ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nq02m Unicode version

Theorem nq02m 7648
Description: Multiply a nonnegative fraction by two. (Contributed by Jim Kingdon, 29-Nov-2019.)
Assertion
Ref Expression
nq02m  |-  ( A  e. Q0  ->  ( [ <. 2o ,  1o >. ] ~Q0 ·Q0  A )  =  ( A +Q0  A ) )

Proof of Theorem nq02m
Dummy variables  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nq0nn 7625 . 2  |-  ( A  e. Q0  ->  E. z E. w
( ( z  e. 
om  /\  w  e.  N. )  /\  A  =  [ <. z ,  w >. ] ~Q0  ) )
2 2onn 6665 . . . . . . 7  |-  2o  e.  om
3 1pi 7498 . . . . . . 7  |-  1o  e.  N.
4 mulnnnq0 7633 . . . . . . 7  |-  ( ( ( 2o  e.  om  /\  1o  e.  N. )  /\  ( z  e.  om  /\  w  e.  N. )
)  ->  ( [ <. 2o ,  1o >. ] ~Q0 ·Q0  [ <. z ,  w >. ] ~Q0  )  =  [ <. ( 2o  .o  z ) ,  ( 1o  .o  w
) >. ] ~Q0  )
52, 3, 4mpanl12 436 . . . . . 6  |-  ( ( z  e.  om  /\  w  e.  N. )  ->  ( [ <. 2o ,  1o >. ] ~Q0 ·Q0  [ <. z ,  w >. ] ~Q0  )  =  [ <. ( 2o  .o  z ) ,  ( 1o  .o  w ) >. ] ~Q0  )
6 nn2m 6671 . . . . . . . . 9  |-  ( z  e.  om  ->  ( 2o  .o  z )  =  ( z  +o  z
) )
76adantr 276 . . . . . . . 8  |-  ( ( z  e.  om  /\  w  e.  N. )  ->  ( 2o  .o  z
)  =  ( z  +o  z ) )
8 pinn 7492 . . . . . . . . . 10  |-  ( w  e.  N.  ->  w  e.  om )
9 1onn 6664 . . . . . . . . . . . 12  |-  1o  e.  om
10 nnmcom 6633 . . . . . . . . . . . 12  |-  ( ( 1o  e.  om  /\  w  e.  om )  ->  ( 1o  .o  w
)  =  ( w  .o  1o ) )
119, 10mpan 424 . . . . . . . . . . 11  |-  ( w  e.  om  ->  ( 1o  .o  w )  =  ( w  .o  1o ) )
12 nnm1 6669 . . . . . . . . . . 11  |-  ( w  e.  om  ->  (
w  .o  1o )  =  w )
1311, 12eqtrd 2262 . . . . . . . . . 10  |-  ( w  e.  om  ->  ( 1o  .o  w )  =  w )
148, 13syl 14 . . . . . . . . 9  |-  ( w  e.  N.  ->  ( 1o  .o  w )  =  w )
1514adantl 277 . . . . . . . 8  |-  ( ( z  e.  om  /\  w  e.  N. )  ->  ( 1o  .o  w
)  =  w )
167, 15opeq12d 3864 . . . . . . 7  |-  ( ( z  e.  om  /\  w  e.  N. )  -> 
<. ( 2o  .o  z
) ,  ( 1o 
.o  w ) >.  =  <. ( z  +o  z ) ,  w >. )
1716eceq1d 6714 . . . . . 6  |-  ( ( z  e.  om  /\  w  e.  N. )  ->  [ <. ( 2o  .o  z ) ,  ( 1o  .o  w )
>. ] ~Q0  =  [ <. ( z  +o  z ) ,  w >. ] ~Q0  )
18 nnanq0 7641 . . . . . . 7  |-  ( ( z  e.  om  /\  z  e.  om  /\  w  e.  N. )  ->  [ <. ( z  +o  z ) ,  w >. ] ~Q0  =  ( [ <. z ,  w >. ] ~Q0 +Q0  [ <. z ,  w >. ] ~Q0  )
)
19183anidm12 1329 . . . . . 6  |-  ( ( z  e.  om  /\  w  e.  N. )  ->  [ <. ( z  +o  z ) ,  w >. ] ~Q0  =  ( [ <. z ,  w >. ] ~Q0 +Q0  [ <. z ,  w >. ] ~Q0  )
)
205, 17, 193eqtrd 2266 . . . . 5  |-  ( ( z  e.  om  /\  w  e.  N. )  ->  ( [ <. 2o ,  1o >. ] ~Q0 ·Q0  [ <. z ,  w >. ] ~Q0  )  =  ( [
<. z ,  w >. ] ~Q0 +Q0  [ <. z ,  w >. ] ~Q0  ) )
2120adantr 276 . . . 4  |-  ( ( ( z  e.  om  /\  w  e.  N. )  /\  A  =  [ <. z ,  w >. ] ~Q0  )  ->  ( [ <. 2o ,  1o >. ] ~Q0 ·Q0  [ <. z ,  w >. ] ~Q0  )  =  ( [
<. z ,  w >. ] ~Q0 +Q0  [ <. z ,  w >. ] ~Q0  ) )
22 oveq2 6008 . . . . . 6  |-  ( A  =  [ <. z ,  w >. ] ~Q0  ->  ( [ <. 2o ,  1o >. ] ~Q0 ·Q0  A )  =  ( [ <. 2o ,  1o >. ] ~Q0 ·Q0  [ <. z ,  w >. ] ~Q0  ) )
23 id 19 . . . . . . 7  |-  ( A  =  [ <. z ,  w >. ] ~Q0  ->  A  =  [ <. z ,  w >. ] ~Q0  )
2423, 23oveq12d 6018 . . . . . 6  |-  ( A  =  [ <. z ,  w >. ] ~Q0  ->  ( A +Q0  A )  =  ( [ <. z ,  w >. ] ~Q0 +Q0  [ <. z ,  w >. ] ~Q0  ) )
2522, 24eqeq12d 2244 . . . . 5  |-  ( A  =  [ <. z ,  w >. ] ~Q0  ->  ( ( [
<. 2o ,  1o >. ] ~Q0 ·Q0 
A )  =  ( A +Q0  A )  <->  ( [ <. 2o ,  1o >. ] ~Q0 ·Q0  [ <. z ,  w >. ] ~Q0  )  =  ( [ <. z ,  w >. ] ~Q0 +Q0  [ <. z ,  w >. ] ~Q0  ) ) )
2625adantl 277 . . . 4  |-  ( ( ( z  e.  om  /\  w  e.  N. )  /\  A  =  [ <. z ,  w >. ] ~Q0  )  ->  ( ( [ <. 2o ,  1o >. ] ~Q0 ·Q0  A )  =  ( A +Q0  A )  <->  ( [ <. 2o ,  1o >. ] ~Q0 ·Q0  [ <. z ,  w >. ] ~Q0  )  =  ( [ <. z ,  w >. ] ~Q0 +Q0  [ <. z ,  w >. ] ~Q0  ) ) )
2721, 26mpbird 167 . . 3  |-  ( ( ( z  e.  om  /\  w  e.  N. )  /\  A  =  [ <. z ,  w >. ] ~Q0  )  ->  ( [ <. 2o ,  1o >. ] ~Q0 ·Q0  A )  =  ( A +Q0  A ) )
2827exlimivv 1943 . 2  |-  ( E. z E. w ( ( z  e.  om  /\  w  e.  N. )  /\  A  =  [ <. z ,  w >. ] ~Q0  )  ->  ( [ <. 2o ,  1o >. ] ~Q0 ·Q0  A )  =  ( A +Q0  A ) )
291, 28syl 14 1  |-  ( A  e. Q0  ->  ( [ <. 2o ,  1o >. ] ~Q0 ·Q0  A )  =  ( A +Q0  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1395   E.wex 1538    e. wcel 2200   <.cop 3669   omcom 4681  (class class class)co 6000   1oc1o 6553   2oc2o 6554    +o coa 6557    .o comu 6558   [cec 6676   N.cnpi 7455   ~Q0 ceq0 7469  Q0cnq0 7470   +Q0 cplq0 7472   ·Q0 cmq0 7473
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-iinf 4679
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4383  df-iord 4456  df-on 4458  df-suc 4461  df-iom 4682  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-ov 6003  df-oprab 6004  df-mpo 6005  df-1st 6284  df-2nd 6285  df-recs 6449  df-irdg 6514  df-1o 6560  df-2o 6561  df-oadd 6564  df-omul 6565  df-er 6678  df-ec 6680  df-qs 6684  df-ni 7487  df-mi 7489  df-enq0 7607  df-nq0 7608  df-plq0 7610  df-mq0 7611
This theorem is referenced by:  prarloclemcalc  7685
  Copyright terms: Public domain W3C validator