| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nq02m | Unicode version | ||
| Description: Multiply a nonnegative fraction by two. (Contributed by Jim Kingdon, 29-Nov-2019.) |
| Ref | Expression |
|---|---|
| nq02m |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nq0nn 7476 |
. 2
| |
| 2 | 2onn 6550 |
. . . . . . 7
| |
| 3 | 1pi 7349 |
. . . . . . 7
| |
| 4 | mulnnnq0 7484 |
. . . . . . 7
| |
| 5 | 2, 3, 4 | mpanl12 436 |
. . . . . 6
|
| 6 | nn2m 6556 |
. . . . . . . . 9
| |
| 7 | 6 | adantr 276 |
. . . . . . . 8
|
| 8 | pinn 7343 |
. . . . . . . . . 10
| |
| 9 | 1onn 6549 |
. . . . . . . . . . . 12
| |
| 10 | nnmcom 6518 |
. . . . . . . . . . . 12
| |
| 11 | 9, 10 | mpan 424 |
. . . . . . . . . . 11
|
| 12 | nnm1 6554 |
. . . . . . . . . . 11
| |
| 13 | 11, 12 | eqtrd 2222 |
. . . . . . . . . 10
|
| 14 | 8, 13 | syl 14 |
. . . . . . . . 9
|
| 15 | 14 | adantl 277 |
. . . . . . . 8
|
| 16 | 7, 15 | opeq12d 3804 |
. . . . . . 7
|
| 17 | 16 | eceq1d 6599 |
. . . . . 6
|
| 18 | nnanq0 7492 |
. . . . . . 7
| |
| 19 | 18 | 3anidm12 1306 |
. . . . . 6
|
| 20 | 5, 17, 19 | 3eqtrd 2226 |
. . . . 5
|
| 21 | 20 | adantr 276 |
. . . 4
|
| 22 | oveq2 5908 |
. . . . . 6
| |
| 23 | id 19 |
. . . . . . 7
| |
| 24 | 23, 23 | oveq12d 5918 |
. . . . . 6
|
| 25 | 22, 24 | eqeq12d 2204 |
. . . . 5
|
| 26 | 25 | adantl 277 |
. . . 4
|
| 27 | 21, 26 | mpbird 167 |
. . 3
|
| 28 | 27 | exlimivv 1908 |
. 2
|
| 29 | 1, 28 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2162 ax-14 2163 ax-ext 2171 ax-coll 4136 ax-sep 4139 ax-nul 4147 ax-pow 4195 ax-pr 4230 ax-un 4454 ax-setind 4557 ax-iinf 4608 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ne 2361 df-ral 2473 df-rex 2474 df-reu 2475 df-rab 2477 df-v 2754 df-sbc 2978 df-csb 3073 df-dif 3146 df-un 3148 df-in 3150 df-ss 3157 df-nul 3438 df-pw 3595 df-sn 3616 df-pr 3617 df-op 3619 df-uni 3828 df-int 3863 df-iun 3906 df-br 4022 df-opab 4083 df-mpt 4084 df-tr 4120 df-id 4314 df-iord 4387 df-on 4389 df-suc 4392 df-iom 4611 df-xp 4653 df-rel 4654 df-cnv 4655 df-co 4656 df-dm 4657 df-rn 4658 df-res 4659 df-ima 4660 df-iota 5199 df-fun 5240 df-fn 5241 df-f 5242 df-f1 5243 df-fo 5244 df-f1o 5245 df-fv 5246 df-ov 5903 df-oprab 5904 df-mpo 5905 df-1st 6169 df-2nd 6170 df-recs 6334 df-irdg 6399 df-1o 6445 df-2o 6446 df-oadd 6449 df-omul 6450 df-er 6563 df-ec 6565 df-qs 6569 df-ni 7338 df-mi 7340 df-enq0 7458 df-nq0 7459 df-plq0 7461 df-mq0 7462 |
| This theorem is referenced by: prarloclemcalc 7536 |
| Copyright terms: Public domain | W3C validator |