ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  npsspw Unicode version

Theorem npsspw 7009
Description: Lemma for proving existence of reals. (Contributed by Jim Kingdon, 27-Sep-2019.)
Assertion
Ref Expression
npsspw  |-  P.  C_  ( ~P Q.  X.  ~P Q. )

Proof of Theorem npsspw
Dummy variables  u  l  q  r are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpll 496 . . . 4  |-  ( ( ( ( l  C_  Q.  /\  u  C_  Q. )  /\  ( E. q  e.  Q.  q  e.  l  /\  E. r  e. 
Q.  r  e.  u
) )  /\  (
( A. q  e. 
Q.  ( q  e.  l  <->  E. r  e.  Q.  ( q  <Q  r  /\  r  e.  l
) )  /\  A. r  e.  Q.  (
r  e.  u  <->  E. q  e.  Q.  ( q  <Q 
r  /\  q  e.  u ) ) )  /\  A. q  e. 
Q.  -.  ( q  e.  l  /\  q  e.  u )  /\  A. q  e.  Q.  A. r  e.  Q.  ( q  <Q 
r  ->  ( q  e.  l  \/  r  e.  u ) ) ) )  ->  ( l  C_ 
Q.  /\  u  C_  Q. ) )
2 selpw 3432 . . . . 5  |-  ( l  e.  ~P Q.  <->  l  C_  Q. )
3 selpw 3432 . . . . 5  |-  ( u  e.  ~P Q.  <->  u  C_  Q. )
42, 3anbi12i 448 . . . 4  |-  ( ( l  e.  ~P Q.  /\  u  e.  ~P Q. ) 
<->  ( l  C_  Q.  /\  u  C_  Q. )
)
51, 4sylibr 132 . . 3  |-  ( ( ( ( l  C_  Q.  /\  u  C_  Q. )  /\  ( E. q  e.  Q.  q  e.  l  /\  E. r  e. 
Q.  r  e.  u
) )  /\  (
( A. q  e. 
Q.  ( q  e.  l  <->  E. r  e.  Q.  ( q  <Q  r  /\  r  e.  l
) )  /\  A. r  e.  Q.  (
r  e.  u  <->  E. q  e.  Q.  ( q  <Q 
r  /\  q  e.  u ) ) )  /\  A. q  e. 
Q.  -.  ( q  e.  l  /\  q  e.  u )  /\  A. q  e.  Q.  A. r  e.  Q.  ( q  <Q 
r  ->  ( q  e.  l  \/  r  e.  u ) ) ) )  ->  ( l  e.  ~P Q.  /\  u  e.  ~P Q. ) )
65ssopab2i 4095 . 2  |-  { <. l ,  u >.  |  ( ( ( l  C_  Q.  /\  u  C_  Q. )  /\  ( E. q  e.  Q.  q  e.  l  /\  E. r  e. 
Q.  r  e.  u
) )  /\  (
( A. q  e. 
Q.  ( q  e.  l  <->  E. r  e.  Q.  ( q  <Q  r  /\  r  e.  l
) )  /\  A. r  e.  Q.  (
r  e.  u  <->  E. q  e.  Q.  ( q  <Q 
r  /\  q  e.  u ) ) )  /\  A. q  e. 
Q.  -.  ( q  e.  l  /\  q  e.  u )  /\  A. q  e.  Q.  A. r  e.  Q.  ( q  <Q 
r  ->  ( q  e.  l  \/  r  e.  u ) ) ) ) }  C_  { <. l ,  u >.  |  ( l  e.  ~P Q.  /\  u  e.  ~P Q. ) }
7 df-inp 7004 . 2  |-  P.  =  { <. l ,  u >.  |  ( ( ( l  C_  Q.  /\  u  C_ 
Q. )  /\  ( E. q  e.  Q.  q  e.  l  /\  E. r  e.  Q.  r  e.  u ) )  /\  ( ( A. q  e.  Q.  ( q  e.  l  <->  E. r  e.  Q.  ( q  <Q  r  /\  r  e.  l
) )  /\  A. r  e.  Q.  (
r  e.  u  <->  E. q  e.  Q.  ( q  <Q 
r  /\  q  e.  u ) ) )  /\  A. q  e. 
Q.  -.  ( q  e.  l  /\  q  e.  u )  /\  A. q  e.  Q.  A. r  e.  Q.  ( q  <Q 
r  ->  ( q  e.  l  \/  r  e.  u ) ) ) ) }
8 df-xp 4434 . 2  |-  ( ~P Q.  X.  ~P Q. )  =  { <. l ,  u >.  |  (
l  e.  ~P Q.  /\  u  e.  ~P Q. ) }
96, 7, 83sstr4i 3063 1  |-  P.  C_  ( ~P Q.  X.  ~P Q. )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 102    <-> wb 103    \/ wo 664    /\ w3a 924    e. wcel 1438   A.wral 2359   E.wrex 2360    C_ wss 2997   ~Pcpw 3425   class class class wbr 3837   {copab 3890    X. cxp 4426   Q.cnq 6818    <Q cltq 6823   P.cnp 6829
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070
This theorem depends on definitions:  df-bi 115  df-tru 1292  df-nf 1395  df-sb 1693  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-v 2621  df-in 3003  df-ss 3010  df-pw 3427  df-opab 3892  df-xp 4434  df-inp 7004
This theorem is referenced by:  preqlu  7010  npex  7011  elinp  7012  prop  7013  elnp1st2nd  7014  cauappcvgprlemladd  7196
  Copyright terms: Public domain W3C validator