ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nq02m Unicode version

Theorem nq02m 7532
Description: Multiply a nonnegative fraction by two. (Contributed by Jim Kingdon, 29-Nov-2019.)
Assertion
Ref Expression
nq02m  |-  ( A  e. Q0  ->  ( [ <. 2o ,  1o >. ] ~Q0 ·Q0  A )  =  ( A +Q0  A ) )

Proof of Theorem nq02m
Dummy variables  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nq0nn 7509 . 2  |-  ( A  e. Q0  ->  E. z E. w
( ( z  e. 
om  /\  w  e.  N. )  /\  A  =  [ <. z ,  w >. ] ~Q0  ) )
2 2onn 6579 . . . . . . 7  |-  2o  e.  om
3 1pi 7382 . . . . . . 7  |-  1o  e.  N.
4 mulnnnq0 7517 . . . . . . 7  |-  ( ( ( 2o  e.  om  /\  1o  e.  N. )  /\  ( z  e.  om  /\  w  e.  N. )
)  ->  ( [ <. 2o ,  1o >. ] ~Q0 ·Q0  [ <. z ,  w >. ] ~Q0  )  =  [ <. ( 2o  .o  z ) ,  ( 1o  .o  w
) >. ] ~Q0  )
52, 3, 4mpanl12 436 . . . . . 6  |-  ( ( z  e.  om  /\  w  e.  N. )  ->  ( [ <. 2o ,  1o >. ] ~Q0 ·Q0  [ <. z ,  w >. ] ~Q0  )  =  [ <. ( 2o  .o  z ) ,  ( 1o  .o  w ) >. ] ~Q0  )
6 nn2m 6585 . . . . . . . . 9  |-  ( z  e.  om  ->  ( 2o  .o  z )  =  ( z  +o  z
) )
76adantr 276 . . . . . . . 8  |-  ( ( z  e.  om  /\  w  e.  N. )  ->  ( 2o  .o  z
)  =  ( z  +o  z ) )
8 pinn 7376 . . . . . . . . . 10  |-  ( w  e.  N.  ->  w  e.  om )
9 1onn 6578 . . . . . . . . . . . 12  |-  1o  e.  om
10 nnmcom 6547 . . . . . . . . . . . 12  |-  ( ( 1o  e.  om  /\  w  e.  om )  ->  ( 1o  .o  w
)  =  ( w  .o  1o ) )
119, 10mpan 424 . . . . . . . . . . 11  |-  ( w  e.  om  ->  ( 1o  .o  w )  =  ( w  .o  1o ) )
12 nnm1 6583 . . . . . . . . . . 11  |-  ( w  e.  om  ->  (
w  .o  1o )  =  w )
1311, 12eqtrd 2229 . . . . . . . . . 10  |-  ( w  e.  om  ->  ( 1o  .o  w )  =  w )
148, 13syl 14 . . . . . . . . 9  |-  ( w  e.  N.  ->  ( 1o  .o  w )  =  w )
1514adantl 277 . . . . . . . 8  |-  ( ( z  e.  om  /\  w  e.  N. )  ->  ( 1o  .o  w
)  =  w )
167, 15opeq12d 3816 . . . . . . 7  |-  ( ( z  e.  om  /\  w  e.  N. )  -> 
<. ( 2o  .o  z
) ,  ( 1o 
.o  w ) >.  =  <. ( z  +o  z ) ,  w >. )
1716eceq1d 6628 . . . . . 6  |-  ( ( z  e.  om  /\  w  e.  N. )  ->  [ <. ( 2o  .o  z ) ,  ( 1o  .o  w )
>. ] ~Q0  =  [ <. ( z  +o  z ) ,  w >. ] ~Q0  )
18 nnanq0 7525 . . . . . . 7  |-  ( ( z  e.  om  /\  z  e.  om  /\  w  e.  N. )  ->  [ <. ( z  +o  z ) ,  w >. ] ~Q0  =  ( [ <. z ,  w >. ] ~Q0 +Q0  [ <. z ,  w >. ] ~Q0  )
)
19183anidm12 1306 . . . . . 6  |-  ( ( z  e.  om  /\  w  e.  N. )  ->  [ <. ( z  +o  z ) ,  w >. ] ~Q0  =  ( [ <. z ,  w >. ] ~Q0 +Q0  [ <. z ,  w >. ] ~Q0  )
)
205, 17, 193eqtrd 2233 . . . . 5  |-  ( ( z  e.  om  /\  w  e.  N. )  ->  ( [ <. 2o ,  1o >. ] ~Q0 ·Q0  [ <. z ,  w >. ] ~Q0  )  =  ( [
<. z ,  w >. ] ~Q0 +Q0  [ <. z ,  w >. ] ~Q0  ) )
2120adantr 276 . . . 4  |-  ( ( ( z  e.  om  /\  w  e.  N. )  /\  A  =  [ <. z ,  w >. ] ~Q0  )  ->  ( [ <. 2o ,  1o >. ] ~Q0 ·Q0  [ <. z ,  w >. ] ~Q0  )  =  ( [
<. z ,  w >. ] ~Q0 +Q0  [ <. z ,  w >. ] ~Q0  ) )
22 oveq2 5930 . . . . . 6  |-  ( A  =  [ <. z ,  w >. ] ~Q0  ->  ( [ <. 2o ,  1o >. ] ~Q0 ·Q0  A )  =  ( [ <. 2o ,  1o >. ] ~Q0 ·Q0  [ <. z ,  w >. ] ~Q0  ) )
23 id 19 . . . . . . 7  |-  ( A  =  [ <. z ,  w >. ] ~Q0  ->  A  =  [ <. z ,  w >. ] ~Q0  )
2423, 23oveq12d 5940 . . . . . 6  |-  ( A  =  [ <. z ,  w >. ] ~Q0  ->  ( A +Q0  A )  =  ( [ <. z ,  w >. ] ~Q0 +Q0  [ <. z ,  w >. ] ~Q0  ) )
2522, 24eqeq12d 2211 . . . . 5  |-  ( A  =  [ <. z ,  w >. ] ~Q0  ->  ( ( [
<. 2o ,  1o >. ] ~Q0 ·Q0 
A )  =  ( A +Q0  A )  <->  ( [ <. 2o ,  1o >. ] ~Q0 ·Q0  [ <. z ,  w >. ] ~Q0  )  =  ( [ <. z ,  w >. ] ~Q0 +Q0  [ <. z ,  w >. ] ~Q0  ) ) )
2625adantl 277 . . . 4  |-  ( ( ( z  e.  om  /\  w  e.  N. )  /\  A  =  [ <. z ,  w >. ] ~Q0  )  ->  ( ( [ <. 2o ,  1o >. ] ~Q0 ·Q0  A )  =  ( A +Q0  A )  <->  ( [ <. 2o ,  1o >. ] ~Q0 ·Q0  [ <. z ,  w >. ] ~Q0  )  =  ( [ <. z ,  w >. ] ~Q0 +Q0  [ <. z ,  w >. ] ~Q0  ) ) )
2721, 26mpbird 167 . . 3  |-  ( ( ( z  e.  om  /\  w  e.  N. )  /\  A  =  [ <. z ,  w >. ] ~Q0  )  ->  ( [ <. 2o ,  1o >. ] ~Q0 ·Q0  A )  =  ( A +Q0  A ) )
2827exlimivv 1911 . 2  |-  ( E. z E. w ( ( z  e.  om  /\  w  e.  N. )  /\  A  =  [ <. z ,  w >. ] ~Q0  )  ->  ( [ <. 2o ,  1o >. ] ~Q0 ·Q0  A )  =  ( A +Q0  A ) )
291, 28syl 14 1  |-  ( A  e. Q0  ->  ( [ <. 2o ,  1o >. ] ~Q0 ·Q0  A )  =  ( A +Q0  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364   E.wex 1506    e. wcel 2167   <.cop 3625   omcom 4626  (class class class)co 5922   1oc1o 6467   2oc2o 6468    +o coa 6471    .o comu 6472   [cec 6590   N.cnpi 7339   ~Q0 ceq0 7353  Q0cnq0 7354   +Q0 cplq0 7356   ·Q0 cmq0 7357
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-iord 4401  df-on 4403  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-irdg 6428  df-1o 6474  df-2o 6475  df-oadd 6478  df-omul 6479  df-er 6592  df-ec 6594  df-qs 6598  df-ni 7371  df-mi 7373  df-enq0 7491  df-nq0 7492  df-plq0 7494  df-mq0 7495
This theorem is referenced by:  prarloclemcalc  7569
  Copyright terms: Public domain W3C validator