Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > npsspw | Unicode version |
Description: Lemma for proving existence of reals. (Contributed by Jim Kingdon, 27-Sep-2019.) |
Ref | Expression |
---|---|
npsspw |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpll 519 | . . . 4 | |
2 | velpw 3566 | . . . . 5 | |
3 | velpw 3566 | . . . . 5 | |
4 | 2, 3 | anbi12i 456 | . . . 4 |
5 | 1, 4 | sylibr 133 | . . 3 |
6 | 5 | ssopab2i 4255 | . 2 |
7 | df-inp 7407 | . 2 | |
8 | df-xp 4610 | . 2 | |
9 | 6, 7, 8 | 3sstr4i 3183 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wb 104 wo 698 w3a 968 wcel 2136 wral 2444 wrex 2445 wss 3116 cpw 3559 class class class wbr 3982 copab 4042 cxp 4602 cnq 7221 cltq 7226 cnp 7232 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-v 2728 df-in 3122 df-ss 3129 df-pw 3561 df-opab 4044 df-xp 4610 df-inp 7407 |
This theorem is referenced by: preqlu 7413 npex 7414 elinp 7415 prop 7416 elnp1st2nd 7417 cauappcvgprlemladd 7599 |
Copyright terms: Public domain | W3C validator |