Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > npsspw | Unicode version |
Description: Lemma for proving existence of reals. (Contributed by Jim Kingdon, 27-Sep-2019.) |
Ref | Expression |
---|---|
npsspw |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpll 524 | . . . 4 | |
2 | velpw 3573 | . . . . 5 | |
3 | velpw 3573 | . . . . 5 | |
4 | 2, 3 | anbi12i 457 | . . . 4 |
5 | 1, 4 | sylibr 133 | . . 3 |
6 | 5 | ssopab2i 4262 | . 2 |
7 | df-inp 7428 | . 2 | |
8 | df-xp 4617 | . 2 | |
9 | 6, 7, 8 | 3sstr4i 3188 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wb 104 wo 703 w3a 973 wcel 2141 wral 2448 wrex 2449 wss 3121 cpw 3566 class class class wbr 3989 copab 4049 cxp 4609 cnq 7242 cltq 7247 cnp 7253 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-v 2732 df-in 3127 df-ss 3134 df-pw 3568 df-opab 4051 df-xp 4617 df-inp 7428 |
This theorem is referenced by: preqlu 7434 npex 7435 elinp 7436 prop 7437 elnp1st2nd 7438 cauappcvgprlemladd 7620 |
Copyright terms: Public domain | W3C validator |