Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nq02m | Unicode version |
Description: Multiply a nonnegative fraction by two. (Contributed by Jim Kingdon, 29-Nov-2019.) |
Ref | Expression |
---|---|
nq02m | Q0 ~Q0 ·Q0 +Q0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nq0nn 7416 | . 2 Q0 ~Q0 | |
2 | 2onn 6512 | . . . . . . 7 | |
3 | 1pi 7289 | . . . . . . 7 | |
4 | mulnnnq0 7424 | . . . . . . 7 ~Q0 ·Q0 ~Q0 ~Q0 | |
5 | 2, 3, 4 | mpanl12 436 | . . . . . 6 ~Q0 ·Q0 ~Q0 ~Q0 |
6 | nn2m 6518 | . . . . . . . . 9 | |
7 | 6 | adantr 276 | . . . . . . . 8 |
8 | pinn 7283 | . . . . . . . . . 10 | |
9 | 1onn 6511 | . . . . . . . . . . . 12 | |
10 | nnmcom 6480 | . . . . . . . . . . . 12 | |
11 | 9, 10 | mpan 424 | . . . . . . . . . . 11 |
12 | nnm1 6516 | . . . . . . . . . . 11 | |
13 | 11, 12 | eqtrd 2208 | . . . . . . . . . 10 |
14 | 8, 13 | syl 14 | . . . . . . . . 9 |
15 | 14 | adantl 277 | . . . . . . . 8 |
16 | 7, 15 | opeq12d 3782 | . . . . . . 7 |
17 | 16 | eceq1d 6561 | . . . . . 6 ~Q0 ~Q0 |
18 | nnanq0 7432 | . . . . . . 7 ~Q0 ~Q0 +Q0 ~Q0 | |
19 | 18 | 3anidm12 1295 | . . . . . 6 ~Q0 ~Q0 +Q0 ~Q0 |
20 | 5, 17, 19 | 3eqtrd 2212 | . . . . 5 ~Q0 ·Q0 ~Q0 ~Q0 +Q0 ~Q0 |
21 | 20 | adantr 276 | . . . 4 ~Q0 ~Q0 ·Q0 ~Q0 ~Q0 +Q0 ~Q0 |
22 | oveq2 5873 | . . . . . 6 ~Q0 ~Q0 ·Q0 ~Q0 ·Q0 ~Q0 | |
23 | id 19 | . . . . . . 7 ~Q0 ~Q0 | |
24 | 23, 23 | oveq12d 5883 | . . . . . 6 ~Q0 +Q0 ~Q0 +Q0 ~Q0 |
25 | 22, 24 | eqeq12d 2190 | . . . . 5 ~Q0 ~Q0 ·Q0 +Q0 ~Q0 ·Q0 ~Q0 ~Q0 +Q0 ~Q0 |
26 | 25 | adantl 277 | . . . 4 ~Q0 ~Q0 ·Q0 +Q0 ~Q0 ·Q0 ~Q0 ~Q0 +Q0 ~Q0 |
27 | 21, 26 | mpbird 167 | . . 3 ~Q0 ~Q0 ·Q0 +Q0 |
28 | 27 | exlimivv 1894 | . 2 ~Q0 ~Q0 ·Q0 +Q0 |
29 | 1, 28 | syl 14 | 1 Q0 ~Q0 ·Q0 +Q0 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 104 wb 105 wceq 1353 wex 1490 wcel 2146 cop 3592 com 4583 (class class class)co 5865 c1o 6400 c2o 6401 coa 6404 comu 6405 cec 6523 cnpi 7246 ~Q0 ceq0 7260 Q0cnq0 7261 +Q0 cplq0 7263 ·Q0 cmq0 7264 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-13 2148 ax-14 2149 ax-ext 2157 ax-coll 4113 ax-sep 4116 ax-nul 4124 ax-pow 4169 ax-pr 4203 ax-un 4427 ax-setind 4530 ax-iinf 4581 |
This theorem depends on definitions: df-bi 117 df-dc 835 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ne 2346 df-ral 2458 df-rex 2459 df-reu 2460 df-rab 2462 df-v 2737 df-sbc 2961 df-csb 3056 df-dif 3129 df-un 3131 df-in 3133 df-ss 3140 df-nul 3421 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-int 3841 df-iun 3884 df-br 3999 df-opab 4060 df-mpt 4061 df-tr 4097 df-id 4287 df-iord 4360 df-on 4362 df-suc 4365 df-iom 4584 df-xp 4626 df-rel 4627 df-cnv 4628 df-co 4629 df-dm 4630 df-rn 4631 df-res 4632 df-ima 4633 df-iota 5170 df-fun 5210 df-fn 5211 df-f 5212 df-f1 5213 df-fo 5214 df-f1o 5215 df-fv 5216 df-ov 5868 df-oprab 5869 df-mpo 5870 df-1st 6131 df-2nd 6132 df-recs 6296 df-irdg 6361 df-1o 6407 df-2o 6408 df-oadd 6411 df-omul 6412 df-er 6525 df-ec 6527 df-qs 6531 df-ni 7278 df-mi 7280 df-enq0 7398 df-nq0 7399 df-plq0 7401 df-mq0 7402 |
This theorem is referenced by: prarloclemcalc 7476 |
Copyright terms: Public domain | W3C validator |