![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > df-icnfld | GIF version |
Description: The field of complex
numbers. Other number fields and rings can be
constructed by applying the ↾s
restriction operator.
The contract of this set is defined entirely by cnfldex 13598, cnfldadd 13600, cnfldmul 13601, cnfldcj 13602, and cnfldbas 13599. We may add additional members to this in the future. At least for now, this structure does not include a topology, order, a distance function, or function mapping metrics. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Thierry Arnoux, 15-Dec-2017.) (New usage is discouraged.) |
Ref | Expression |
---|---|
df-icnfld | ⊢ ℂfld = ({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∪ {⟨(*𝑟‘ndx), ∗⟩}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ccnfld 13595 | . 2 class ℂfld | |
2 | cnx 12462 | . . . . . 6 class ndx | |
3 | cbs 12465 | . . . . . 6 class Base | |
4 | 2, 3 | cfv 5218 | . . . . 5 class (Base‘ndx) |
5 | cc 7812 | . . . . 5 class ℂ | |
6 | 4, 5 | cop 3597 | . . . 4 class ⟨(Base‘ndx), ℂ⟩ |
7 | cplusg 12539 | . . . . . 6 class +g | |
8 | 2, 7 | cfv 5218 | . . . . 5 class (+g‘ndx) |
9 | caddc 7817 | . . . . 5 class + | |
10 | 8, 9 | cop 3597 | . . . 4 class ⟨(+g‘ndx), + ⟩ |
11 | cmulr 12540 | . . . . . 6 class .r | |
12 | 2, 11 | cfv 5218 | . . . . 5 class (.r‘ndx) |
13 | cmul 7819 | . . . . 5 class · | |
14 | 12, 13 | cop 3597 | . . . 4 class ⟨(.r‘ndx), · ⟩ |
15 | 6, 10, 14 | ctp 3596 | . . 3 class {⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} |
16 | cstv 12541 | . . . . . 6 class *𝑟 | |
17 | 2, 16 | cfv 5218 | . . . . 5 class (*𝑟‘ndx) |
18 | ccj 10851 | . . . . 5 class ∗ | |
19 | 17, 18 | cop 3597 | . . . 4 class ⟨(*𝑟‘ndx), ∗⟩ |
20 | 19 | csn 3594 | . . 3 class {⟨(*𝑟‘ndx), ∗⟩} |
21 | 15, 20 | cun 3129 | . 2 class ({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∪ {⟨(*𝑟‘ndx), ∗⟩}) |
22 | 1, 21 | wceq 1353 | 1 wff ℂfld = ({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∪ {⟨(*𝑟‘ndx), ∗⟩}) |
Colors of variables: wff set class |
This definition is referenced by: cnfldstr 13597 cnfldbas 13599 cnfldadd 13600 cnfldmul 13601 cnfldcj 13602 |
Copyright terms: Public domain | W3C validator |