ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  npsspw Unicode version

Theorem npsspw 7412
Description: Lemma for proving existence of reals. (Contributed by Jim Kingdon, 27-Sep-2019.)
Assertion
Ref Expression
npsspw  |-  P.  C_  ( ~P Q.  X.  ~P Q. )

Proof of Theorem npsspw
Dummy variables  u  l  q  r are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpll 519 . . . 4  |-  ( ( ( ( l  C_  Q.  /\  u  C_  Q. )  /\  ( E. q  e.  Q.  q  e.  l  /\  E. r  e. 
Q.  r  e.  u
) )  /\  (
( A. q  e. 
Q.  ( q  e.  l  <->  E. r  e.  Q.  ( q  <Q  r  /\  r  e.  l
) )  /\  A. r  e.  Q.  (
r  e.  u  <->  E. q  e.  Q.  ( q  <Q 
r  /\  q  e.  u ) ) )  /\  A. q  e. 
Q.  -.  ( q  e.  l  /\  q  e.  u )  /\  A. q  e.  Q.  A. r  e.  Q.  ( q  <Q 
r  ->  ( q  e.  l  \/  r  e.  u ) ) ) )  ->  ( l  C_ 
Q.  /\  u  C_  Q. ) )
2 velpw 3566 . . . . 5  |-  ( l  e.  ~P Q.  <->  l  C_  Q. )
3 velpw 3566 . . . . 5  |-  ( u  e.  ~P Q.  <->  u  C_  Q. )
42, 3anbi12i 456 . . . 4  |-  ( ( l  e.  ~P Q.  /\  u  e.  ~P Q. ) 
<->  ( l  C_  Q.  /\  u  C_  Q. )
)
51, 4sylibr 133 . . 3  |-  ( ( ( ( l  C_  Q.  /\  u  C_  Q. )  /\  ( E. q  e.  Q.  q  e.  l  /\  E. r  e. 
Q.  r  e.  u
) )  /\  (
( A. q  e. 
Q.  ( q  e.  l  <->  E. r  e.  Q.  ( q  <Q  r  /\  r  e.  l
) )  /\  A. r  e.  Q.  (
r  e.  u  <->  E. q  e.  Q.  ( q  <Q 
r  /\  q  e.  u ) ) )  /\  A. q  e. 
Q.  -.  ( q  e.  l  /\  q  e.  u )  /\  A. q  e.  Q.  A. r  e.  Q.  ( q  <Q 
r  ->  ( q  e.  l  \/  r  e.  u ) ) ) )  ->  ( l  e.  ~P Q.  /\  u  e.  ~P Q. ) )
65ssopab2i 4255 . 2  |-  { <. l ,  u >.  |  ( ( ( l  C_  Q.  /\  u  C_  Q. )  /\  ( E. q  e.  Q.  q  e.  l  /\  E. r  e. 
Q.  r  e.  u
) )  /\  (
( A. q  e. 
Q.  ( q  e.  l  <->  E. r  e.  Q.  ( q  <Q  r  /\  r  e.  l
) )  /\  A. r  e.  Q.  (
r  e.  u  <->  E. q  e.  Q.  ( q  <Q 
r  /\  q  e.  u ) ) )  /\  A. q  e. 
Q.  -.  ( q  e.  l  /\  q  e.  u )  /\  A. q  e.  Q.  A. r  e.  Q.  ( q  <Q 
r  ->  ( q  e.  l  \/  r  e.  u ) ) ) ) }  C_  { <. l ,  u >.  |  ( l  e.  ~P Q.  /\  u  e.  ~P Q. ) }
7 df-inp 7407 . 2  |-  P.  =  { <. l ,  u >.  |  ( ( ( l  C_  Q.  /\  u  C_ 
Q. )  /\  ( E. q  e.  Q.  q  e.  l  /\  E. r  e.  Q.  r  e.  u ) )  /\  ( ( A. q  e.  Q.  ( q  e.  l  <->  E. r  e.  Q.  ( q  <Q  r  /\  r  e.  l
) )  /\  A. r  e.  Q.  (
r  e.  u  <->  E. q  e.  Q.  ( q  <Q 
r  /\  q  e.  u ) ) )  /\  A. q  e. 
Q.  -.  ( q  e.  l  /\  q  e.  u )  /\  A. q  e.  Q.  A. r  e.  Q.  ( q  <Q 
r  ->  ( q  e.  l  \/  r  e.  u ) ) ) ) }
8 df-xp 4610 . 2  |-  ( ~P Q.  X.  ~P Q. )  =  { <. l ,  u >.  |  (
l  e.  ~P Q.  /\  u  e.  ~P Q. ) }
96, 7, 83sstr4i 3183 1  |-  P.  C_  ( ~P Q.  X.  ~P Q. )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 698    /\ w3a 968    e. wcel 2136   A.wral 2444   E.wrex 2445    C_ wss 3116   ~Pcpw 3559   class class class wbr 3982   {copab 4042    X. cxp 4602   Q.cnq 7221    <Q cltq 7226   P.cnp 7232
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728  df-in 3122  df-ss 3129  df-pw 3561  df-opab 4044  df-xp 4610  df-inp 7407
This theorem is referenced by:  preqlu  7413  npex  7414  elinp  7415  prop  7416  elnp1st2nd  7417  cauappcvgprlemladd  7599
  Copyright terms: Public domain W3C validator