HomeHome Intuitionistic Logic Explorer
Theorem List (p. 136 of 162)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 13501-13600   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremgrppnpcan2 13501 Cancellation law for mixed addition and subtraction. (pnpcan2 8332 analog.) (Contributed by NM, 15-Feb-2008.) (Revised by Mario Carneiro, 2-Dec-2014.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  .-  =  ( -g `  G )   =>    |-  ( ( G  e.  Grp  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )
 )  ->  ( ( X  .+  Z )  .-  ( Y  .+  Z ) )  =  ( X 
 .-  Y ) )
 
Theoremgrpnpncan 13502 Cancellation law for group subtraction. (npncan 8313 analog.) (Contributed by NM, 15-Feb-2008.) (Revised by Mario Carneiro, 2-Dec-2014.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  .-  =  ( -g `  G )   =>    |-  ( ( G  e.  Grp  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )
 )  ->  ( ( X  .-  Y )  .+  ( Y  .-  Z ) )  =  ( X 
 .-  Z ) )
 
Theoremgrpnpncan0 13503 Cancellation law for group subtraction (npncan2 8319 analog). (Contributed by AV, 24-Nov-2019.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  .-  =  ( -g `  G )   &    |-  .0.  =  ( 0g `  G )   =>    |-  ( ( G  e.  Grp  /\  ( X  e.  B  /\  Y  e.  B ) )  ->  ( ( X  .-  Y )  .+  ( Y  .-  X ) )  =  .0.  )
 
Theoremgrpnnncan2 13504 Cancellation law for group subtraction. (nnncan2 8329 analog.) (Contributed by NM, 15-Feb-2008.) (Revised by Mario Carneiro, 2-Dec-2014.)
 |-  B  =  ( Base `  G )   &    |-  .-  =  ( -g `  G )   =>    |-  ( ( G  e.  Grp  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B ) )  ->  ( ( X  .-  Z )  .-  ( Y 
 .-  Z ) )  =  ( X  .-  Y ) )
 
Theoremdfgrp3mlem 13505* Lemma for dfgrp3m 13506. (Contributed by AV, 28-Aug-2021.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   =>    |-  ( ( G  e. Smgrp  /\  E. w  w  e.  B  /\  A. x  e.  B  A. y  e.  B  ( E. l  e.  B  ( l  .+  x )  =  y  /\  E. r  e.  B  ( x  .+  r )  =  y ) ) 
 ->  E. u  e.  B  A. a  e.  B  ( ( u  .+  a
 )  =  a  /\  E. i  e.  B  ( i  .+  a )  =  u ) )
 
Theoremdfgrp3m 13506* Alternate definition of a group as semigroup (with at least one element) which is also a quasigroup, i.e. a magma in which solutions  x and  y of the equations  ( a  .+  x )  =  b and  ( x  .+  a
)  =  b exist. Theorem 3.2 of [Bruck] p. 28. (Contributed by AV, 28-Aug-2021.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   =>    |-  ( G  e.  Grp  <->  ( G  e. Smgrp  /\  E. w  w  e.  B  /\  A. x  e.  B  A. y  e.  B  ( E. l  e.  B  ( l  .+  x )  =  y  /\  E. r  e.  B  ( x  .+  r )  =  y ) ) )
 
Theoremdfgrp3me 13507* Alternate definition of a group as a set with a closed, associative operation, for which solutions  x and  y of the equations  ( a  .+  x )  =  b and  ( x  .+  a
)  =  b exist. Exercise 1 of [Herstein] p. 57. (Contributed by NM, 5-Dec-2006.) (Revised by AV, 28-Aug-2021.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   =>    |-  ( G  e.  Grp  <->  ( E. w  w  e.  B  /\  A. x  e.  B  A. y  e.  B  ( ( x 
 .+  y )  e.  B  /\  A. z  e.  B  ( ( x 
 .+  y )  .+  z )  =  ( x  .+  ( y  .+  z ) )  /\  ( E. l  e.  B  ( l  .+  x )  =  y  /\  E. r  e.  B  ( x  .+  r )  =  y ) ) ) )
 
Theoremgrplactfval 13508* The left group action of element  A of group  G. (Contributed by Paul Chapman, 18-Mar-2008.)
 |-  F  =  ( g  e.  X  |->  ( a  e.  X  |->  ( g 
 .+  a ) ) )   &    |-  X  =  (
 Base `  G )   =>    |-  ( A  e.  X  ->  ( F `  A )  =  (
 a  e.  X  |->  ( A  .+  a ) ) )
 
Theoremgrplactcnv 13509* The left group action of element  A of group  G maps the underlying set  X of  G one-to-one onto itself. (Contributed by Paul Chapman, 18-Mar-2008.) (Proof shortened by Mario Carneiro, 14-Aug-2015.)
 |-  F  =  ( g  e.  X  |->  ( a  e.  X  |->  ( g 
 .+  a ) ) )   &    |-  X  =  (
 Base `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  I  =  ( invg `  G )   =>    |-  ( ( G  e.  Grp  /\  A  e.  X ) 
 ->  ( ( F `  A ) : X -1-1-onto-> X  /\  `' ( F `  A )  =  ( F `  ( I `  A ) ) ) )
 
Theoremgrplactf1o 13510* The left group action of element  A of group  G maps the underlying set  X of  G one-to-one onto itself. (Contributed by Paul Chapman, 18-Mar-2008.) (Proof shortened by Mario Carneiro, 14-Aug-2015.)
 |-  F  =  ( g  e.  X  |->  ( a  e.  X  |->  ( g 
 .+  a ) ) )   &    |-  X  =  (
 Base `  G )   &    |-  .+  =  ( +g  `  G )   =>    |-  (
 ( G  e.  Grp  /\  A  e.  X ) 
 ->  ( F `  A ) : X -1-1-onto-> X )
 
Theoremgrpsubpropdg 13511 Weak property deduction for the group subtraction operation. (Contributed by Mario Carneiro, 27-Mar-2015.)
 |-  ( ph  ->  ( Base `  G )  =  ( Base `  H )
 )   &    |-  ( ph  ->  ( +g  `  G )  =  ( +g  `  H ) )   &    |-  ( ph  ->  G  e.  V )   &    |-  ( ph  ->  H  e.  W )   =>    |-  ( ph  ->  ( -g `  G )  =  ( -g `  H ) )
 
Theoremgrpsubpropd2 13512* Strong property deduction for the group subtraction operation. (Contributed by Mario Carneiro, 4-Oct-2015.)
 |-  ( ph  ->  B  =  ( Base `  G )
 )   &    |-  ( ph  ->  B  =  ( Base `  H )
 )   &    |-  ( ph  ->  G  e.  Grp )   &    |-  ( ( ph  /\  ( x  e.  B  /\  y  e.  B ) )  ->  ( x ( +g  `  G ) y )  =  ( x ( +g  `  H ) y ) )   =>    |-  ( ph  ->  ( -g `  G )  =  ( -g `  H ) )
 
Theoremgrp1 13513 The (smallest) structure representing a trivial group. According to Wikipedia ("Trivial group", 28-Apr-2019, https://en.wikipedia.org/wiki/Trivial_group) "In mathematics, a trivial group is a group consisting of a single element. All such groups are isomorphic, so one often speaks of the trivial group. The single element of the trivial group is the identity element". (Contributed by AV, 28-Apr-2019.)
 |-  M  =  { <. (
 Base `  ndx ) ,  { I } >. , 
 <. ( +g  `  ndx ) ,  { <. <. I ,  I >. ,  I >. }
 >. }   =>    |-  ( I  e.  V  ->  M  e.  Grp )
 
Theoremgrp1inv 13514 The inverse function of the trivial group. (Contributed by FL, 21-Jun-2010.) (Revised by AV, 26-Aug-2021.)
 |-  M  =  { <. (
 Base `  ndx ) ,  { I } >. , 
 <. ( +g  `  ndx ) ,  { <. <. I ,  I >. ,  I >. }
 >. }   =>    |-  ( I  e.  V  ->  ( invg `  M )  =  (  _I  |`  { I }
 ) )
 
Theoremprdsinvlem 13515* Characterization of inverses in a structure product. (Contributed by Mario Carneiro, 10-Jan-2015.)
 |-  Y  =  ( S
 X_s
 R )   &    |-  B  =  (
 Base `  Y )   &    |-  .+  =  ( +g  `  Y )   &    |-  ( ph  ->  S  e.  V )   &    |-  ( ph  ->  I  e.  W )   &    |-  ( ph  ->  R : I --> Grp )   &    |-  ( ph  ->  F  e.  B )   &    |- 
 .0.  =  ( 0g  o.  R )   &    |-  N  =  ( y  e.  I  |->  ( ( invg `  ( R `  y ) ) `  ( F `
  y ) ) )   =>    |-  ( ph  ->  ( N  e.  B  /\  ( N  .+  F )  =  .0.  ) )
 
Theoremprdsgrpd 13516 The product of a family of groups is a group. (Contributed by Stefan O'Rear, 10-Jan-2015.)
 |-  Y  =  ( S
 X_s
 R )   &    |-  ( ph  ->  I  e.  W )   &    |-  ( ph  ->  S  e.  V )   &    |-  ( ph  ->  R : I --> Grp )   =>    |-  ( ph  ->  Y  e.  Grp )
 
Theoremprdsinvgd 13517* Negation in a product of groups. (Contributed by Stefan O'Rear, 10-Jan-2015.)
 |-  Y  =  ( S
 X_s
 R )   &    |-  ( ph  ->  I  e.  W )   &    |-  ( ph  ->  S  e.  V )   &    |-  ( ph  ->  R : I --> Grp )   &    |-  B  =  (
 Base `  Y )   &    |-  N  =  ( invg `  Y )   &    |-  ( ph  ->  X  e.  B )   =>    |-  ( ph  ->  ( N `  X )  =  ( x  e.  I  |->  ( ( invg `  ( R `
  x ) ) `
  ( X `  x ) ) ) )
 
Theorempwsgrp 13518 A structure power of a group is a group. (Contributed by Mario Carneiro, 11-Jan-2015.)
 |-  Y  =  ( R 
 ^s  I )   =>    |-  ( ( R  e.  Grp  /\  I  e.  V )  ->  Y  e.  Grp )
 
Theorempwsinvg 13519 Negation in a group power. (Contributed by Mario Carneiro, 11-Jan-2015.)
 |-  Y  =  ( R 
 ^s  I )   &    |-  B  =  (
 Base `  Y )   &    |-  M  =  ( invg `  R )   &    |-  N  =  ( invg `  Y )   =>    |-  ( ( R  e.  Grp  /\  I  e.  V  /\  X  e.  B ) 
 ->  ( N `  X )  =  ( M  o.  X ) )
 
Theorempwssub 13520 Subtraction in a group power. (Contributed by Mario Carneiro, 12-Jan-2015.)
 |-  Y  =  ( R 
 ^s  I )   &    |-  B  =  (
 Base `  Y )   &    |-  M  =  ( -g `  R )   &    |-  .-  =  ( -g `  Y )   =>    |-  ( ( ( R  e.  Grp  /\  I  e.  V )  /\  ( F  e.  B  /\  G  e.  B )
 )  ->  ( F  .-  G )  =  ( F  oF M G ) )
 
Theoremimasgrp2 13521* The image structure of a group is a group. (Contributed by Mario Carneiro, 24-Feb-2015.) (Revised by Mario Carneiro, 5-Sep-2015.)
 |-  ( ph  ->  U  =  ( F  "s  R )
 )   &    |-  ( ph  ->  V  =  ( Base `  R )
 )   &    |-  ( ph  ->  .+  =  ( +g  `  R )
 )   &    |-  ( ph  ->  F : V -onto-> B )   &    |-  ( ( ph  /\  ( a  e.  V  /\  b  e.  V )  /\  ( p  e.  V  /\  q  e.  V ) )  ->  ( ( ( F `
  a )  =  ( F `  p )  /\  ( F `  b )  =  ( F `  q ) ) 
 ->  ( F `  (
 a  .+  b )
 )  =  ( F `
  ( p  .+  q ) ) ) )   &    |-  ( ph  ->  R  e.  W )   &    |-  (
 ( ph  /\  x  e.  V  /\  y  e.  V )  ->  ( x  .+  y )  e.  V )   &    |-  ( ( ph  /\  ( x  e.  V  /\  y  e.  V  /\  z  e.  V ) )  ->  ( F `
  ( ( x 
 .+  y )  .+  z ) )  =  ( F `  ( x  .+  ( y  .+  z ) ) ) )   &    |-  ( ph  ->  .0. 
 e.  V )   &    |-  (
 ( ph  /\  x  e.  V )  ->  ( F `  (  .0.  .+  x ) )  =  ( F `  x ) )   &    |-  ( ( ph  /\  x  e.  V ) 
 ->  N  e.  V )   &    |-  ( ( ph  /\  x  e.  V )  ->  ( F `  ( N  .+  x ) )  =  ( F `  .0.  ) )   =>    |-  ( ph  ->  ( U  e.  Grp  /\  ( F `  .0.  )  =  ( 0g `  U ) ) )
 
Theoremimasgrp 13522* The image structure of a group is a group. (Contributed by Mario Carneiro, 24-Feb-2015.) (Revised by Mario Carneiro, 5-Sep-2015.)
 |-  ( ph  ->  U  =  ( F  "s  R )
 )   &    |-  ( ph  ->  V  =  ( Base `  R )
 )   &    |-  ( ph  ->  .+  =  ( +g  `  R )
 )   &    |-  ( ph  ->  F : V -onto-> B )   &    |-  ( ( ph  /\  ( a  e.  V  /\  b  e.  V )  /\  ( p  e.  V  /\  q  e.  V ) )  ->  ( ( ( F `
  a )  =  ( F `  p )  /\  ( F `  b )  =  ( F `  q ) ) 
 ->  ( F `  (
 a  .+  b )
 )  =  ( F `
  ( p  .+  q ) ) ) )   &    |-  ( ph  ->  R  e.  Grp )   &    |-  .0.  =  ( 0g `  R )   =>    |-  ( ph  ->  ( U  e.  Grp  /\  ( F `  .0.  )  =  ( 0g `  U ) ) )
 
Theoremimasgrpf1 13523 The image of a group under an injection is a group. (Contributed by Mario Carneiro, 20-Aug-2015.)
 |-  U  =  ( F 
 "s 
 R )   &    |-  V  =  (
 Base `  R )   =>    |-  ( ( F : V -1-1-> B  /\  R  e.  Grp )  ->  U  e.  Grp )
 
Theoremqusgrp2 13524* Prove that a quotient structure is a group. (Contributed by Mario Carneiro, 14-Jun-2015.) (Revised by Mario Carneiro, 12-Aug-2015.)
 |-  ( ph  ->  U  =  ( R  /.s  .~  ) )   &    |-  ( ph  ->  V  =  ( Base `  R )
 )   &    |-  ( ph  ->  .+  =  ( +g  `  R )
 )   &    |-  ( ph  ->  .~  Er  V )   &    |-  ( ph  ->  R  e.  X )   &    |-  ( ph  ->  ( ( a 
 .~  p  /\  b  .~  q )  ->  (
 a  .+  b )  .~  ( p  .+  q
 ) ) )   &    |-  (
 ( ph  /\  x  e.  V  /\  y  e.  V )  ->  ( x  .+  y )  e.  V )   &    |-  ( ( ph  /\  ( x  e.  V  /\  y  e.  V  /\  z  e.  V ) )  ->  ( ( x  .+  y ) 
 .+  z )  .~  ( x  .+  ( y 
 .+  z ) ) )   &    |-  ( ph  ->  .0. 
 e.  V )   &    |-  (
 ( ph  /\  x  e.  V )  ->  (  .0.  .+  x )  .~  x )   &    |-  ( ( ph  /\  x  e.  V ) 
 ->  N  e.  V )   &    |-  ( ( ph  /\  x  e.  V )  ->  ( N  .+  x )  .~  .0.  )   =>    |-  ( ph  ->  ( U  e.  Grp  /\  [  .0.  ]  .~  =  ( 0g `  U ) ) )
 
Theoremmhmlem 13525* Lemma for mhmmnd 13527 and ghmgrp 13529. (Contributed by Paul Chapman, 25-Apr-2008.) (Revised by Mario Carneiro, 12-May-2014.) (Revised by Thierry Arnoux, 25-Jan-2020.)
 |-  ( ( ph  /\  x  e.  X  /\  y  e.  X )  ->  ( F `  ( x  .+  y ) )  =  ( ( F `  x )  .+^  ( F `
  y ) ) )   &    |-  ( ph  ->  A  e.  X )   &    |-  ( ph  ->  B  e.  X )   =>    |-  ( ph  ->  ( F `  ( A  .+  B ) )  =  ( ( F `  A )  .+^  ( F `
  B ) ) )
 
Theoremmhmid 13526* A surjective monoid morphism preserves identity element. (Contributed by Thierry Arnoux, 25-Jan-2020.)
 |-  ( ( ph  /\  x  e.  X  /\  y  e.  X )  ->  ( F `  ( x  .+  y ) )  =  ( ( F `  x )  .+^  ( F `
  y ) ) )   &    |-  X  =  (
 Base `  G )   &    |-  Y  =  ( Base `  H )   &    |-  .+  =  ( +g  `  G )   &    |-  .+^  =  (
 +g  `  H )   &    |-  ( ph  ->  F : X -onto-> Y )   &    |-  ( ph  ->  G  e.  Mnd )   &    |-  .0.  =  ( 0g `  G )   =>    |-  ( ph  ->  ( F `  .0.  )  =  ( 0g `  H ) )
 
Theoremmhmmnd 13527* The image of a monoid  G under a monoid homomorphism  F is a monoid. (Contributed by Thierry Arnoux, 25-Jan-2020.)
 |-  ( ( ph  /\  x  e.  X  /\  y  e.  X )  ->  ( F `  ( x  .+  y ) )  =  ( ( F `  x )  .+^  ( F `
  y ) ) )   &    |-  X  =  (
 Base `  G )   &    |-  Y  =  ( Base `  H )   &    |-  .+  =  ( +g  `  G )   &    |-  .+^  =  (
 +g  `  H )   &    |-  ( ph  ->  F : X -onto-> Y )   &    |-  ( ph  ->  G  e.  Mnd )   =>    |-  ( ph  ->  H  e.  Mnd )
 
Theoremmhmfmhm 13528* The function fulfilling the conditions of mhmmnd 13527 is a monoid homomorphism. (Contributed by Thierry Arnoux, 26-Jan-2020.)
 |-  ( ( ph  /\  x  e.  X  /\  y  e.  X )  ->  ( F `  ( x  .+  y ) )  =  ( ( F `  x )  .+^  ( F `
  y ) ) )   &    |-  X  =  (
 Base `  G )   &    |-  Y  =  ( Base `  H )   &    |-  .+  =  ( +g  `  G )   &    |-  .+^  =  (
 +g  `  H )   &    |-  ( ph  ->  F : X -onto-> Y )   &    |-  ( ph  ->  G  e.  Mnd )   =>    |-  ( ph  ->  F  e.  ( G MndHom  H ) )
 
Theoremghmgrp 13529* The image of a group  G under a group homomorphism  F is a group. This is a stronger result than that usually found in the literature, since the target of the homomorphism (operator  O in our model) need not have any of the properties of a group as a prerequisite. (Contributed by Paul Chapman, 25-Apr-2008.) (Revised by Mario Carneiro, 12-May-2014.) (Revised by Thierry Arnoux, 25-Jan-2020.)
 |-  ( ( ph  /\  x  e.  X  /\  y  e.  X )  ->  ( F `  ( x  .+  y ) )  =  ( ( F `  x )  .+^  ( F `
  y ) ) )   &    |-  X  =  (
 Base `  G )   &    |-  Y  =  ( Base `  H )   &    |-  .+  =  ( +g  `  G )   &    |-  .+^  =  (
 +g  `  H )   &    |-  ( ph  ->  F : X -onto-> Y )   &    |-  ( ph  ->  G  e.  Grp )   =>    |-  ( ph  ->  H  e.  Grp )
 
7.2.2  Group multiple operation

The "group multiple" operation (if the group is multiplicative, also called "group power" or "group exponentiation" operation), can be defined for arbitrary magmas, if the multiplier/exponent is a nonnegative integer. See also the definition in [Lang] p. 6, where an element  x(of a monoid) to the power of a nonnegative integer 
n is defined and denoted by  x ^ n. Definition df-mulg 13531, however, defines the group multiple for arbitrary (i.e. also negative) integers. This is meaningful for groups only, and requires Definition df-minusg 13411 of the inverse operation  invg.

 
Syntaxcmg 13530 Extend class notation with a function mapping a group operation to the multiple/power operation for the magma/group.
 class .g
 
Definitiondf-mulg 13531* Define the group multiple function, also known as group exponentiation when viewed multiplicatively. (Contributed by Mario Carneiro, 11-Dec-2014.)
 |- .g  =  ( g  e.  _V  |->  ( n  e.  ZZ ,  x  e.  ( Base `  g )  |->  if ( n  =  0 ,  ( 0g `  g ) ,  [_  seq 1 ( ( +g  `  g ) ,  ( NN  X.  { x }
 ) )  /  s ]_ if ( 0  < 
 n ,  ( s `
  n ) ,  ( ( invg `  g ) `  (
 s `  -u n ) ) ) ) ) )
 
Theoremmulgfvalg 13532* Group multiple (exponentiation) operation. (Contributed by Mario Carneiro, 11-Dec-2014.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  .0.  =  ( 0g `  G )   &    |-  I  =  ( invg `  G )   &    |-  .x. 
 =  (.g `  G )   =>    |-  ( G  e.  V  ->  .x.  =  ( n  e.  ZZ ,  x  e.  B  |->  if ( n  =  0 ,  .0.  ,  if ( 0  <  n ,  (  seq 1
 (  .+  ,  ( NN  X.  { x }
 ) ) `  n ) ,  ( I `  (  seq 1
 (  .+  ,  ( NN  X.  { x }
 ) ) `  -u n ) ) ) ) ) )
 
Theoremmulgval 13533 Value of the group multiple (exponentiation) operation. (Contributed by Mario Carneiro, 11-Dec-2014.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  .0.  =  ( 0g `  G )   &    |-  I  =  ( invg `  G )   &    |-  .x. 
 =  (.g `  G )   &    |-  S  =  seq 1 (  .+  ,  ( NN  X.  { X } ) )   =>    |-  ( ( N  e.  ZZ  /\  X  e.  B )  ->  ( N  .x.  X )  =  if ( N  =  0 ,  .0.  ,  if ( 0  <  N ,  ( S `  N ) ,  ( I `  ( S `  -u N ) ) ) ) )
 
Theoremmulgex 13534 Existence of the group multiple operation. (Contributed by Jim Kingdon, 22-Apr-2025.)
 |-  ( G  e.  V  ->  (.g `  G )  e. 
 _V )
 
Theoremmulgfng 13535 Functionality of the group multiple operation. (Contributed by Mario Carneiro, 21-Mar-2015.) (Revised by Mario Carneiro, 2-Oct-2015.)
 |-  B  =  ( Base `  G )   &    |-  .x.  =  (.g `  G )   =>    |-  ( G  e.  V  ->  .x.  Fn  ( ZZ 
 X.  B ) )
 
Theoremmulg0 13536 Group multiple (exponentiation) operation at zero. (Contributed by Mario Carneiro, 11-Dec-2014.)
 |-  B  =  ( Base `  G )   &    |-  .0.  =  ( 0g `  G )   &    |-  .x. 
 =  (.g `  G )   =>    |-  ( X  e.  B  ->  ( 0  .x.  X )  =  .0.  )
 
Theoremmulgnn 13537 Group multiple (exponentiation) operation at a positive integer. (Contributed by Mario Carneiro, 11-Dec-2014.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  .x.  =  (.g `  G )   &    |-  S  =  seq 1 (  .+  ,  ( NN  X.  { X }
 ) )   =>    |-  ( ( N  e.  NN  /\  X  e.  B )  ->  ( N  .x.  X )  =  ( S `
  N ) )
 
Theoremmulgnngsum 13538* Group multiple (exponentiation) operation at a positive integer expressed by a group sum. (Contributed by AV, 28-Dec-2023.)
 |-  B  =  ( Base `  G )   &    |-  .x.  =  (.g `  G )   &    |-  F  =  ( x  e.  ( 1
 ... N )  |->  X )   =>    |-  ( ( N  e.  NN  /\  X  e.  B )  ->  ( N  .x.  X )  =  ( G 
 gsumg  F ) )
 
Theoremmulgnn0gsum 13539* Group multiple (exponentiation) operation at a nonnegative integer expressed by a group sum. This corresponds to the definition in [Lang] p. 6, second formula. (Contributed by AV, 28-Dec-2023.)
 |-  B  =  ( Base `  G )   &    |-  .x.  =  (.g `  G )   &    |-  F  =  ( x  e.  ( 1
 ... N )  |->  X )   =>    |-  ( ( N  e.  NN0  /\  X  e.  B ) 
 ->  ( N  .x.  X )  =  ( G  gsumg  F ) )
 
Theoremmulg1 13540 Group multiple (exponentiation) operation at one. (Contributed by Mario Carneiro, 11-Dec-2014.)
 |-  B  =  ( Base `  G )   &    |-  .x.  =  (.g `  G )   =>    |-  ( X  e.  B  ->  ( 1  .x.  X )  =  X )
 
Theoremmulgnnp1 13541 Group multiple (exponentiation) operation at a successor. (Contributed by Mario Carneiro, 11-Dec-2014.)
 |-  B  =  ( Base `  G )   &    |-  .x.  =  (.g `  G )   &    |-  .+  =  ( +g  `  G )   =>    |-  ( ( N  e.  NN  /\  X  e.  B )  ->  (
 ( N  +  1 )  .x.  X )  =  ( ( N  .x.  X )  .+  X ) )
 
Theoremmulg2 13542 Group multiple (exponentiation) operation at two. (Contributed by Mario Carneiro, 15-Oct-2015.)
 |-  B  =  ( Base `  G )   &    |-  .x.  =  (.g `  G )   &    |-  .+  =  ( +g  `  G )   =>    |-  ( X  e.  B  ->  ( 2  .x.  X )  =  ( X 
 .+  X ) )
 
Theoremmulgnegnn 13543 Group multiple (exponentiation) operation at a negative integer. (Contributed by Mario Carneiro, 11-Dec-2014.)
 |-  B  =  ( Base `  G )   &    |-  .x.  =  (.g `  G )   &    |-  I  =  ( invg `  G )   =>    |-  ( ( N  e.  NN  /\  X  e.  B )  ->  ( -u N  .x.  X )  =  ( I `  ( N 
 .x.  X ) ) )
 
Theoremmulgnn0p1 13544 Group multiple (exponentiation) operation at a successor, extended to  NN0. (Contributed by Mario Carneiro, 11-Dec-2014.)
 |-  B  =  ( Base `  G )   &    |-  .x.  =  (.g `  G )   &    |-  .+  =  ( +g  `  G )   =>    |-  ( ( G  e.  Mnd  /\  N  e.  NN0  /\  X  e.  B ) 
 ->  ( ( N  +  1 )  .x.  X )  =  ( ( N 
 .x.  X )  .+  X ) )
 
Theoremmulgnnsubcl 13545* Closure of the group multiple (exponentiation) operation in a subsemigroup. (Contributed by Mario Carneiro, 10-Jan-2015.)
 |-  B  =  ( Base `  G )   &    |-  .x.  =  (.g `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  ( ph  ->  G  e.  V )   &    |-  ( ph  ->  S  C_  B )   &    |-  ( ( ph  /\  x  e.  S  /\  y  e.  S )  ->  ( x  .+  y
 )  e.  S )   =>    |-  ( ( ph  /\  N  e.  NN  /\  X  e.  S )  ->  ( N 
 .x.  X )  e.  S )
 
Theoremmulgnn0subcl 13546* Closure of the group multiple (exponentiation) operation in a submonoid. (Contributed by Mario Carneiro, 10-Jan-2015.)
 |-  B  =  ( Base `  G )   &    |-  .x.  =  (.g `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  ( ph  ->  G  e.  V )   &    |-  ( ph  ->  S  C_  B )   &    |-  ( ( ph  /\  x  e.  S  /\  y  e.  S )  ->  ( x  .+  y
 )  e.  S )   &    |-  .0.  =  ( 0g `  G )   &    |-  ( ph  ->  .0. 
 e.  S )   =>    |-  ( ( ph  /\  N  e.  NN0  /\  X  e.  S )  ->  ( N  .x.  X )  e.  S )
 
Theoremmulgsubcl 13547* Closure of the group multiple (exponentiation) operation in a subgroup. (Contributed by Mario Carneiro, 10-Jan-2015.)
 |-  B  =  ( Base `  G )   &    |-  .x.  =  (.g `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  ( ph  ->  G  e.  V )   &    |-  ( ph  ->  S  C_  B )   &    |-  ( ( ph  /\  x  e.  S  /\  y  e.  S )  ->  ( x  .+  y
 )  e.  S )   &    |-  .0.  =  ( 0g `  G )   &    |-  ( ph  ->  .0. 
 e.  S )   &    |-  I  =  ( invg `  G )   &    |-  ( ( ph  /\  x  e.  S ) 
 ->  ( I `  x )  e.  S )   =>    |-  (
 ( ph  /\  N  e.  ZZ  /\  X  e.  S )  ->  ( N  .x.  X )  e.  S )
 
Theoremmulgnncl 13548 Closure of the group multiple (exponentiation) operation for a positive multiplier in a magma. (Contributed by Mario Carneiro, 11-Dec-2014.) (Revised by AV, 29-Aug-2021.)
 |-  B  =  ( Base `  G )   &    |-  .x.  =  (.g `  G )   =>    |-  ( ( G  e. Mgm  /\  N  e.  NN  /\  X  e.  B )  ->  ( N  .x.  X )  e.  B )
 
Theoremmulgnn0cl 13549 Closure of the group multiple (exponentiation) operation for a nonnegative multiplier in a monoid. (Contributed by Mario Carneiro, 11-Dec-2014.)
 |-  B  =  ( Base `  G )   &    |-  .x.  =  (.g `  G )   =>    |-  ( ( G  e.  Mnd  /\  N  e.  NN0  /\  X  e.  B )  ->  ( N  .x.  X )  e.  B )
 
Theoremmulgcl 13550 Closure of the group multiple (exponentiation) operation. (Contributed by Mario Carneiro, 11-Dec-2014.)
 |-  B  =  ( Base `  G )   &    |-  .x.  =  (.g `  G )   =>    |-  ( ( G  e.  Grp  /\  N  e.  ZZ  /\  X  e.  B )  ->  ( N  .x.  X )  e.  B )
 
Theoremmulgneg 13551 Group multiple (exponentiation) operation at a negative integer. (Contributed by Paul Chapman, 17-Apr-2009.) (Revised by Mario Carneiro, 11-Dec-2014.)
 |-  B  =  ( Base `  G )   &    |-  .x.  =  (.g `  G )   &    |-  I  =  ( invg `  G )   =>    |-  ( ( G  e.  Grp  /\  N  e.  ZZ  /\  X  e.  B )  ->  ( -u N  .x.  X )  =  ( I `  ( N  .x.  X ) ) )
 
Theoremmulgnegneg 13552 The inverse of a negative group multiple is the positive group multiple. (Contributed by Paul Chapman, 17-Apr-2009.) (Revised by AV, 30-Aug-2021.)
 |-  B  =  ( Base `  G )   &    |-  .x.  =  (.g `  G )   &    |-  I  =  ( invg `  G )   =>    |-  ( ( G  e.  Grp  /\  N  e.  ZZ  /\  X  e.  B )  ->  ( I `  ( -u N  .x.  X )
 )  =  ( N 
 .x.  X ) )
 
Theoremmulgm1 13553 Group multiple (exponentiation) operation at negative one. (Contributed by Paul Chapman, 17-Apr-2009.) (Revised by Mario Carneiro, 20-Dec-2014.)
 |-  B  =  ( Base `  G )   &    |-  .x.  =  (.g `  G )   &    |-  I  =  ( invg `  G )   =>    |-  ( ( G  e.  Grp  /\  X  e.  B ) 
 ->  ( -u 1  .x.  X )  =  ( I `  X ) )
 
Theoremmulgnn0cld 13554 Closure of the group multiple (exponentiation) operation for a nonnegative multiplier in a monoid. Deduction associated with mulgnn0cl 13549. (Contributed by SN, 1-Feb-2025.)
 |-  B  =  ( Base `  G )   &    |-  .x.  =  (.g `  G )   &    |-  ( ph  ->  G  e.  Mnd )   &    |-  ( ph  ->  N  e.  NN0 )   &    |-  ( ph  ->  X  e.  B )   =>    |-  ( ph  ->  ( N  .x.  X )  e.  B )
 
Theoremmulgcld 13555 Deduction associated with mulgcl 13550. (Contributed by Rohan Ridenour, 3-Aug-2023.)
 |-  B  =  ( Base `  G )   &    |-  .x.  =  (.g `  G )   &    |-  ( ph  ->  G  e.  Grp )   &    |-  ( ph  ->  N  e.  ZZ )   &    |-  ( ph  ->  X  e.  B )   =>    |-  ( ph  ->  ( N  .x.  X )  e.  B )
 
Theoremmulgaddcomlem 13556 Lemma for mulgaddcom 13557. (Contributed by Paul Chapman, 17-Apr-2009.) (Revised by AV, 31-Aug-2021.)
 |-  B  =  ( Base `  G )   &    |-  .x.  =  (.g `  G )   &    |-  .+  =  ( +g  `  G )   =>    |-  ( ( ( G  e.  Grp  /\  y  e.  ZZ  /\  X  e.  B )  /\  (
 ( y  .x.  X )  .+  X )  =  ( X  .+  (
 y  .x.  X )
 ) )  ->  (
 ( -u y  .x.  X )  .+  X )  =  ( X  .+  ( -u y  .x.  X )
 ) )
 
Theoremmulgaddcom 13557 The group multiple operator commutes with the group operation. (Contributed by Paul Chapman, 17-Apr-2009.) (Revised by AV, 31-Aug-2021.)
 |-  B  =  ( Base `  G )   &    |-  .x.  =  (.g `  G )   &    |-  .+  =  ( +g  `  G )   =>    |-  ( ( G  e.  Grp  /\  N  e.  ZZ  /\  X  e.  B )  ->  ( ( N 
 .x.  X )  .+  X )  =  ( X  .+  ( N  .x.  X ) ) )
 
Theoremmulginvcom 13558 The group multiple operator commutes with the group inverse function. (Contributed by Paul Chapman, 17-Apr-2009.) (Revised by AV, 31-Aug-2021.)
 |-  B  =  ( Base `  G )   &    |-  .x.  =  (.g `  G )   &    |-  I  =  ( invg `  G )   =>    |-  ( ( G  e.  Grp  /\  N  e.  ZZ  /\  X  e.  B )  ->  ( N  .x.  ( I `  X ) )  =  ( I `  ( N  .x.  X ) ) )
 
Theoremmulginvinv 13559 The group multiple operator commutes with the group inverse function. (Contributed by Paul Chapman, 17-Apr-2009.) (Revised by AV, 31-Aug-2021.)
 |-  B  =  ( Base `  G )   &    |-  .x.  =  (.g `  G )   &    |-  I  =  ( invg `  G )   =>    |-  ( ( G  e.  Grp  /\  N  e.  ZZ  /\  X  e.  B )  ->  ( I `  ( N  .x.  ( I `  X ) ) )  =  ( N  .x.  X ) )
 
Theoremmulgnn0z 13560 A group multiple of the identity, for nonnegative multiple. (Contributed by Mario Carneiro, 13-Dec-2014.)
 |-  B  =  ( Base `  G )   &    |-  .x.  =  (.g `  G )   &    |-  .0.  =  ( 0g `  G )   =>    |-  ( ( G  e.  Mnd  /\  N  e.  NN0 )  ->  ( N  .x.  .0.  )  =  .0.  )
 
Theoremmulgz 13561 A group multiple of the identity, for integer multiple. (Contributed by Mario Carneiro, 13-Dec-2014.)
 |-  B  =  ( Base `  G )   &    |-  .x.  =  (.g `  G )   &    |-  .0.  =  ( 0g `  G )   =>    |-  ( ( G  e.  Grp  /\  N  e.  ZZ )  ->  ( N  .x.  .0.  )  =  .0.  )
 
Theoremmulgnndir 13562 Sum of group multiples, for positive multiples. (Contributed by Mario Carneiro, 11-Dec-2014.) (Revised by AV, 29-Aug-2021.)
 |-  B  =  ( Base `  G )   &    |-  .x.  =  (.g `  G )   &    |-  .+  =  ( +g  `  G )   =>    |-  ( ( G  e. Smgrp  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B ) )  ->  ( ( M  +  N )  .x.  X )  =  ( ( M  .x.  X )  .+  ( N  .x.  X ) ) )
 
Theoremmulgnn0dir 13563 Sum of group multiples, generalized to  NN0. (Contributed by Mario Carneiro, 11-Dec-2014.)
 |-  B  =  ( Base `  G )   &    |-  .x.  =  (.g `  G )   &    |-  .+  =  ( +g  `  G )   =>    |-  ( ( G  e.  Mnd  /\  ( M  e.  NN0  /\  N  e.  NN0  /\  X  e.  B ) )  ->  ( ( M  +  N )  .x.  X )  =  ( ( M  .x.  X )  .+  ( N  .x.  X ) ) )
 
Theoremmulgdirlem 13564 Lemma for mulgdir 13565. (Contributed by Mario Carneiro, 13-Dec-2014.)
 |-  B  =  ( Base `  G )   &    |-  .x.  =  (.g `  G )   &    |-  .+  =  ( +g  `  G )   =>    |-  ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )  /\  ( M  +  N )  e. 
 NN0 )  ->  (
 ( M  +  N )  .x.  X )  =  ( ( M  .x.  X )  .+  ( N 
 .x.  X ) ) )
 
Theoremmulgdir 13565 Sum of group multiples, generalized to  ZZ. (Contributed by Mario Carneiro, 13-Dec-2014.)
 |-  B  =  ( Base `  G )   &    |-  .x.  =  (.g `  G )   &    |-  .+  =  ( +g  `  G )   =>    |-  ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B ) )  ->  ( ( M  +  N )  .x.  X )  =  ( ( M 
 .x.  X )  .+  ( N  .x.  X ) ) )
 
Theoremmulgp1 13566 Group multiple (exponentiation) operation at a successor, extended to  ZZ. (Contributed by Mario Carneiro, 11-Dec-2014.)
 |-  B  =  ( Base `  G )   &    |-  .x.  =  (.g `  G )   &    |-  .+  =  ( +g  `  G )   =>    |-  ( ( G  e.  Grp  /\  N  e.  ZZ  /\  X  e.  B )  ->  ( ( N  +  1 )  .x.  X )  =  ( ( N  .x.  X )  .+  X ) )
 
Theoremmulgneg2 13567 Group multiple (exponentiation) operation at a negative integer. (Contributed by Mario Carneiro, 13-Dec-2014.)
 |-  B  =  ( Base `  G )   &    |-  .x.  =  (.g `  G )   &    |-  I  =  ( invg `  G )   =>    |-  ( ( G  e.  Grp  /\  N  e.  ZZ  /\  X  e.  B )  ->  ( -u N  .x.  X )  =  ( N  .x.  ( I `  X ) ) )
 
Theoremmulgnnass 13568 Product of group multiples, for positive multiples in a semigroup. (Contributed by Mario Carneiro, 13-Dec-2014.) (Revised by AV, 29-Aug-2021.)
 |-  B  =  ( Base `  G )   &    |-  .x.  =  (.g `  G )   =>    |-  ( ( G  e. Smgrp  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B )
 )  ->  ( ( M  x.  N )  .x.  X )  =  ( M 
 .x.  ( N  .x.  X ) ) )
 
Theoremmulgnn0ass 13569 Product of group multiples, generalized to  NN0. (Contributed by Mario Carneiro, 13-Dec-2014.)
 |-  B  =  ( Base `  G )   &    |-  .x.  =  (.g `  G )   =>    |-  ( ( G  e.  Mnd  /\  ( M  e.  NN0  /\  N  e.  NN0  /\  X  e.  B ) )  ->  ( ( M  x.  N )  .x.  X )  =  ( M  .x.  ( N  .x.  X ) ) )
 
Theoremmulgass 13570 Product of group multiples, generalized to  ZZ. (Contributed by Mario Carneiro, 13-Dec-2014.)
 |-  B  =  ( Base `  G )   &    |-  .x.  =  (.g `  G )   =>    |-  ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
 )  ->  ( ( M  x.  N )  .x.  X )  =  ( M 
 .x.  ( N  .x.  X ) ) )
 
Theoremmulgassr 13571 Reversed product of group multiples. (Contributed by Paul Chapman, 17-Apr-2009.) (Revised by AV, 30-Aug-2021.)
 |-  B  =  ( Base `  G )   &    |-  .x.  =  (.g `  G )   =>    |-  ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
 )  ->  ( ( N  x.  M )  .x.  X )  =  ( M 
 .x.  ( N  .x.  X ) ) )
 
Theoremmulgmodid 13572 Casting out multiples of the identity element leaves the group multiple unchanged. (Contributed by Paul Chapman, 17-Apr-2009.) (Revised by AV, 30-Aug-2021.)
 |-  B  =  ( Base `  G )   &    |-  .0.  =  ( 0g `  G )   &    |-  .x. 
 =  (.g `  G )   =>    |-  ( ( G  e.  Grp  /\  ( N  e.  ZZ  /\  M  e.  NN )  /\  ( X  e.  B  /\  ( M  .x.  X )  =  .0.  ) ) 
 ->  ( ( N  mod  M )  .x.  X )  =  ( N  .x.  X ) )
 
Theoremmulgsubdir 13573 Distribution of group multiples over subtraction for group elements, subdir 8478 analog. (Contributed by Mario Carneiro, 13-Dec-2014.)
 |-  B  =  ( Base `  G )   &    |-  .x.  =  (.g `  G )   &    |-  .-  =  ( -g `  G )   =>    |-  ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B ) )  ->  ( ( M  -  N )  .x.  X )  =  ( ( M 
 .x.  X )  .-  ( N  .x.  X ) ) )
 
Theoremmhmmulg 13574 A homomorphism of monoids preserves group multiples. (Contributed by Mario Carneiro, 14-Jun-2015.)
 |-  B  =  ( Base `  G )   &    |-  .x.  =  (.g `  G )   &    |-  .X.  =  (.g `  H )   =>    |-  ( ( F  e.  ( G MndHom  H )  /\  N  e.  NN0  /\  X  e.  B )  ->  ( F `  ( N  .x.  X ) )  =  ( N  .X.  ( F `  X ) ) )
 
Theoremmulgpropdg 13575* Two structures with the same group-nature have the same group multiple function.  K is expected to either be  _V (when strong equality is available) or  B (when closure is available). (Contributed by Stefan O'Rear, 21-Mar-2015.) (Revised by Mario Carneiro, 2-Oct-2015.)
 |-  ( ph  ->  .x.  =  (.g `  G ) )   &    |-  ( ph  ->  .X.  =  (.g `  H ) )   &    |-  ( ph  ->  G  e.  V )   &    |-  ( ph  ->  H  e.  W )   &    |-  ( ph  ->  B  =  ( Base `  G )
 )   &    |-  ( ph  ->  B  =  ( Base `  H )
 )   &    |-  ( ph  ->  B  C_  K )   &    |-  ( ( ph  /\  ( x  e.  K  /\  y  e.  K ) )  ->  ( x ( +g  `  G ) y )  e.  K )   &    |-  ( ( ph  /\  ( x  e.  K  /\  y  e.  K ) )  ->  ( x ( +g  `  G ) y )  =  ( x ( +g  `  H ) y ) )   =>    |-  ( ph  ->  .x.  =  .X.  )
 
Theoremsubmmulgcl 13576 Closure of the group multiple (exponentiation) operation in a submonoid. (Contributed by Mario Carneiro, 13-Jan-2015.)
 |-  .xb  =  (.g `  G )   =>    |-  ( ( S  e.  (SubMnd `  G )  /\  N  e.  NN0  /\  X  e.  S ) 
 ->  ( N  .xb  X )  e.  S )
 
Theoremsubmmulg 13577 A group multiple is the same if evaluated in a submonoid. (Contributed by Mario Carneiro, 15-Jun-2015.)
 |-  .xb  =  (.g `  G )   &    |-  H  =  ( Gs  S )   &    |-  .x.  =  (.g `  H )   =>    |-  ( ( S  e.  (SubMnd `  G )  /\  N  e.  NN0  /\  X  e.  S )  ->  ( N  .xb  X )  =  ( N  .x.  X ) )
 
7.2.3  Subgroups and Quotient groups
 
Syntaxcsubg 13578 Extend class notation with all subgroups of a group.
 class SubGrp
 
Syntaxcnsg 13579 Extend class notation with all normal subgroups of a group.
 class NrmSGrp
 
Syntaxcqg 13580 Quotient group equivalence class.
 class ~QG
 
Definitiondf-subg 13581* Define a subgroup of a group as a set of elements that is a group in its own right. Equivalently (issubg2m 13600), a subgroup is a subset of the group that is closed for the group internal operation (see subgcl 13595), contains the neutral element of the group (see subg0 13591) and contains the inverses for all of its elements (see subginvcl 13594). (Contributed by Mario Carneiro, 2-Dec-2014.)
 |- SubGrp  =  ( w  e.  Grp  |->  { s  e.  ~P ( Base `  w )  |  ( ws  s )  e.  Grp } )
 
Definitiondf-nsg 13582* Define the equivalence relation in a quotient ring or quotient group (where  i is a two-sided ideal or a normal subgroup). For non-normal subgroups this generates the left cosets. (Contributed by Mario Carneiro, 15-Jun-2015.)
 |- NrmSGrp  =  ( w  e.  Grp  |->  { s  e.  (SubGrp `  w )  |  [. ( Base `  w )  /  b ]. [. ( +g  `  w )  /  p ]. A. x  e.  b  A. y  e.  b  ( ( x p y )  e.  s  <->  ( y p x )  e.  s
 ) } )
 
Definitiondf-eqg 13583* Define the equivalence relation in a group generated by a subgroup. More precisely, if  G is a group and  H is a subgroup, then  G ~QG  H is the equivalence relation on  G associated with the left cosets of  H. A typical application of this definition is the construction of the quotient group (resp. ring) of a group (resp. ring) by a normal subgroup (resp. two-sided ideal). (Contributed by Mario Carneiro, 15-Jun-2015.)
 |- ~QG  =  ( r  e.  _V ,  i  e.  _V  |->  {
 <. x ,  y >.  |  ( { x ,  y }  C_  ( Base `  r )  /\  (
 ( ( invg `  r ) `  x ) ( +g  `  r
 ) y )  e.  i ) } )
 
Theoremissubg 13584 The subgroup predicate. (Contributed by Mario Carneiro, 2-Dec-2014.)
 |-  B  =  ( Base `  G )   =>    |-  ( S  e.  (SubGrp `  G )  <->  ( G  e.  Grp  /\  S  C_  B  /\  ( Gs  S )  e.  Grp ) )
 
Theoremsubgss 13585 A subgroup is a subset. (Contributed by Mario Carneiro, 2-Dec-2014.)
 |-  B  =  ( Base `  G )   =>    |-  ( S  e.  (SubGrp `  G )  ->  S  C_  B )
 
Theoremsubgid 13586 A group is a subgroup of itself. (Contributed by Mario Carneiro, 7-Dec-2014.)
 |-  B  =  ( Base `  G )   =>    |-  ( G  e.  Grp  ->  B  e.  (SubGrp `  G ) )
 
Theoremsubgex 13587 The class of subgroups of a group is a set. (Contributed by Jim Kingdon, 8-Mar-2025.)
 |-  ( G  e.  Grp  ->  (SubGrp `  G )  e. 
 _V )
 
Theoremsubggrp 13588 A subgroup is a group. (Contributed by Mario Carneiro, 2-Dec-2014.)
 |-  H  =  ( Gs  S )   =>    |-  ( S  e.  (SubGrp `  G )  ->  H  e.  Grp )
 
Theoremsubgbas 13589 The base of the restricted group in a subgroup. (Contributed by Mario Carneiro, 2-Dec-2014.)
 |-  H  =  ( Gs  S )   =>    |-  ( S  e.  (SubGrp `  G )  ->  S  =  ( Base `  H )
 )
 
Theoremsubgrcl 13590 Reverse closure for the subgroup predicate. (Contributed by Mario Carneiro, 2-Dec-2014.)
 |-  ( S  e.  (SubGrp `  G )  ->  G  e.  Grp )
 
Theoremsubg0 13591 A subgroup of a group must have the same identity as the group. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 30-Apr-2015.)
 |-  H  =  ( Gs  S )   &    |-  .0.  =  ( 0g `  G )   =>    |-  ( S  e.  (SubGrp `  G )  ->  .0.  =  ( 0g `  H ) )
 
Theoremsubginv 13592 The inverse of an element in a subgroup is the same as the inverse in the larger group. (Contributed by Mario Carneiro, 2-Dec-2014.)
 |-  H  =  ( Gs  S )   &    |-  I  =  ( invg `  G )   &    |-  J  =  ( invg `  H )   =>    |-  ( ( S  e.  (SubGrp `  G )  /\  X  e.  S )  ->  ( I `  X )  =  ( J `  X ) )
 
Theoremsubg0cl 13593 The group identity is an element of any subgroup. (Contributed by Mario Carneiro, 2-Dec-2014.)
 |- 
 .0.  =  ( 0g `  G )   =>    |-  ( S  e.  (SubGrp `  G )  ->  .0.  e.  S )
 
Theoremsubginvcl 13594 The inverse of an element is closed in a subgroup. (Contributed by Mario Carneiro, 2-Dec-2014.)
 |-  I  =  ( invg `  G )   =>    |-  ( ( S  e.  (SubGrp `  G )  /\  X  e.  S )  ->  ( I `  X )  e.  S )
 
Theoremsubgcl 13595 A subgroup is closed under group operation. (Contributed by Mario Carneiro, 2-Dec-2014.)
 |- 
 .+  =  ( +g  `  G )   =>    |-  ( ( S  e.  (SubGrp `  G )  /\  X  e.  S  /\  Y  e.  S )  ->  ( X  .+  Y )  e.  S )
 
Theoremsubgsubcl 13596 A subgroup is closed under group subtraction. (Contributed by Mario Carneiro, 18-Jan-2015.)
 |-  .-  =  ( -g `  G )   =>    |-  ( ( S  e.  (SubGrp `  G )  /\  X  e.  S  /\  Y  e.  S )  ->  ( X  .-  Y )  e.  S )
 
Theoremsubgsub 13597 The subtraction of elements in a subgroup is the same as subtraction in the group. (Contributed by Mario Carneiro, 15-Jun-2015.)
 |-  .-  =  ( -g `  G )   &    |-  H  =  ( Gs  S )   &    |-  N  =  (
 -g `  H )   =>    |-  (
 ( S  e.  (SubGrp `  G )  /\  X  e.  S  /\  Y  e.  S )  ->  ( X 
 .-  Y )  =  ( X N Y ) )
 
Theoremsubgmulgcl 13598 Closure of the group multiple (exponentiation) operation in a subgroup. (Contributed by Mario Carneiro, 13-Jan-2015.)
 |- 
 .x.  =  (.g `  G )   =>    |-  ( ( S  e.  (SubGrp `  G )  /\  N  e.  ZZ  /\  X  e.  S )  ->  ( N  .x.  X )  e.  S )
 
Theoremsubgmulg 13599 A group multiple is the same if evaluated in a subgroup. (Contributed by Mario Carneiro, 15-Jan-2015.)
 |- 
 .x.  =  (.g `  G )   &    |-  H  =  ( Gs  S )   &    |-  .xb  =  (.g `  H )   =>    |-  ( ( S  e.  (SubGrp `  G )  /\  N  e.  ZZ  /\  X  e.  S )  ->  ( N  .x.  X )  =  ( N  .xb  X ) )
 
Theoremissubg2m 13600* Characterize the subgroups of a group by closure properties. (Contributed by Mario Carneiro, 2-Dec-2014.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  I  =  ( invg `  G )   =>    |-  ( G  e.  Grp  ->  ( S  e.  (SubGrp `  G )  <->  ( S  C_  B  /\  E. u  u  e.  S  /\  A. x  e.  S  ( A. y  e.  S  ( x  .+  y )  e.  S  /\  ( I `  x )  e.  S ) ) ) )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16164
  Copyright terms: Public domain < Previous  Next >