ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-icnfld GIF version

Definition df-icnfld 13795
Description: The field of complex numbers. Other number fields and rings can be constructed by applying the s restriction operator.

The contract of this set is defined entirely by cnfldex 13797, cnfldadd 13799, cnfldmul 13800, cnfldcj 13801, and cnfldbas 13798.

We may add additional members to this in the future.

At least for now, this structure does not include a topology, order, a distance function, or function mapping metrics.

(Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Thierry Arnoux, 15-Dec-2017.) (New usage is discouraged.)

Assertion
Ref Expression
df-icnfld fld = ({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∪ {⟨(*𝑟‘ndx), ∗⟩})

Detailed syntax breakdown of Definition df-icnfld
StepHypRef Expression
1 ccnfld 13794 . 2 class fld
2 cnx 12473 . . . . . 6 class ndx
3 cbs 12476 . . . . . 6 class Base
42, 3cfv 5228 . . . . 5 class (Base‘ndx)
5 cc 7823 . . . . 5 class
64, 5cop 3607 . . . 4 class ⟨(Base‘ndx), ℂ⟩
7 cplusg 12551 . . . . . 6 class +g
82, 7cfv 5228 . . . . 5 class (+g‘ndx)
9 caddc 7828 . . . . 5 class +
108, 9cop 3607 . . . 4 class ⟨(+g‘ndx), + ⟩
11 cmulr 12552 . . . . . 6 class .r
122, 11cfv 5228 . . . . 5 class (.r‘ndx)
13 cmul 7830 . . . . 5 class ·
1412, 13cop 3607 . . . 4 class ⟨(.r‘ndx), · ⟩
156, 10, 14ctp 3606 . . 3 class {⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩}
16 cstv 12553 . . . . . 6 class *𝑟
172, 16cfv 5228 . . . . 5 class (*𝑟‘ndx)
18 ccj 10862 . . . . 5 class
1917, 18cop 3607 . . . 4 class ⟨(*𝑟‘ndx), ∗⟩
2019csn 3604 . . 3 class {⟨(*𝑟‘ndx), ∗⟩}
2115, 20cun 3139 . 2 class ({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∪ {⟨(*𝑟‘ndx), ∗⟩})
221, 21wceq 1363 1 wff fld = ({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∪ {⟨(*𝑟‘ndx), ∗⟩})
Colors of variables: wff set class
This definition is referenced by:  cnfldstr  13796  cnfldbas  13798  cnfldadd  13799  cnfldmul  13800  cnfldcj  13801
  Copyright terms: Public domain W3C validator