ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-icnfld GIF version

Definition df-icnfld 13596
Description: The field of complex numbers. Other number fields and rings can be constructed by applying the s restriction operator.

The contract of this set is defined entirely by cnfldex 13598, cnfldadd 13600, cnfldmul 13601, cnfldcj 13602, and cnfldbas 13599.

We may add additional members to this in the future.

At least for now, this structure does not include a topology, order, a distance function, or function mapping metrics.

(Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Thierry Arnoux, 15-Dec-2017.) (New usage is discouraged.)

Assertion
Ref Expression
df-icnfld fld = ({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∪ {⟨(*𝑟‘ndx), ∗⟩})

Detailed syntax breakdown of Definition df-icnfld
StepHypRef Expression
1 ccnfld 13595 . 2 class fld
2 cnx 12462 . . . . . 6 class ndx
3 cbs 12465 . . . . . 6 class Base
42, 3cfv 5218 . . . . 5 class (Base‘ndx)
5 cc 7812 . . . . 5 class
64, 5cop 3597 . . . 4 class ⟨(Base‘ndx), ℂ⟩
7 cplusg 12539 . . . . . 6 class +g
82, 7cfv 5218 . . . . 5 class (+g‘ndx)
9 caddc 7817 . . . . 5 class +
108, 9cop 3597 . . . 4 class ⟨(+g‘ndx), + ⟩
11 cmulr 12540 . . . . . 6 class .r
122, 11cfv 5218 . . . . 5 class (.r‘ndx)
13 cmul 7819 . . . . 5 class ·
1412, 13cop 3597 . . . 4 class ⟨(.r‘ndx), · ⟩
156, 10, 14ctp 3596 . . 3 class {⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩}
16 cstv 12541 . . . . . 6 class *𝑟
172, 16cfv 5218 . . . . 5 class (*𝑟‘ndx)
18 ccj 10851 . . . . 5 class
1917, 18cop 3597 . . . 4 class ⟨(*𝑟‘ndx), ∗⟩
2019csn 3594 . . 3 class {⟨(*𝑟‘ndx), ∗⟩}
2115, 20cun 3129 . 2 class ({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∪ {⟨(*𝑟‘ndx), ∗⟩})
221, 21wceq 1353 1 wff fld = ({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∪ {⟨(*𝑟‘ndx), ∗⟩})
Colors of variables: wff set class
This definition is referenced by:  cnfldstr  13597  cnfldbas  13599  cnfldadd  13600  cnfldmul  13601  cnfldcj  13602
  Copyright terms: Public domain W3C validator