Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > npsspw | Unicode version |
Description: Lemma for proving existence of reals. (Contributed by Jim Kingdon, 27-Sep-2019.) |
Ref | Expression |
---|---|
npsspw |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpll 519 | . . . 4 | |
2 | velpw 3550 | . . . . 5 | |
3 | velpw 3550 | . . . . 5 | |
4 | 2, 3 | anbi12i 456 | . . . 4 |
5 | 1, 4 | sylibr 133 | . . 3 |
6 | 5 | ssopab2i 4236 | . 2 |
7 | df-inp 7369 | . 2 | |
8 | df-xp 4589 | . 2 | |
9 | 6, 7, 8 | 3sstr4i 3169 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wb 104 wo 698 w3a 963 wcel 2128 wral 2435 wrex 2436 wss 3102 cpw 3543 class class class wbr 3965 copab 4024 cxp 4581 cnq 7183 cltq 7188 cnp 7194 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-ext 2139 |
This theorem depends on definitions: df-bi 116 df-tru 1338 df-nf 1441 df-sb 1743 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-v 2714 df-in 3108 df-ss 3115 df-pw 3545 df-opab 4026 df-xp 4589 df-inp 7369 |
This theorem is referenced by: preqlu 7375 npex 7376 elinp 7377 prop 7378 elnp1st2nd 7379 cauappcvgprlemladd 7561 |
Copyright terms: Public domain | W3C validator |