| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cnfldstr | Unicode version | ||
| Description: The field of complex numbers is a structure. (Contributed by Mario Carneiro, 14-Aug-2015.) (Revised by Thierry Arnoux, 17-Dec-2017.) |
| Ref | Expression |
|---|---|
| cnfldstr |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-cnfld 14434 |
. 2
| |
| 2 | eqid 2207 |
. . . . 5
| |
| 3 | cnex 8084 |
. . . . . 6
| |
| 4 | 3 | a1i 9 |
. . . . 5
|
| 5 | 3, 3 | mpoex 6323 |
. . . . . 6
|
| 6 | 5 | a1i 9 |
. . . . 5
|
| 7 | 3, 3 | mpoex 6323 |
. . . . . 6
|
| 8 | 7 | a1i 9 |
. . . . 5
|
| 9 | cjf 11273 |
. . . . . . 7
| |
| 10 | fex 5836 |
. . . . . . 7
| |
| 11 | 9, 3, 10 | mp2an 426 |
. . . . . 6
|
| 12 | 11 | a1i 9 |
. . . . 5
|
| 13 | 2, 4, 6, 8, 12 | srngstrd 13093 |
. . . 4
|
| 14 | 13 | mptru 1382 |
. . 3
|
| 15 | cntopex 14431 |
. . . . 5
| |
| 16 | xrex 10013 |
. . . . . . 7
| |
| 17 | 16, 16 | xpex 4808 |
. . . . . 6
|
| 18 | lerelxr 8170 |
. . . . . 6
| |
| 19 | 17, 18 | ssexi 4198 |
. . . . 5
|
| 20 | cndsex 14430 |
. . . . 5
| |
| 21 | 9nn 9240 |
. . . . . 6
| |
| 22 | tsetndx 13133 |
. . . . . 6
| |
| 23 | 9lt10 9669 |
. . . . . 6
| |
| 24 | 10nn 9554 |
. . . . . 6
| |
| 25 | plendx 13147 |
. . . . . 6
| |
| 26 | 1nn0 9346 |
. . . . . . 7
| |
| 27 | 0nn0 9345 |
. . . . . . 7
| |
| 28 | 2nn 9233 |
. . . . . . 7
| |
| 29 | 2pos 9162 |
. . . . . . 7
| |
| 30 | 26, 27, 28, 29 | declt 9566 |
. . . . . 6
|
| 31 | 26, 28 | decnncl 9558 |
. . . . . 6
|
| 32 | dsndx 13162 |
. . . . . 6
| |
| 33 | 21, 22, 23, 24, 25, 30, 31, 32 | strle3g 13055 |
. . . . 5
|
| 34 | 15, 19, 20, 33 | mp3an 1350 |
. . . 4
|
| 35 | metuex 14432 |
. . . . 5
| |
| 36 | 3nn 9234 |
. . . . . . 7
| |
| 37 | 26, 36 | decnncl 9558 |
. . . . . 6
|
| 38 | unifndx 13173 |
. . . . . 6
| |
| 39 | 37, 38 | strle1g 13053 |
. . . . 5
|
| 40 | 20, 35, 39 | mp2b 8 |
. . . 4
|
| 41 | 2nn0 9347 |
. . . . 5
| |
| 42 | 2lt3 9242 |
. . . . 5
| |
| 43 | 26, 41, 36, 42 | declt 9566 |
. . . 4
|
| 44 | 34, 40, 43 | strleun 13051 |
. . 3
|
| 45 | 4lt9 9273 |
. . 3
| |
| 46 | 14, 44, 45 | strleun 13051 |
. 2
|
| 47 | 1, 46 | eqbrtri 4080 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-coll 4175 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-cnex 8051 ax-resscn 8052 ax-1cn 8053 ax-1re 8054 ax-icn 8055 ax-addcl 8056 ax-addrcl 8057 ax-mulcl 8058 ax-mulrcl 8059 ax-addcom 8060 ax-mulcom 8061 ax-addass 8062 ax-mulass 8063 ax-distr 8064 ax-i2m1 8065 ax-0lt1 8066 ax-1rid 8067 ax-0id 8068 ax-rnegex 8069 ax-precex 8070 ax-cnre 8071 ax-pre-ltirr 8072 ax-pre-ltwlin 8073 ax-pre-lttrn 8074 ax-pre-apti 8075 ax-pre-ltadd 8076 ax-pre-mulgt0 8077 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-nel 2474 df-ral 2491 df-rex 2492 df-reu 2493 df-rmo 2494 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-pw 3628 df-sn 3649 df-pr 3650 df-tp 3651 df-op 3652 df-uni 3865 df-int 3900 df-iun 3943 df-br 4060 df-opab 4122 df-mpt 4123 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-fv 5298 df-riota 5922 df-ov 5970 df-oprab 5971 df-mpo 5972 df-1st 6249 df-2nd 6250 df-pnf 8144 df-mnf 8145 df-xr 8146 df-ltxr 8147 df-le 8148 df-sub 8280 df-neg 8281 df-reap 8683 df-inn 9072 df-2 9130 df-3 9131 df-4 9132 df-5 9133 df-6 9134 df-7 9135 df-8 9136 df-9 9137 df-n0 9331 df-z 9408 df-dec 9540 df-uz 9684 df-rp 9811 df-fz 10166 df-cj 11268 df-abs 11425 df-struct 12949 df-ndx 12950 df-slot 12951 df-base 12953 df-plusg 13037 df-mulr 13038 df-starv 13039 df-tset 13043 df-ple 13044 df-ds 13046 df-unif 13047 df-topgen 13207 df-bl 14423 df-mopn 14424 df-fg 14426 df-metu 14427 df-cnfld 14434 |
| This theorem is referenced by: cnfldex 14436 cnfldbas 14437 mpocnfldadd 14438 mpocnfldmul 14440 cnfldcj 14442 cnfldtset 14443 cnfldle 14444 cnfldds 14445 |
| Copyright terms: Public domain | W3C validator |