ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnfldstr Unicode version

Theorem cnfldstr 14522
Description: The field of complex numbers is a structure. (Contributed by Mario Carneiro, 14-Aug-2015.) (Revised by Thierry Arnoux, 17-Dec-2017.)
Assertion
Ref Expression
cnfldstr  |-fld Struct 
<. 1 , ; 1 3 >.

Proof of Theorem cnfldstr
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-cnfld 14521 . 2  |-fld  =  ( ( { <. ( Base `  ndx ) ,  CC >. ,  <. ( +g  `  ndx ) ,  ( x  e.  CC ,  y  e.  CC  |->  ( x  +  y ) ) >. ,  <. ( .r `  ndx ) ,  ( x  e.  CC ,  y  e.  CC  |->  ( x  x.  y ) )
>. }  u.  { <. ( *r `  ndx ) ,  * >. } )  u.  ( {
<. (TopSet `  ndx ) ,  ( MetOpen `  ( abs  o. 
-  ) ) >. ,  <. ( le `  ndx ) ,  <_  >. ,  <. (
dist `  ndx ) ,  ( abs  o.  -  ) >. }  u.  { <. ( UnifSet `  ndx ) ,  (metUnif `  ( abs  o. 
-  ) ) >. } ) )
2 eqid 2229 . . . . 5  |-  ( {
<. ( Base `  ndx ) ,  CC >. ,  <. ( +g  `  ndx ) ,  ( x  e.  CC ,  y  e.  CC  |->  ( x  +  y ) ) >. ,  <. ( .r `  ndx ) ,  ( x  e.  CC ,  y  e.  CC  |->  ( x  x.  y ) )
>. }  u.  { <. ( *r `  ndx ) ,  * >. } )  =  ( {
<. ( Base `  ndx ) ,  CC >. ,  <. ( +g  `  ndx ) ,  ( x  e.  CC ,  y  e.  CC  |->  ( x  +  y ) ) >. ,  <. ( .r `  ndx ) ,  ( x  e.  CC ,  y  e.  CC  |->  ( x  x.  y ) )
>. }  u.  { <. ( *r `  ndx ) ,  * >. } )
3 cnex 8123 . . . . . 6  |-  CC  e.  _V
43a1i 9 . . . . 5  |-  ( T. 
->  CC  e.  _V )
53, 3mpoex 6360 . . . . . 6  |-  ( x  e.  CC ,  y  e.  CC  |->  ( x  +  y ) )  e.  _V
65a1i 9 . . . . 5  |-  ( T. 
->  ( x  e.  CC ,  y  e.  CC  |->  ( x  +  y
) )  e.  _V )
73, 3mpoex 6360 . . . . . 6  |-  ( x  e.  CC ,  y  e.  CC  |->  ( x  x.  y ) )  e.  _V
87a1i 9 . . . . 5  |-  ( T. 
->  ( x  e.  CC ,  y  e.  CC  |->  ( x  x.  y
) )  e.  _V )
9 cjf 11358 . . . . . . 7  |-  * : CC --> CC
10 fex 5868 . . . . . . 7  |-  ( ( * : CC --> CC  /\  CC  e.  _V )  ->  *  e.  _V )
119, 3, 10mp2an 426 . . . . . 6  |-  *  e. 
_V
1211a1i 9 . . . . 5  |-  ( T. 
->  *  e.  _V )
132, 4, 6, 8, 12srngstrd 13179 . . . 4  |-  ( T. 
->  ( { <. ( Base `  ndx ) ,  CC >. ,  <. ( +g  `  ndx ) ,  ( x  e.  CC ,  y  e.  CC  |->  ( x  +  y
) ) >. ,  <. ( .r `  ndx ) ,  ( x  e.  CC ,  y  e.  CC  |->  ( x  x.  y ) ) >. }  u.  { <. (
*r `  ndx ) ,  * >. } ) Struct  <. 1 ,  4
>. )
1413mptru 1404 . . 3  |-  ( {
<. ( Base `  ndx ) ,  CC >. ,  <. ( +g  `  ndx ) ,  ( x  e.  CC ,  y  e.  CC  |->  ( x  +  y ) ) >. ,  <. ( .r `  ndx ) ,  ( x  e.  CC ,  y  e.  CC  |->  ( x  x.  y ) )
>. }  u.  { <. ( *r `  ndx ) ,  * >. } ) Struct  <. 1 ,  4
>.
15 cntopex 14518 . . . . 5  |-  ( MetOpen `  ( abs  o.  -  )
)  e.  _V
16 xrex 10052 . . . . . . 7  |-  RR*  e.  _V
1716, 16xpex 4834 . . . . . 6  |-  ( RR*  X. 
RR* )  e.  _V
18 lerelxr 8209 . . . . . 6  |-  <_  C_  ( RR*  X.  RR* )
1917, 18ssexi 4222 . . . . 5  |-  <_  e.  _V
20 cndsex 14517 . . . . 5  |-  ( abs 
o.  -  )  e.  _V
21 9nn 9279 . . . . . 6  |-  9  e.  NN
22 tsetndx 13219 . . . . . 6  |-  (TopSet `  ndx )  =  9
23 9lt10 9708 . . . . . 6  |-  9  < ; 1
0
24 10nn 9593 . . . . . 6  |- ; 1 0  e.  NN
25 plendx 13233 . . . . . 6  |-  ( le
`  ndx )  = ; 1 0
26 1nn0 9385 . . . . . . 7  |-  1  e.  NN0
27 0nn0 9384 . . . . . . 7  |-  0  e.  NN0
28 2nn 9272 . . . . . . 7  |-  2  e.  NN
29 2pos 9201 . . . . . . 7  |-  0  <  2
3026, 27, 28, 29declt 9605 . . . . . 6  |- ; 1 0  < ; 1 2
3126, 28decnncl 9597 . . . . . 6  |- ; 1 2  e.  NN
32 dsndx 13248 . . . . . 6  |-  ( dist `  ndx )  = ; 1 2
3321, 22, 23, 24, 25, 30, 31, 32strle3g 13141 . . . . 5  |-  ( ( ( MetOpen `  ( abs  o. 
-  ) )  e. 
_V  /\  <_  e.  _V  /\  ( abs  o.  -  )  e.  _V )  ->  { <. (TopSet `  ndx ) ,  ( MetOpen `  ( abs  o.  -  )
) >. ,  <. ( le `  ndx ) ,  <_  >. ,  <. ( dist `  ndx ) ,  ( abs  o.  -  ) >. } Struct  <. 9 , ; 1
2 >. )
3415, 19, 20, 33mp3an 1371 . . . 4  |-  { <. (TopSet `  ndx ) ,  (
MetOpen `  ( abs  o.  -  ) ) >. ,  <. ( le `  ndx ) ,  <_  >. ,  <. (
dist `  ndx ) ,  ( abs  o.  -  ) >. } Struct  <. 9 , ; 1
2 >.
35 metuex 14519 . . . . 5  |-  ( ( abs  o.  -  )  e.  _V  ->  (metUnif `  ( abs  o.  -  ) )  e.  _V )
36 3nn 9273 . . . . . . 7  |-  3  e.  NN
3726, 36decnncl 9597 . . . . . 6  |- ; 1 3  e.  NN
38 unifndx 13259 . . . . . 6  |-  ( UnifSet ` 
ndx )  = ; 1 3
3937, 38strle1g 13139 . . . . 5  |-  ( (metUnif `  ( abs  o.  -  ) )  e.  _V  ->  { <. ( UnifSet `  ndx ) ,  (metUnif `  ( abs  o.  -  ) )
>. } Struct  <.; 1 3 , ; 1 3 >. )
4020, 35, 39mp2b 8 . . . 4  |-  { <. (
UnifSet `  ndx ) ,  (metUnif `  ( abs  o. 
-  ) ) >. } Struct  <.; 1 3 , ; 1 3 >.
41 2nn0 9386 . . . . 5  |-  2  e.  NN0
42 2lt3 9281 . . . . 5  |-  2  <  3
4326, 41, 36, 42declt 9605 . . . 4  |- ; 1 2  < ; 1 3
4434, 40, 43strleun 13137 . . 3  |-  ( {
<. (TopSet `  ndx ) ,  ( MetOpen `  ( abs  o. 
-  ) ) >. ,  <. ( le `  ndx ) ,  <_  >. ,  <. (
dist `  ndx ) ,  ( abs  o.  -  ) >. }  u.  { <. ( UnifSet `  ndx ) ,  (metUnif `  ( abs  o. 
-  ) ) >. } ) Struct  <. 9 , ; 1
3 >.
45 4lt9 9312 . . 3  |-  4  <  9
4614, 44, 45strleun 13137 . 2  |-  ( ( { <. ( Base `  ndx ) ,  CC >. ,  <. ( +g  `  ndx ) ,  ( x  e.  CC ,  y  e.  CC  |->  ( x  +  y ) ) >. ,  <. ( .r `  ndx ) ,  ( x  e.  CC ,  y  e.  CC  |->  ( x  x.  y ) )
>. }  u.  { <. ( *r `  ndx ) ,  * >. } )  u.  ( {
<. (TopSet `  ndx ) ,  ( MetOpen `  ( abs  o. 
-  ) ) >. ,  <. ( le `  ndx ) ,  <_  >. ,  <. (
dist `  ndx ) ,  ( abs  o.  -  ) >. }  u.  { <. ( UnifSet `  ndx ) ,  (metUnif `  ( abs  o. 
-  ) ) >. } ) ) Struct  <. 1 , ; 1 3 >.
471, 46eqbrtri 4104 1  |-fld Struct 
<. 1 , ; 1 3 >.
Colors of variables: wff set class
Syntax hints:   T. wtru 1396    e. wcel 2200   _Vcvv 2799    u. cun 3195   {csn 3666   {ctp 3668   <.cop 3669   class class class wbr 4083    X. cxp 4717    o. ccom 4723   -->wf 5314   ` cfv 5318  (class class class)co 6001    e. cmpo 6003   CCcc 7997   0cc0 7999   1c1 8000    + caddc 8002    x. cmul 8004   RR*cxr 8180    <_ cle 8182    - cmin 8317   2c2 9161   3c3 9162   4c4 9163   9c9 9168  ;cdc 9578   *ccj 11350   abscabs 11508   Struct cstr 13028   ndxcnx 13029   Basecbs 13032   +g cplusg 13110   .rcmulr 13111   *rcstv 13112  TopSetcts 13116   lecple 13117   distcds 13119   UnifSetcunif 13120   MetOpencmopn 14505  metUnifcmetu 14506  ℂfldccnfld 14520
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-mulrcl 8098  ax-addcom 8099  ax-mulcom 8100  ax-addass 8101  ax-mulass 8102  ax-distr 8103  ax-i2m1 8104  ax-0lt1 8105  ax-1rid 8106  ax-0id 8107  ax-rnegex 8108  ax-precex 8109  ax-cnre 8110  ax-pre-ltirr 8111  ax-pre-ltwlin 8112  ax-pre-lttrn 8113  ax-pre-apti 8114  ax-pre-ltadd 8115  ax-pre-mulgt0 8116
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-tp 3674  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-1st 6286  df-2nd 6287  df-pnf 8183  df-mnf 8184  df-xr 8185  df-ltxr 8186  df-le 8187  df-sub 8319  df-neg 8320  df-reap 8722  df-inn 9111  df-2 9169  df-3 9170  df-4 9171  df-5 9172  df-6 9173  df-7 9174  df-8 9175  df-9 9176  df-n0 9370  df-z 9447  df-dec 9579  df-uz 9723  df-rp 9850  df-fz 10205  df-cj 11353  df-abs 11510  df-struct 13034  df-ndx 13035  df-slot 13036  df-base 13038  df-plusg 13123  df-mulr 13124  df-starv 13125  df-tset 13129  df-ple 13130  df-ds 13132  df-unif 13133  df-topgen 13293  df-bl 14510  df-mopn 14511  df-fg 14513  df-metu 14514  df-cnfld 14521
This theorem is referenced by:  cnfldex  14523  cnfldbas  14524  mpocnfldadd  14525  mpocnfldmul  14527  cnfldcj  14529  cnfldtset  14530  cnfldle  14531  cnfldds  14532
  Copyright terms: Public domain W3C validator