HomeHome Intuitionistic Logic Explorer
Theorem List (p. 75 of 162)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 7401-7500   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremcc4f 7401* Countable choice by showing the existence of a function  f which can choose a value at each index 
n such that  ch holds. (Contributed by Mario Carneiro, 7-Apr-2013.) (Revised by Jim Kingdon, 3-May-2024.)
 |-  ( ph  -> CCHOICE )   &    |-  ( ph  ->  A  e.  V )   &    |-  F/_ n A   &    |-  ( ph  ->  N  ~~ 
 om )   &    |-  ( x  =  ( f `  n )  ->  ( ps  <->  ch ) )   &    |-  ( ph  ->  A. n  e.  N  E. x  e.  A  ps )   =>    |-  ( ph  ->  E. f
 ( f : N --> A  /\  A. n  e.  N  ch ) )
 
Theoremcc4 7402* Countable choice by showing the existence of a function  f which can choose a value at each index 
n such that  ch holds. (Contributed by Mario Carneiro, 7-Apr-2013.) (Revised by Jim Kingdon, 1-May-2024.)
 |-  ( ph  -> CCHOICE )   &    |-  ( ph  ->  A  e.  V )   &    |-  ( ph  ->  N  ~~  om )   &    |-  ( x  =  ( f `  n ) 
 ->  ( ps  <->  ch ) )   &    |-  ( ph  ->  A. n  e.  N  E. x  e.  A  ps )   =>    |-  ( ph  ->  E. f
 ( f : N --> A  /\  A. n  e.  N  ch ) )
 
Theoremcc4n 7403* Countable choice with a simpler restriction on how every set in the countable collection needs to be inhabited. That is, compared with cc4 7402, the hypotheses only require an A(n) for each value of  n, not a single set  A which suffices for every 
n  e.  om. (Contributed by Mario Carneiro, 7-Apr-2013.) (Revised by Jim Kingdon, 3-May-2024.)
 |-  ( ph  -> CCHOICE )   &    |-  ( ph  ->  A. n  e.  N  { x  e.  A  |  ps }  e.  V )   &    |-  ( ph  ->  N  ~~  om )   &    |-  ( x  =  ( f `  n ) 
 ->  ( ps  <->  ch ) )   &    |-  ( ph  ->  A. n  e.  N  E. x  e.  A  ps )   =>    |-  ( ph  ->  E. f
 ( f  Fn  N  /\  A. n  e.  N  ch ) )
 
Theoremacnccim 7404 Given countable choice, every set has choice sets of length  om. (Contributed by Mario Carneiro, 31-Aug-2015.)
 |-  (CCHOICE 
 -> AC 
 om  =  _V )
 
PART 4  REAL AND COMPLEX NUMBERS

This section derives the basics of real and complex numbers.

To construct the real numbers constructively, we follow two main sources. The first is Metamath Proof Explorer, which has the advantage of being already formalized in metamath. Its disadvantage, for our purposes, is that it assumes the law of the excluded middle throughout. Since we have already developed natural numbers ( for example, nna0 6573 and similar theorems ), going from there to positive integers (df-ni 7437) and then positive rational numbers (df-nqqs 7481) does not involve a major change in approach compared with the Metamath Proof Explorer.

It is when we proceed to Dedekind cuts that we bring in more material from Section 11.2 of [HoTT], which focuses on the aspects of Dedekind cuts which are different without excluded middle or choice principles. With excluded middle, it is natural to define a cut as the lower set only (as Metamath Proof Explorer does), but here we define the cut as a pair of both the lower and upper sets, as [HoTT] does. There are also differences in how we handle order and replacing "not equal to zero" with "apart from zero".

When working constructively, there are several possible definitions of real numbers. Here we adopt the most common definition, as two-sided Dedekind cuts with the properties described at df-inp 7599. The Cauchy reals (without countable choice) fail to satisfy ax-caucvg 8065 and the MacNeille reals fail to satisfy axltwlin 8160, and we do not develop them here. For more on differing definitions of the reals, see the introduction to Chapter 11 in [HoTT] or Section 1.2 of [BauerHanson].

 
4.1  Construction and axiomatization of real and complex numbers
 
4.1.1  Dedekind-cut construction of real and complex numbers
 
Syntaxcnpi 7405 The set of positive integers, which is the set of natural numbers  om with 0 removed.

Note: This is the start of the Dedekind-cut construction of real and complex numbers.

 class  N.
 
Syntaxcpli 7406 Positive integer addition.
 class  +N
 
Syntaxcmi 7407 Positive integer multiplication.
 class  .N
 
Syntaxclti 7408 Positive integer ordering relation.
 class  <N
 
Syntaxcplpq 7409 Positive pre-fraction addition.
 class  +pQ
 
Syntaxcmpq 7410 Positive pre-fraction multiplication.
 class  .pQ
 
Syntaxcltpq 7411 Positive pre-fraction ordering relation.
 class  <pQ
 
Syntaxceq 7412 Equivalence class used to construct positive fractions.
 class  ~Q
 
Syntaxcnq 7413 Set of positive fractions.
 class  Q.
 
Syntaxc1q 7414 The positive fraction constant 1.
 class  1Q
 
Syntaxcplq 7415 Positive fraction addition.
 class  +Q
 
Syntaxcmq 7416 Positive fraction multiplication.
 class  .Q
 
Syntaxcrq 7417 Positive fraction reciprocal operation.
 class  *Q
 
Syntaxcltq 7418 Positive fraction ordering relation.
 class  <Q
 
Syntaxceq0 7419 Equivalence class used to construct nonnegative fractions.
 class ~Q0
 
Syntaxcnq0 7420 Set of nonnegative fractions.
 class Q0
 
Syntaxc0q0 7421 The nonnegative fraction constant 0.
 class 0Q0
 
Syntaxcplq0 7422 Nonnegative fraction addition.
 class +Q0
 
Syntaxcmq0 7423 Nonnegative fraction multiplication.
 class ·Q0
 
Syntaxcnp 7424 Set of positive reals.
 class  P.
 
Syntaxc1p 7425 Positive real constant 1.
 class  1P
 
Syntaxcpp 7426 Positive real addition.
 class  +P.
 
Syntaxcmp 7427 Positive real multiplication.
 class  .P.
 
Syntaxcltp 7428 Positive real ordering relation.
 class  <P
 
Syntaxcer 7429 Equivalence class used to construct signed reals.
 class  ~R
 
Syntaxcnr 7430 Set of signed reals.
 class  R.
 
Syntaxc0r 7431 The signed real constant 0.
 class  0R
 
Syntaxc1r 7432 The signed real constant 1.
 class  1R
 
Syntaxcm1r 7433 The signed real constant -1.
 class  -1R
 
Syntaxcplr 7434 Signed real addition.
 class  +R
 
Syntaxcmr 7435 Signed real multiplication.
 class  .R
 
Syntaxcltr 7436 Signed real ordering relation.
 class  <R
 
Definitiondf-ni 7437 Define the class of positive integers. This is a "temporary" set used in the construction of complex numbers, and is intended to be used only by the construction. (Contributed by NM, 15-Aug-1995.)
 |- 
 N.  =  ( om  \  { (/) } )
 
Definitiondf-pli 7438 Define addition on positive integers. This is a "temporary" set used in the construction of complex numbers, and is intended to be used only by the construction. (Contributed by NM, 26-Aug-1995.)
 |- 
 +N  =  (  +o  |`  ( N.  X.  N. ) )
 
Definitiondf-mi 7439 Define multiplication on positive integers. This is a "temporary" set used in the construction of complex numbers and is intended to be used only by the construction. (Contributed by NM, 26-Aug-1995.)
 |- 
 .N  =  (  .o  |`  ( N.  X.  N. ) )
 
Definitiondf-lti 7440 Define 'less than' on positive integers. This is a "temporary" set used in the construction of complex numbers, and is intended to be used only by the construction. (Contributed by NM, 6-Feb-1996.)
 |- 
 <N  =  (  _E  i^i  ( N.  X.  N. ) )
 
Theoremelni 7441 Membership in the class of positive integers. (Contributed by NM, 15-Aug-1995.)
 |-  ( A  e.  N.  <->  ( A  e.  om  /\  A  =/= 
 (/) ) )
 
Theorempinn 7442 A positive integer is a natural number. (Contributed by NM, 15-Aug-1995.)
 |-  ( A  e.  N.  ->  A  e.  om )
 
Theorempion 7443 A positive integer is an ordinal number. (Contributed by NM, 23-Mar-1996.)
 |-  ( A  e.  N.  ->  A  e.  On )
 
Theorempiord 7444 A positive integer is ordinal. (Contributed by NM, 29-Jan-1996.)
 |-  ( A  e.  N.  ->  Ord  A )
 
Theoremniex 7445 The class of positive integers is a set. (Contributed by NM, 15-Aug-1995.)
 |- 
 N.  e.  _V
 
Theorem0npi 7446 The empty set is not a positive integer. (Contributed by NM, 26-Aug-1995.)
 |- 
 -.  (/)  e.  N.
 
Theoremelni2 7447 Membership in the class of positive integers. (Contributed by NM, 27-Nov-1995.)
 |-  ( A  e.  N.  <->  ( A  e.  om  /\  (/)  e.  A ) )
 
Theorem1pi 7448 Ordinal 'one' is a positive integer. (Contributed by NM, 29-Oct-1995.)
 |- 
 1o  e.  N.
 
Theoremaddpiord 7449 Positive integer addition in terms of ordinal addition. (Contributed by NM, 27-Aug-1995.)
 |-  ( ( A  e.  N. 
 /\  B  e.  N. )  ->  ( A  +N  B )  =  ( A  +o  B ) )
 
Theoremmulpiord 7450 Positive integer multiplication in terms of ordinal multiplication. (Contributed by NM, 27-Aug-1995.)
 |-  ( ( A  e.  N. 
 /\  B  e.  N. )  ->  ( A  .N  B )  =  ( A  .o  B ) )
 
Theoremmulidpi 7451 1 is an identity element for multiplication on positive integers. (Contributed by NM, 4-Mar-1996.) (Revised by Mario Carneiro, 17-Nov-2014.)
 |-  ( A  e.  N.  ->  ( A  .N  1o )  =  A )
 
Theoremltpiord 7452 Positive integer 'less than' in terms of ordinal membership. (Contributed by NM, 6-Feb-1996.) (Revised by Mario Carneiro, 28-Apr-2015.)
 |-  ( ( A  e.  N. 
 /\  B  e.  N. )  ->  ( A  <N  B  <->  A  e.  B )
 )
 
Theoremltsopi 7453 Positive integer 'less than' is a strict ordering. (Contributed by NM, 8-Feb-1996.) (Proof shortened by Mario Carneiro, 10-Jul-2014.)
 |- 
 <N  Or  N.
 
Theorempitric 7454 Trichotomy for positive integers. (Contributed by Jim Kingdon, 21-Sep-2019.)
 |-  ( ( A  e.  N. 
 /\  B  e.  N. )  ->  ( A  <N  B  <->  -.  ( A  =  B  \/  B  <N  A )
 ) )
 
Theorempitri3or 7455 Trichotomy for positive integers. (Contributed by Jim Kingdon, 21-Sep-2019.)
 |-  ( ( A  e.  N. 
 /\  B  e.  N. )  ->  ( A  <N  B  \/  A  =  B  \/  B  <N  A )
 )
 
Theoremltdcpi 7456 Less-than for positive integers is decidable. (Contributed by Jim Kingdon, 12-Dec-2019.)
 |-  ( ( A  e.  N. 
 /\  B  e.  N. )  -> DECID  A  <N  B )
 
Theoremltrelpi 7457 Positive integer 'less than' is a relation on positive integers. (Contributed by NM, 8-Feb-1996.)
 |- 
 <N  C_  ( N.  X.  N. )
 
Theoremdmaddpi 7458 Domain of addition on positive integers. (Contributed by NM, 26-Aug-1995.)
 |- 
 dom  +N  =  ( N.  X.  N. )
 
Theoremdmmulpi 7459 Domain of multiplication on positive integers. (Contributed by NM, 26-Aug-1995.)
 |- 
 dom  .N  =  ( N.  X.  N. )
 
Theoremaddclpi 7460 Closure of addition of positive integers. (Contributed by NM, 18-Oct-1995.)
 |-  ( ( A  e.  N. 
 /\  B  e.  N. )  ->  ( A  +N  B )  e.  N. )
 
Theoremmulclpi 7461 Closure of multiplication of positive integers. (Contributed by NM, 18-Oct-1995.)
 |-  ( ( A  e.  N. 
 /\  B  e.  N. )  ->  ( A  .N  B )  e.  N. )
 
Theoremaddcompig 7462 Addition of positive integers is commutative. (Contributed by Jim Kingdon, 26-Aug-2019.)
 |-  ( ( A  e.  N. 
 /\  B  e.  N. )  ->  ( A  +N  B )  =  ( B  +N  A ) )
 
Theoremaddasspig 7463 Addition of positive integers is associative. (Contributed by Jim Kingdon, 26-Aug-2019.)
 |-  ( ( A  e.  N. 
 /\  B  e.  N.  /\  C  e.  N. )  ->  ( ( A  +N  B )  +N  C )  =  ( A  +N  ( B  +N  C ) ) )
 
Theoremmulcompig 7464 Multiplication of positive integers is commutative. (Contributed by Jim Kingdon, 26-Aug-2019.)
 |-  ( ( A  e.  N. 
 /\  B  e.  N. )  ->  ( A  .N  B )  =  ( B  .N  A ) )
 
Theoremmulasspig 7465 Multiplication of positive integers is associative. (Contributed by Jim Kingdon, 26-Aug-2019.)
 |-  ( ( A  e.  N. 
 /\  B  e.  N.  /\  C  e.  N. )  ->  ( ( A  .N  B )  .N  C )  =  ( A  .N  ( B  .N  C ) ) )
 
Theoremdistrpig 7466 Multiplication of positive integers is distributive. (Contributed by Jim Kingdon, 26-Aug-2019.)
 |-  ( ( A  e.  N. 
 /\  B  e.  N.  /\  C  e.  N. )  ->  ( A  .N  ( B  +N  C ) )  =  ( ( A  .N  B )  +N  ( A  .N  C ) ) )
 
Theoremaddcanpig 7467 Addition cancellation law for positive integers. (Contributed by Jim Kingdon, 27-Aug-2019.)
 |-  ( ( A  e.  N. 
 /\  B  e.  N.  /\  C  e.  N. )  ->  ( ( A  +N  B )  =  ( A  +N  C )  <->  B  =  C ) )
 
Theoremmulcanpig 7468 Multiplication cancellation law for positive integers. (Contributed by Jim Kingdon, 29-Aug-2019.)
 |-  ( ( A  e.  N. 
 /\  B  e.  N.  /\  C  e.  N. )  ->  ( ( A  .N  B )  =  ( A  .N  C )  <->  B  =  C ) )
 
Theoremaddnidpig 7469 There is no identity element for addition on positive integers. (Contributed by NM, 28-Nov-1995.)
 |-  ( ( A  e.  N. 
 /\  B  e.  N. )  ->  -.  ( A  +N  B )  =  A )
 
Theoremltexpi 7470* Ordering on positive integers in terms of existence of sum. (Contributed by NM, 15-Mar-1996.) (Revised by Mario Carneiro, 14-Jun-2013.)
 |-  ( ( A  e.  N. 
 /\  B  e.  N. )  ->  ( A  <N  B  <->  E. x  e.  N.  ( A  +N  x )  =  B )
 )
 
Theoremltapig 7471 Ordering property of addition for positive integers. (Contributed by Jim Kingdon, 31-Aug-2019.)
 |-  ( ( A  e.  N. 
 /\  B  e.  N.  /\  C  e.  N. )  ->  ( A  <N  B  <->  ( C  +N  A )  <N  ( C  +N  B ) ) )
 
Theoremltmpig 7472 Ordering property of multiplication for positive integers. (Contributed by Jim Kingdon, 31-Aug-2019.)
 |-  ( ( A  e.  N. 
 /\  B  e.  N.  /\  C  e.  N. )  ->  ( A  <N  B  <->  ( C  .N  A )  <N  ( C  .N  B ) ) )
 
Theorem1lt2pi 7473 One is less than two (one plus one). (Contributed by NM, 13-Mar-1996.)
 |- 
 1o  <N  ( 1o  +N  1o )
 
Theoremnlt1pig 7474 No positive integer is less than one. (Contributed by Jim Kingdon, 31-Aug-2019.)
 |-  ( A  e.  N.  ->  -.  A  <N  1o )
 
Theoremindpi 7475* Principle of Finite Induction on positive integers. (Contributed by NM, 23-Mar-1996.)
 |-  ( x  =  1o  ->  ( ph  <->  ps ) )   &    |-  ( x  =  y  ->  (
 ph 
 <->  ch ) )   &    |-  ( x  =  ( y  +N  1o )  ->  ( ph 
 <-> 
 th ) )   &    |-  ( x  =  A  ->  (
 ph 
 <->  ta ) )   &    |-  ps   &    |-  (
 y  e.  N.  ->  ( ch  ->  th )
 )   =>    |-  ( A  e.  N.  ->  ta )
 
Theoremnnppipi 7476 A natural number plus a positive integer is a positive integer. (Contributed by Jim Kingdon, 10-Nov-2019.)
 |-  ( ( A  e.  om 
 /\  B  e.  N. )  ->  ( A  +o  B )  e.  N. )
 
Definitiondf-plpq 7477* Define pre-addition on positive fractions. This is a "temporary" set used in the construction of complex numbers, and is intended to be used only by the construction. This "pre-addition" operation works directly with ordered pairs of integers. The actual positive fraction addition  +Q (df-plqqs 7482) works with the equivalence classes of these ordered pairs determined by the equivalence relation  ~Q (df-enq 7480). (Analogous remarks apply to the other "pre-" operations in the complex number construction that follows.) From Proposition 9-2.3 of [Gleason] p. 117. (Contributed by NM, 28-Aug-1995.)
 |- 
 +pQ  =  ( x  e.  ( N.  X.  N. ) ,  y  e.  ( N.  X.  N. )  |-> 
 <. ( ( ( 1st `  x )  .N  ( 2nd `  y ) )  +N  ( ( 1st `  y )  .N  ( 2nd `  x ) ) ) ,  ( ( 2nd `  x )  .N  ( 2nd `  y
 ) ) >. )
 
Definitiondf-mpq 7478* Define pre-multiplication on positive fractions. This is a "temporary" set used in the construction of complex numbers, and is intended to be used only by the construction. From Proposition 9-2.4 of [Gleason] p. 119. (Contributed by NM, 28-Aug-1995.)
 |- 
 .pQ  =  ( x  e.  ( N.  X.  N. ) ,  y  e.  ( N.  X.  N. )  |-> 
 <. ( ( 1st `  x )  .N  ( 1st `  y
 ) ) ,  (
 ( 2nd `  x )  .N  ( 2nd `  y
 ) ) >. )
 
Definitiondf-ltpq 7479* Define pre-ordering relation on positive fractions. This is a "temporary" set used in the construction of complex numbers, and is intended to be used only by the construction. Similar to Definition 5 of [Suppes] p. 162. (Contributed by NM, 28-Aug-1995.)
 |- 
 <pQ  =  { <. x ,  y >.  |  ( ( x  e.  ( N. 
 X.  N. )  /\  y  e.  ( N.  X.  N. ) )  /\  ( ( 1st `  x )  .N  ( 2nd `  y
 ) )  <N  ( ( 1st `  y )  .N  ( 2nd `  x ) ) ) }
 
Definitiondf-enq 7480* Define equivalence relation for positive fractions. This is a "temporary" set used in the construction of complex numbers, and is intended to be used only by the construction. From Proposition 9-2.1 of [Gleason] p. 117. (Contributed by NM, 27-Aug-1995.)
 |- 
 ~Q  =  { <. x ,  y >.  |  ( ( x  e.  ( N.  X.  N. )  /\  y  e.  ( N.  X. 
 N. ) )  /\  E. z E. w E. v E. u ( ( x  =  <. z ,  w >.  /\  y  = 
 <. v ,  u >. ) 
 /\  ( z  .N  u )  =  ( w  .N  v ) ) ) }
 
Definitiondf-nqqs 7481 Define class of positive fractions. This is a "temporary" set used in the construction of complex numbers, and is intended to be used only by the construction. From Proposition 9-2.2 of [Gleason] p. 117. (Contributed by NM, 16-Aug-1995.)
 |- 
 Q.  =  ( ( N.  X.  N. ) /.  ~Q  )
 
Definitiondf-plqqs 7482* Define addition on positive fractions. This is a "temporary" set used in the construction of complex numbers, and is intended to be used only by the construction. From Proposition 9-2.3 of [Gleason] p. 117. (Contributed by NM, 24-Aug-1995.)
 |- 
 +Q  =  { <. <. x ,  y >. ,  z >.  |  (
 ( x  e.  Q.  /\  y  e.  Q. )  /\  E. w E. v E. u E. f ( ( x  =  [ <. w ,  v >. ] 
 ~Q  /\  y  =  [ <. u ,  f >. ]  ~Q  )  /\  z  =  [ ( <. w ,  v >.  +pQ  <. u ,  f >. ) ]  ~Q  ) ) }
 
Definitiondf-mqqs 7483* Define multiplication on positive fractions. This is a "temporary" set used in the construction of complex numbers, and is intended to be used only by the construction. From Proposition 9-2.4 of [Gleason] p. 119. (Contributed by NM, 24-Aug-1995.)
 |- 
 .Q  =  { <. <. x ,  y >. ,  z >.  |  (
 ( x  e.  Q.  /\  y  e.  Q. )  /\  E. w E. v E. u E. f ( ( x  =  [ <. w ,  v >. ] 
 ~Q  /\  y  =  [ <. u ,  f >. ]  ~Q  )  /\  z  =  [ ( <. w ,  v >.  .pQ  <. u ,  f >. ) ]  ~Q  ) ) }
 
Definitiondf-1nqqs 7484 Define positive fraction constant 1. This is a "temporary" set used in the construction of complex numbers, and is intended to be used only by the construction. From Proposition 9-2.2 of [Gleason] p. 117. (Contributed by NM, 29-Oct-1995.)
 |- 
 1Q  =  [ <. 1o ,  1o >. ]  ~Q
 
Definitiondf-rq 7485* Define reciprocal on positive fractions. It means the same thing as one divided by the argument (although we don't define full division since we will never need it). This is a "temporary" set used in the construction of complex numbers, and is intended to be used only by the construction. From Proposition 9-2.5 of [Gleason] p. 119, who uses an asterisk to denote this unary operation. (Contributed by Jim Kingdon, 20-Sep-2019.)
 |- 
 *Q  =  { <. x ,  y >.  |  ( x  e.  Q.  /\  y  e.  Q.  /\  ( x  .Q  y )  =  1Q ) }
 
Definitiondf-ltnqqs 7486* Define ordering relation on positive fractions. This is a "temporary" set used in the construction of complex numbers, and is intended to be used only by the construction. Similar to Definition 5 of [Suppes] p. 162. (Contributed by NM, 13-Feb-1996.)
 |- 
 <Q  =  { <. x ,  y >.  |  ( ( x  e.  Q.  /\  y  e.  Q. )  /\  E. z E. w E. v E. u ( ( x  =  [ <. z ,  w >. ] 
 ~Q  /\  y  =  [ <. v ,  u >. ]  ~Q  )  /\  ( z  .N  u )  <N  ( w  .N  v ) ) ) }
 
Theoremdfplpq2 7487* Alternate definition of pre-addition on positive fractions. (Contributed by Jim Kingdon, 12-Sep-2019.)
 |- 
 +pQ  =  { <. <. x ,  y >. ,  z >.  |  ( ( x  e.  ( N.  X.  N. )  /\  y  e.  ( N.  X.  N. ) ) 
 /\  E. w E. v E. u E. f ( ( x  =  <. w ,  v >.  /\  y  =  <. u ,  f >. )  /\  z  = 
 <. ( ( w  .N  f )  +N  (
 v  .N  u )
 ) ,  ( v  .N  f ) >. ) ) }
 
Theoremdfmpq2 7488* Alternate definition of pre-multiplication on positive fractions. (Contributed by Jim Kingdon, 13-Sep-2019.)
 |- 
 .pQ  =  { <. <. x ,  y >. ,  z >.  |  ( ( x  e.  ( N.  X.  N. )  /\  y  e.  ( N.  X.  N. ) ) 
 /\  E. w E. v E. u E. f ( ( x  =  <. w ,  v >.  /\  y  =  <. u ,  f >. )  /\  z  = 
 <. ( w  .N  u ) ,  ( v  .N  f ) >. ) ) }
 
Theoremenqbreq 7489 Equivalence relation for positive fractions in terms of positive integers. (Contributed by NM, 27-Aug-1995.)
 |-  ( ( ( A  e.  N.  /\  B  e.  N. )  /\  ( C  e.  N.  /\  D  e.  N. ) )  ->  ( <. A ,  B >.  ~Q  <. C ,  D >.  <-> 
 ( A  .N  D )  =  ( B  .N  C ) ) )
 
Theoremenqbreq2 7490 Equivalence relation for positive fractions in terms of positive integers. (Contributed by Mario Carneiro, 8-May-2013.)
 |-  ( ( A  e.  ( N.  X.  N. )  /\  B  e.  ( N. 
 X.  N. ) )  ->  ( A  ~Q  B  <->  ( ( 1st `  A )  .N  ( 2nd `  B ) )  =  ( ( 1st `  B )  .N  ( 2nd `  A ) ) ) )
 
Theoremenqer 7491 The equivalence relation for positive fractions is an equivalence relation. Proposition 9-2.1 of [Gleason] p. 117. (Contributed by NM, 27-Aug-1995.) (Revised by Mario Carneiro, 6-Jul-2015.)
 |- 
 ~Q  Er  ( N.  X. 
 N. )
 
Theoremenqeceq 7492 Equivalence class equality of positive fractions in terms of positive integers. (Contributed by NM, 29-Nov-1995.)
 |-  ( ( ( A  e.  N.  /\  B  e.  N. )  /\  ( C  e.  N.  /\  D  e.  N. ) )  ->  ( [ <. A ,  B >. ]  ~Q  =  [ <. C ,  D >. ] 
 ~Q 
 <->  ( A  .N  D )  =  ( B  .N  C ) ) )
 
Theoremenqex 7493 The equivalence relation for positive fractions exists. (Contributed by NM, 3-Sep-1995.)
 |- 
 ~Q  e.  _V
 
Theoremenqdc 7494 The equivalence relation for positive fractions is decidable. (Contributed by Jim Kingdon, 7-Sep-2019.)
 |-  ( ( ( A  e.  N.  /\  B  e.  N. )  /\  ( C  e.  N.  /\  D  e.  N. ) )  -> DECID  <. A ,  B >.  ~Q  <. C ,  D >. )
 
Theoremenqdc1 7495 The equivalence relation for positive fractions is decidable. (Contributed by Jim Kingdon, 7-Sep-2019.)
 |-  ( ( ( A  e.  N.  /\  B  e.  N. )  /\  C  e.  ( N.  X.  N. ) )  -> DECID  <. A ,  B >.  ~Q  C )
 
Theoremnqex 7496 The class of positive fractions exists. (Contributed by NM, 16-Aug-1995.) (Revised by Mario Carneiro, 27-Apr-2013.)
 |- 
 Q.  e.  _V
 
Theorem0nnq 7497 The empty set is not a positive fraction. (Contributed by NM, 24-Aug-1995.) (Revised by Mario Carneiro, 27-Apr-2013.)
 |- 
 -.  (/)  e.  Q.
 
Theoremltrelnq 7498 Positive fraction 'less than' is a relation on positive fractions. (Contributed by NM, 14-Feb-1996.) (Revised by Mario Carneiro, 27-Apr-2013.)
 |- 
 <Q  C_  ( Q.  X.  Q. )
 
Theorem1nq 7499 The positive fraction 'one'. (Contributed by NM, 29-Oct-1995.)
 |- 
 1Q  e.  Q.
 
Theoremaddcmpblnq 7500 Lemma showing compatibility of addition. (Contributed by NM, 27-Aug-1995.)
 |-  ( ( ( ( A  e.  N.  /\  B  e.  N. )  /\  ( C  e.  N.  /\  D  e.  N. )
 )  /\  ( ( F  e.  N.  /\  G  e.  N. )  /\  ( R  e.  N.  /\  S  e.  N. ) ) ) 
 ->  ( ( ( A  .N  D )  =  ( B  .N  C )  /\  ( F  .N  S )  =  ( G  .N  R ) ) 
 ->  <. ( ( A  .N  G )  +N  ( B  .N  F ) ) ,  ( B  .N  G ) >.  ~Q 
 <. ( ( C  .N  S )  +N  ( D  .N  R ) ) ,  ( D  .N  S ) >. ) )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16164
  Copyright terms: Public domain < Previous  Next >