ( X #  Y  <->  ( X  .-  Y )  e.  U ) )
 
Theoremaprirr 13559 The apartness relation given by df-apr 13557 for a nonzero ring is irreflexive. (Contributed by Jim Kingdon, 16-Feb-2025.)
 |-  ( ph  ->  B  =  ( Base `  R )
 )   &    |-  ( ph  -> #  =  (#r `  R ) )   &    |-  ( ph  ->  R  e.  Ring )   &    |-  ( ph  ->  X  e.  B )   &    |-  ( ph  ->  ( 1r `  R )  =/=  ( 0g `  R ) )   =>    |-  ( ph  ->  -.  X #  X )
 
Theoremaprsym 13560 The apartness relation given by df-apr 13557 for a ring is symmetric. (Contributed by Jim Kingdon, 17-Feb-2025.)
 |-  ( ph  ->  B  =  ( Base `  R )
 )   &    |-  ( ph  -> #  =  (#r `  R ) )   &    |-  ( ph  ->  R  e.  Ring )   &    |-  ( ph  ->  X  e.  B )   &    |-  ( ph  ->  Y  e.  B )   =>    |-  ( ph  ->  ( X #  Y  ->  Y #  X ) )
 
Theoremaprcotr 13561 The apartness relation given by df-apr 13557 for a local ring is cotransitive. (Contributed by Jim Kingdon, 17-Feb-2025.)
 |-  ( ph  ->  B  =  ( Base `  R )
 )   &    |-  ( ph  -> #  =  (#r `  R ) )   &    |-  ( ph  ->  R  e. LRing )   &    |-  ( ph  ->  X  e.  B )   &    |-  ( ph  ->  Y  e.  B )   &    |-  ( ph  ->  Z  e.  B )   =>    |-  ( ph  ->  ( X #  Y  ->  ( X #  Z  \/  Y #  Z ) ) )
 
Theoremaprap 13562 The relation given by df-apr 13557 for a local ring is an apartness relation. (Contributed by Jim Kingdon, 20-Feb-2025.)
 |-  ( R  e. LRing  ->  (#r `  R ) Ap  ( Base `  R ) )
 
7.5  Left modules
 
7.5.1  Definition and basic properties
 
Syntaxclmod 13563 Extend class notation with class of all left modules.
 class  LMod
 
Syntaxcscaf 13564 The functionalization of the scalar multiplication operation.
 class  .sf
 
Definitiondf-lmod 13565* Define the class of all left modules, which are generalizations of left vector spaces. A left module over a ring is an (Abelian) group (vectors) together with a ring (scalars) and a left scalar product connecting them. (Contributed by NM, 4-Nov-2013.)
 |- 
 LMod  =  { g  e.  Grp  |  [. ( Base `  g )  /  v ]. [. ( +g  `  g )  /  a ]. [. (Scalar `  g
 )  /  f ]. [. ( .s `  g
 )  /  s ]. [. ( Base `  f )  /  k ]. [. ( +g  `  f )  /  p ]. [. ( .r
 `  f )  /  t ]. ( f  e. 
 Ring  /\  A. q  e.  k  A. r  e.  k  A. x  e.  v  A. w  e.  v  ( ( ( r s w )  e.  v  /\  (
 r s ( w a x ) )  =  ( ( r s w ) a ( r s x ) )  /\  (
 ( q p r ) s w )  =  ( ( q s w ) a ( r s w ) ) )  /\  ( ( ( q t r ) s w )  =  ( q s ( r s w ) ) 
 /\  ( ( 1r
 `  f ) s w )  =  w ) ) ) }
 
Definitiondf-scaf 13566* Define the functionalization of the 
.s operator. This restricts the value of  .s to the stated domain, which is necessary when working with restricted structures, whose operations may be defined on a larger set than the true base. (Contributed by Mario Carneiro, 5-Oct-2015.)
 |- 
 .sf  =  ( g  e.  _V  |->  ( x  e.  ( Base `  (Scalar `  g )
 ) ,  y  e.  ( Base `  g )  |->  ( x ( .s
 `  g ) y ) ) )
 
Theoremislmod 13567* The predicate "is a left module". (Contributed by NM, 4-Nov-2013.) (Revised by Mario Carneiro, 19-Jun-2014.)
 |-  V  =  ( Base `  W )   &    |-  .+  =  ( +g  `  W )   &    |-  .x.  =  ( .s `  W )   &    |-  F  =  (Scalar `  W )   &    |-  K  =  ( Base `  F )   &    |-  .+^  =  ( +g  `  F )   &    |-  .X.  =  ( .r `  F )   &    |-  .1.  =  ( 1r `  F )   =>    |-  ( W  e.  LMod  <->  ( W  e.  Grp  /\  F  e.  Ring  /\  A. q  e.  K  A. r  e.  K  A. x  e.  V  A. w  e.  V  ( ( ( r  .x.  w )  e.  V  /\  ( r 
 .x.  ( w  .+  x ) )  =  ( ( r  .x.  w )  .+  ( r 
 .x.  x ) ) 
 /\  ( ( q  .+^  r )  .x.  w )  =  ( (
 q  .x.  w )  .+  ( r  .x.  w ) ) )  /\  ( ( ( q 
 .X.  r )  .x.  w )  =  (
 q  .x.  ( r  .x.  w ) )  /\  (  .1.  .x.  w )  =  w ) ) ) )
 
Theoremlmodlema 13568 Lemma for properties of a left module. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.)
 |-  V  =  ( Base `  W )   &    |-  .+  =  ( +g  `  W )   &    |-  .x.  =  ( .s `  W )   &    |-  F  =  (Scalar `  W )   &    |-  K  =  ( Base `  F )   &    |-  .+^  =  ( +g  `  F )   &    |-  .X.  =  ( .r `  F )   &    |-  .1.  =  ( 1r `  F )   =>    |-  ( ( W  e.  LMod  /\  ( Q  e.  K  /\  R  e.  K ) 
 /\  ( X  e.  V  /\  Y  e.  V ) )  ->  ( ( ( R  .x.  Y )  e.  V  /\  ( R  .x.  ( Y 
 .+  X ) )  =  ( ( R 
 .x.  Y )  .+  ( R  .x.  X ) ) 
 /\  ( ( Q  .+^  R )  .x.  Y )  =  ( ( Q  .x.  Y )  .+  ( R  .x.  Y ) ) )  /\  (
 ( ( Q  .X.  R )  .x.  Y )  =  ( Q  .x.  ( R  .x.  Y ) ) 
 /\  (  .1.  .x.  Y )  =  Y ) ) )
 
Theoremislmodd 13569* Properties that determine a left module. See note in isgrpd2 12931 regarding the  ph on hypotheses that name structure components. (Contributed by Mario Carneiro, 22-Jun-2014.)
 |-  ( ph  ->  V  =  ( Base `  W )
 )   &    |-  ( ph  ->  .+  =  ( +g  `  W )
 )   &    |-  ( ph  ->  F  =  (Scalar `  W )
 )   &    |-  ( ph  ->  .x.  =  ( .s `  W ) )   &    |-  ( ph  ->  B  =  ( Base `  F ) )   &    |-  ( ph  ->  .+^  =  ( +g  `  F ) )   &    |-  ( ph  ->  .X. 
 =  ( .r `  F ) )   &    |-  ( ph  ->  .1.  =  ( 1r `  F ) )   &    |-  ( ph  ->  F  e.  Ring
 )   &    |-  ( ph  ->  W  e.  Grp )   &    |-  ( ( ph  /\  x  e.  B  /\  y  e.  V )  ->  ( x  .x.  y
 )  e.  V )   &    |-  ( ( ph  /\  ( x  e.  B  /\  y  e.  V  /\  z  e.  V )
 )  ->  ( x  .x.  ( y  .+  z
 ) )  =  ( ( x  .x.  y
 )  .+  ( x  .x.  z ) ) )   &    |-  ( ( ph  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  V )
 )  ->  ( ( x  .+^  y )  .x.  z )  =  (
 ( x  .x.  z
 )  .+  ( y  .x.  z ) ) )   &    |-  ( ( ph  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  V )
 )  ->  ( ( x  .X.  y )  .x.  z )  =  ( x  .x.  ( y  .x.  z ) ) )   &    |-  ( ( ph  /\  x  e.  V )  ->  (  .1.  .x.  x )  =  x )   =>    |-  ( ph  ->  W  e.  LMod )
 
Theoremlmodgrp 13570 A left module is a group. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 25-Jun-2014.)
 |-  ( W  e.  LMod  ->  W  e.  Grp )
 
Theoremlmodring 13571 The scalar component of a left module is a ring. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.)
 |-  F  =  (Scalar `  W )   =>    |-  ( W  e.  LMod  ->  F  e.  Ring )
 
Theoremlmodfgrp 13572 The scalar component of a left module is an additive group. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.)
 |-  F  =  (Scalar `  W )   =>    |-  ( W  e.  LMod  ->  F  e.  Grp )
 
Theoremlmodgrpd 13573 A left module is a group. (Contributed by SN, 16-May-2024.)
 |-  ( ph  ->  W  e.  LMod )   =>    |-  ( ph  ->  W  e.  Grp )
 
Theoremlmodbn0 13574 The base set of a left module is nonempty. It is also inhabited (by lmod0vcl 13593). (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.)
 |-  B  =  ( Base `  W )   =>    |-  ( W  e.  LMod  ->  B  =/=  (/) )
 
Theoremlmodacl 13575 Closure of ring addition for a left module. (Contributed by NM, 14-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
 |-  F  =  (Scalar `  W )   &    |-  K  =  ( Base `  F )   &    |-  .+  =  ( +g  `  F )   =>    |-  ( ( W  e.  LMod  /\  X  e.  K  /\  Y  e.  K )  ->  ( X  .+  Y )  e.  K )
 
Theoremlmodmcl 13576 Closure of ring multiplication for a left module. (Contributed by NM, 14-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
 |-  F  =  (Scalar `  W )   &    |-  K  =  ( Base `  F )   &    |-  .x.  =  ( .r `  F )   =>    |-  ( ( W  e.  LMod  /\  X  e.  K  /\  Y  e.  K )  ->  ( X  .x.  Y )  e.  K )
 
Theoremlmodsn0 13577 The set of scalars in a left module is nonempty. It is also inhabited, by lmod0cl 13590. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.)
 |-  F  =  (Scalar `  W )   &    |-  B  =  ( Base `  F )   =>    |-  ( W  e.  LMod  ->  B  =/=  (/) )
 
Theoremlmodvacl 13578 Closure of vector addition for a left module. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.)
 |-  V  =  ( Base `  W )   &    |-  .+  =  ( +g  `  W )   =>    |-  ( ( W  e.  LMod  /\  X  e.  V  /\  Y  e.  V )  ->  ( X  .+  Y )  e.  V )
 
Theoremlmodass 13579 Left module vector sum is associative. (Contributed by NM, 10-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
 |-  V  =  ( Base `  W )   &    |-  .+  =  ( +g  `  W )   =>    |-  ( ( W  e.  LMod  /\  ( X  e.  V  /\  Y  e.  V  /\  Z  e.  V ) )  ->  ( ( X  .+  Y )  .+  Z )  =  ( X  .+  ( Y  .+  Z ) ) )
 
Theoremlmodlcan 13580 Left cancellation law for vector sum. (Contributed by NM, 12-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
 |-  V  =  ( Base `  W )   &    |-  .+  =  ( +g  `  W )   =>    |-  ( ( W  e.  LMod  /\  ( X  e.  V  /\  Y  e.  V  /\  Z  e.  V ) )  ->  ( ( Z  .+  X )  =  ( Z  .+  Y )  <->  X  =  Y ) )
 
Theoremlmodvscl 13581 Closure of scalar product for a left module. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.)
 |-  V  =  ( Base `  W )   &    |-  F  =  (Scalar `  W )   &    |-  .x.  =  ( .s `  W )   &    |-  K  =  ( Base `  F )   =>    |-  (
 ( W  e.  LMod  /\  R  e.  K  /\  X  e.  V )  ->  ( R  .x.  X )  e.  V )
 
Theoremscaffvalg 13582* The scalar multiplication operation as a function. (Contributed by Mario Carneiro, 5-Oct-2015.) (Proof shortened by AV, 2-Mar-2024.)
 |-  B  =  ( Base `  W )   &    |-  F  =  (Scalar `  W )   &    |-  K  =  (
 Base `  F )   &    |-  .xb  =  ( .sf `  W )   &    |- 
 .x.  =  ( .s `  W )   =>    |-  ( W  e.  V  -> 
 .xb  =  ( x  e.  K ,  y  e.  B  |->  ( x  .x.  y ) ) )
 
Theoremscafvalg 13583 The scalar multiplication operation as a function. (Contributed by Mario Carneiro, 5-Oct-2015.)
 |-  B  =  ( Base `  W )   &    |-  F  =  (Scalar `  W )   &    |-  K  =  (
 Base `  F )   &    |-  .xb  =  ( .sf `  W )   &    |- 
 .x.  =  ( .s `  W )   =>    |-  ( ( W  e.  V  /\  X  e.  K  /\  Y  e.  B ) 
 ->  ( X  .xb  Y )  =  ( X  .x.  Y ) )
 
Theoremscafeqg 13584 If the scalar multiplication operation is already a function, the functionalization of it is equal to the original operation. (Contributed by Mario Carneiro, 5-Oct-2015.)
 |-  B  =  ( Base `  W )   &    |-  F  =  (Scalar `  W )   &    |-  K  =  (
 Base `  F )   &    |-  .xb  =  ( .sf `  W )   &    |- 
 .x.  =  ( .s `  W )   =>    |-  ( ( W  e.  V  /\  .x.  Fn  ( K  X.  B ) ) 
 ->  .xb  =  .x.  )
 
Theoremscaffng 13585 The scalar multiplication operation is a function. (Contributed by Mario Carneiro, 5-Oct-2015.)
 |-  B  =  ( Base `  W )   &    |-  F  =  (Scalar `  W )   &    |-  K  =  (
 Base `  F )   &    |-  .xb  =  ( .sf `  W )   =>    |-  ( W  e.  V  -> 
 .xb  Fn  ( K  X.  B ) )
 
Theoremlmodscaf 13586 The scalar multiplication operation is a function. (Contributed by Mario Carneiro, 5-Oct-2015.)
 |-  B  =  ( Base `  W )   &    |-  F  =  (Scalar `  W )   &    |-  K  =  (
 Base `  F )   &    |-  .xb  =  ( .sf `  W )   =>    |-  ( W  e.  LMod  ->  .xb 
 : ( K  X.  B ) --> B )
 
Theoremlmodvsdi 13587 Distributive law for scalar product (left-distributivity). (Contributed by NM, 10-Jan-2014.) (Revised by Mario Carneiro, 22-Sep-2015.)
 |-  V  =  ( Base `  W )   &    |-  .+  =  ( +g  `  W )   &    |-  F  =  (Scalar `  W )   &    |-  .x.  =  ( .s `  W )   &    |-  K  =  ( Base `  F )   =>    |-  ( ( W  e.  LMod  /\  ( R  e.  K  /\  X  e.  V  /\  Y  e.  V )
 )  ->  ( R  .x.  ( X  .+  Y ) )  =  (
 ( R  .x.  X )  .+  ( R  .x.  Y ) ) )
 
Theoremlmodvsdir 13588 Distributive law for scalar product (right-distributivity). (Contributed by NM, 10-Jan-2014.) (Revised by Mario Carneiro, 22-Sep-2015.)
 |-  V  =  ( Base `  W )   &    |-  .+  =  ( +g  `  W )   &    |-  F  =  (Scalar `  W )   &    |-  .x.  =  ( .s `  W )   &    |-  K  =  ( Base `  F )   &    |-  .+^  =  ( +g  `  F )   =>    |-  ( ( W  e.  LMod  /\  ( Q  e.  K  /\  R  e.  K  /\  X  e.  V )
 )  ->  ( ( Q  .+^  R )  .x.  X )  =  ( ( Q  .x.  X )  .+  ( R  .x.  X ) ) )
 
Theoremlmodvsass 13589 Associative law for scalar product. (Contributed by NM, 10-Jan-2014.) (Revised by Mario Carneiro, 22-Sep-2015.)
 |-  V  =  ( Base `  W )   &    |-  F  =  (Scalar `  W )   &    |-  .x.  =  ( .s `  W )   &    |-  K  =  ( Base `  F )   &    |-  .X.  =  ( .r `  F )   =>    |-  ( ( W  e.  LMod  /\  ( Q  e.  K  /\  R  e.  K  /\  X  e.  V )
 )  ->  ( ( Q  .X.  R )  .x.  X )  =  ( Q 
 .x.  ( R  .x.  X ) ) )
 
Theoremlmod0cl 13590 The ring zero in a left module belongs to the set of scalars. (Contributed by NM, 11-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
 |-  F  =  (Scalar `  W )   &    |-  K  =  ( Base `  F )   &    |-  .0.  =  ( 0g `  F )   =>    |-  ( W  e.  LMod  ->  .0. 
 e.  K )
 
Theoremlmod1cl 13591 The ring unity in a left module belongs to the set of scalars. (Contributed by NM, 11-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
 |-  F  =  (Scalar `  W )   &    |-  K  =  ( Base `  F )   &    |-  .1.  =  ( 1r `  F )   =>    |-  ( W  e.  LMod  ->  .1. 
 e.  K )
 
Theoremlmodvs1 13592 Scalar product with the ring unity. (Contributed by NM, 10-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
 |-  V  =  ( Base `  W )   &    |-  F  =  (Scalar `  W )   &    |-  .x.  =  ( .s `  W )   &    |-  .1.  =  ( 1r `  F )   =>    |-  ( ( W  e.  LMod  /\  X  e.  V ) 
 ->  (  .1.  .x.  X )  =  X )
 
Theoremlmod0vcl 13593 The zero vector is a vector. (Contributed by NM, 10-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
 |-  V  =  ( Base `  W )   &    |-  .0.  =  ( 0g `  W )   =>    |-  ( W  e.  LMod  ->  .0. 
 e.  V )
 
Theoremlmod0vlid 13594 Left identity law for the zero vector. (Contributed by NM, 10-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
 |-  V  =  ( Base `  W )   &    |-  .+  =  ( +g  `  W )   &    |-  .0.  =  ( 0g `  W )   =>    |-  ( ( W  e.  LMod  /\  X  e.  V ) 
 ->  (  .0.  .+  X )  =  X )
 
Theoremlmod0vrid 13595 Right identity law for the zero vector. (Contributed by NM, 10-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
 |-  V  =  ( Base `  W )   &    |-  .+  =  ( +g  `  W )   &    |-  .0.  =  ( 0g `  W )   =>    |-  ( ( W  e.  LMod  /\  X  e.  V ) 
 ->  ( X  .+  .0.  )  =  X )
 
Theoremlmod0vid 13596 Identity equivalent to the value of the zero vector. Provides a convenient way to compute the value. (Contributed by NM, 9-Mar-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
 |-  V  =  ( Base `  W )   &    |-  .+  =  ( +g  `  W )   &    |-  .0.  =  ( 0g `  W )   =>    |-  ( ( W  e.  LMod  /\  X  e.  V ) 
 ->  ( ( X  .+  X )  =  X  <->  .0. 
 =  X ) )
 
Theoremlmod0vs 13597 Zero times a vector is the zero vector. Equation 1a of [Kreyszig] p. 51. (Contributed by NM, 12-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
 |-  V  =  ( Base `  W )   &    |-  F  =  (Scalar `  W )   &    |-  .x.  =  ( .s `  W )   &    |-  O  =  ( 0g `  F )   &    |- 
 .0.  =  ( 0g `  W )   =>    |-  ( ( W  e.  LMod  /\  X  e.  V ) 
 ->  ( O  .x.  X )  =  .0.  )
 
Theoremlmodvs0 13598 Anything times the zero vector is the zero vector. Equation 1b of [Kreyszig] p. 51. (Contributed by NM, 12-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
 |-  F  =  (Scalar `  W )   &    |- 
 .x.  =  ( .s `  W )   &    |-  K  =  (
 Base `  F )   &    |-  .0.  =  ( 0g `  W )   =>    |-  ( ( W  e.  LMod  /\  X  e.  K ) 
 ->  ( X  .x.  .0.  )  =  .0.  )
 
Theoremlmodvsmmulgdi 13599 Distributive law for a group multiple of a scalar multiplication. (Contributed by AV, 2-Sep-2019.)
 |-  V  =  ( Base `  W )   &    |-  F  =  (Scalar `  W )   &    |-  .x.  =  ( .s `  W )   &    |-  K  =  ( Base `  F )   &    |-  .^  =  (.g `  W )   &    |-  E  =  (.g `  F )   =>    |-  ( ( W  e.  LMod  /\  ( C  e.  K  /\  N  e.  NN0  /\  X  e.  V ) )  ->  ( N  .^  ( C 
 .x.  X ) )  =  ( ( N E C )  .x.  X ) )
 
Theoremlmodfopnelem1 13600 Lemma 1 for lmodfopne 13602. (Contributed by AV, 2-Oct-2021.)
 |- 
 .x.  =  ( .sf `  W )   &    |-  .+  =  ( +f `  W )   &    |-  V  =  ( Base `  W )   &    |-  S  =  (Scalar `  W )   &    |-  K  =  (
 Base `  S )   =>    |-  ( ( W  e.  LMod  /\  .+  =  .x.  )  ->  V  =  K )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15216
  Copyright terms: Public domain < Previous  Next >