ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnfldstr Unicode version

Theorem cnfldstr 14057
Description: The field of complex numbers is a structure. (Contributed by Mario Carneiro, 14-Aug-2015.) (Revised by Thierry Arnoux, 17-Dec-2017.)
Assertion
Ref Expression
cnfldstr  |-fld Struct 
<. 1 , ; 1 3 >.

Proof of Theorem cnfldstr
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-cnfld 14056 . 2  |-fld  =  ( ( { <. ( Base `  ndx ) ,  CC >. ,  <. ( +g  `  ndx ) ,  ( x  e.  CC ,  y  e.  CC  |->  ( x  +  y ) ) >. ,  <. ( .r `  ndx ) ,  ( x  e.  CC ,  y  e.  CC  |->  ( x  x.  y ) )
>. }  u.  { <. ( *r `  ndx ) ,  * >. } )  u.  ( {
<. (TopSet `  ndx ) ,  ( MetOpen `  ( abs  o. 
-  ) ) >. ,  <. ( le `  ndx ) ,  <_  >. ,  <. (
dist `  ndx ) ,  ( abs  o.  -  ) >. }  u.  { <. ( UnifSet `  ndx ) ,  (metUnif `  ( abs  o. 
-  ) ) >. } ) )
2 eqid 2193 . . . . 5  |-  ( {
<. ( Base `  ndx ) ,  CC >. ,  <. ( +g  `  ndx ) ,  ( x  e.  CC ,  y  e.  CC  |->  ( x  +  y ) ) >. ,  <. ( .r `  ndx ) ,  ( x  e.  CC ,  y  e.  CC  |->  ( x  x.  y ) )
>. }  u.  { <. ( *r `  ndx ) ,  * >. } )  =  ( {
<. ( Base `  ndx ) ,  CC >. ,  <. ( +g  `  ndx ) ,  ( x  e.  CC ,  y  e.  CC  |->  ( x  +  y ) ) >. ,  <. ( .r `  ndx ) ,  ( x  e.  CC ,  y  e.  CC  |->  ( x  x.  y ) )
>. }  u.  { <. ( *r `  ndx ) ,  * >. } )
3 cnex 7998 . . . . . 6  |-  CC  e.  _V
43a1i 9 . . . . 5  |-  ( T. 
->  CC  e.  _V )
53, 3mpoex 6269 . . . . . 6  |-  ( x  e.  CC ,  y  e.  CC  |->  ( x  +  y ) )  e.  _V
65a1i 9 . . . . 5  |-  ( T. 
->  ( x  e.  CC ,  y  e.  CC  |->  ( x  +  y
) )  e.  _V )
73, 3mpoex 6269 . . . . . 6  |-  ( x  e.  CC ,  y  e.  CC  |->  ( x  x.  y ) )  e.  _V
87a1i 9 . . . . 5  |-  ( T. 
->  ( x  e.  CC ,  y  e.  CC  |->  ( x  x.  y
) )  e.  _V )
9 cjf 10994 . . . . . . 7  |-  * : CC --> CC
10 fex 5788 . . . . . . 7  |-  ( ( * : CC --> CC  /\  CC  e.  _V )  ->  *  e.  _V )
119, 3, 10mp2an 426 . . . . . 6  |-  *  e. 
_V
1211a1i 9 . . . . 5  |-  ( T. 
->  *  e.  _V )
132, 4, 6, 8, 12srngstrd 12766 . . . 4  |-  ( T. 
->  ( { <. ( Base `  ndx ) ,  CC >. ,  <. ( +g  `  ndx ) ,  ( x  e.  CC ,  y  e.  CC  |->  ( x  +  y
) ) >. ,  <. ( .r `  ndx ) ,  ( x  e.  CC ,  y  e.  CC  |->  ( x  x.  y ) ) >. }  u.  { <. (
*r `  ndx ) ,  * >. } ) Struct  <. 1 ,  4
>. )
1413mptru 1373 . . 3  |-  ( {
<. ( Base `  ndx ) ,  CC >. ,  <. ( +g  `  ndx ) ,  ( x  e.  CC ,  y  e.  CC  |->  ( x  +  y ) ) >. ,  <. ( .r `  ndx ) ,  ( x  e.  CC ,  y  e.  CC  |->  ( x  x.  y ) )
>. }  u.  { <. ( *r `  ndx ) ,  * >. } ) Struct  <. 1 ,  4
>.
15 cntopex 14053 . . . . 5  |-  ( MetOpen `  ( abs  o.  -  )
)  e.  _V
16 xrex 9925 . . . . . . 7  |-  RR*  e.  _V
1716, 16xpex 4775 . . . . . 6  |-  ( RR*  X. 
RR* )  e.  _V
18 lerelxr 8084 . . . . . 6  |-  <_  C_  ( RR*  X.  RR* )
1917, 18ssexi 4168 . . . . 5  |-  <_  e.  _V
20 cndsex 14052 . . . . 5  |-  ( abs 
o.  -  )  e.  _V
21 9nn 9153 . . . . . 6  |-  9  e.  NN
22 tsetndx 12806 . . . . . 6  |-  (TopSet `  ndx )  =  9
23 9lt10 9581 . . . . . 6  |-  9  < ; 1
0
24 10nn 9466 . . . . . 6  |- ; 1 0  e.  NN
25 plendx 12820 . . . . . 6  |-  ( le
`  ndx )  = ; 1 0
26 1nn0 9259 . . . . . . 7  |-  1  e.  NN0
27 0nn0 9258 . . . . . . 7  |-  0  e.  NN0
28 2nn 9146 . . . . . . 7  |-  2  e.  NN
29 2pos 9075 . . . . . . 7  |-  0  <  2
3026, 27, 28, 29declt 9478 . . . . . 6  |- ; 1 0  < ; 1 2
3126, 28decnncl 9470 . . . . . 6  |- ; 1 2  e.  NN
32 dsndx 12831 . . . . . 6  |-  ( dist `  ndx )  = ; 1 2
3321, 22, 23, 24, 25, 30, 31, 32strle3g 12729 . . . . 5  |-  ( ( ( MetOpen `  ( abs  o. 
-  ) )  e. 
_V  /\  <_  e.  _V  /\  ( abs  o.  -  )  e.  _V )  ->  { <. (TopSet `  ndx ) ,  ( MetOpen `  ( abs  o.  -  )
) >. ,  <. ( le `  ndx ) ,  <_  >. ,  <. ( dist `  ndx ) ,  ( abs  o.  -  ) >. } Struct  <. 9 , ; 1
2 >. )
3415, 19, 20, 33mp3an 1348 . . . 4  |-  { <. (TopSet `  ndx ) ,  (
MetOpen `  ( abs  o.  -  ) ) >. ,  <. ( le `  ndx ) ,  <_  >. ,  <. (
dist `  ndx ) ,  ( abs  o.  -  ) >. } Struct  <. 9 , ; 1
2 >.
35 metuex 14054 . . . . 5  |-  ( ( abs  o.  -  )  e.  _V  ->  (metUnif `  ( abs  o.  -  ) )  e.  _V )
36 3nn 9147 . . . . . . 7  |-  3  e.  NN
3726, 36decnncl 9470 . . . . . 6  |- ; 1 3  e.  NN
38 unifndx 12842 . . . . . 6  |-  ( UnifSet ` 
ndx )  = ; 1 3
3937, 38strle1g 12727 . . . . 5  |-  ( (metUnif `  ( abs  o.  -  ) )  e.  _V  ->  { <. ( UnifSet `  ndx ) ,  (metUnif `  ( abs  o.  -  ) )
>. } Struct  <.; 1 3 , ; 1 3 >. )
4020, 35, 39mp2b 8 . . . 4  |-  { <. (
UnifSet `  ndx ) ,  (metUnif `  ( abs  o. 
-  ) ) >. } Struct  <.; 1 3 , ; 1 3 >.
41 2nn0 9260 . . . . 5  |-  2  e.  NN0
42 2lt3 9155 . . . . 5  |-  2  <  3
4326, 41, 36, 42declt 9478 . . . 4  |- ; 1 2  < ; 1 3
4434, 40, 43strleun 12725 . . 3  |-  ( {
<. (TopSet `  ndx ) ,  ( MetOpen `  ( abs  o. 
-  ) ) >. ,  <. ( le `  ndx ) ,  <_  >. ,  <. (
dist `  ndx ) ,  ( abs  o.  -  ) >. }  u.  { <. ( UnifSet `  ndx ) ,  (metUnif `  ( abs  o. 
-  ) ) >. } ) Struct  <. 9 , ; 1
3 >.
45 4lt9 9186 . . 3  |-  4  <  9
4614, 44, 45strleun 12725 . 2  |-  ( ( { <. ( Base `  ndx ) ,  CC >. ,  <. ( +g  `  ndx ) ,  ( x  e.  CC ,  y  e.  CC  |->  ( x  +  y ) ) >. ,  <. ( .r `  ndx ) ,  ( x  e.  CC ,  y  e.  CC  |->  ( x  x.  y ) )
>. }  u.  { <. ( *r `  ndx ) ,  * >. } )  u.  ( {
<. (TopSet `  ndx ) ,  ( MetOpen `  ( abs  o. 
-  ) ) >. ,  <. ( le `  ndx ) ,  <_  >. ,  <. (
dist `  ndx ) ,  ( abs  o.  -  ) >. }  u.  { <. ( UnifSet `  ndx ) ,  (metUnif `  ( abs  o. 
-  ) ) >. } ) ) Struct  <. 1 , ; 1 3 >.
471, 46eqbrtri 4051 1  |-fld Struct 
<. 1 , ; 1 3 >.
Colors of variables: wff set class
Syntax hints:   T. wtru 1365    e. wcel 2164   _Vcvv 2760    u. cun 3152   {csn 3619   {ctp 3621   <.cop 3622   class class class wbr 4030    X. cxp 4658    o. ccom 4664   -->wf 5251   ` cfv 5255  (class class class)co 5919    e. cmpo 5921   CCcc 7872   0cc0 7874   1c1 7875    + caddc 7877    x. cmul 7879   RR*cxr 8055    <_ cle 8057    - cmin 8192   2c2 9035   3c3 9036   4c4 9037   9c9 9042  ;cdc 9451   *ccj 10986   abscabs 11144   Struct cstr 12617   ndxcnx 12618   Basecbs 12621   +g cplusg 12698   .rcmulr 12699   *rcstv 12700  TopSetcts 12704   lecple 12705   distcds 12707   UnifSetcunif 12708   MetOpencmopn 14040  metUnifcmetu 14041  ℂfldccnfld 14055
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-mulrcl 7973  ax-addcom 7974  ax-mulcom 7975  ax-addass 7976  ax-mulass 7977  ax-distr 7978  ax-i2m1 7979  ax-0lt1 7980  ax-1rid 7981  ax-0id 7982  ax-rnegex 7983  ax-precex 7984  ax-cnre 7985  ax-pre-ltirr 7986  ax-pre-ltwlin 7987  ax-pre-lttrn 7988  ax-pre-apti 7989  ax-pre-ltadd 7990  ax-pre-mulgt0 7991
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-sn 3625  df-pr 3626  df-tp 3627  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-pnf 8058  df-mnf 8059  df-xr 8060  df-ltxr 8061  df-le 8062  df-sub 8194  df-neg 8195  df-reap 8596  df-inn 8985  df-2 9043  df-3 9044  df-4 9045  df-5 9046  df-6 9047  df-7 9048  df-8 9049  df-9 9050  df-n0 9244  df-z 9321  df-dec 9452  df-uz 9596  df-rp 9723  df-fz 10078  df-cj 10989  df-abs 11146  df-struct 12623  df-ndx 12624  df-slot 12625  df-base 12627  df-plusg 12711  df-mulr 12712  df-starv 12713  df-tset 12717  df-ple 12718  df-ds 12720  df-unif 12721  df-topgen 12874  df-bl 14045  df-mopn 14046  df-fg 14048  df-metu 14049  df-cnfld 14056
This theorem is referenced by:  cnfldex  14058  cnfldbas  14059  mpocnfldadd  14060  mpocnfldmul  14062  cnfldcj  14064  cnfldtset  14065  cnfldle  14066  cnfldds  14067
  Copyright terms: Public domain W3C validator