ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elinp Unicode version

Theorem elinp 7012
Description: Membership in positive reals. (Contributed by Jim Kingdon, 27-Sep-2019.)
Assertion
Ref Expression
elinp  |-  ( <. L ,  U >.  e. 
P. 
<->  ( ( ( L 
C_  Q.  /\  U  C_  Q. )  /\  ( E. q  e.  Q.  q  e.  L  /\  E. r  e.  Q.  r  e.  U ) )  /\  ( ( A. q  e.  Q.  ( q  e.  L  <->  E. r  e.  Q.  ( q  <Q  r  /\  r  e.  L
) )  /\  A. r  e.  Q.  (
r  e.  U  <->  E. q  e.  Q.  ( q  <Q 
r  /\  q  e.  U ) ) )  /\  A. q  e. 
Q.  -.  ( q  e.  L  /\  q  e.  U )  /\  A. q  e.  Q.  A. r  e.  Q.  ( q  <Q 
r  ->  ( q  e.  L  \/  r  e.  U ) ) ) ) )
Distinct variable groups:    r, q, L    U, q, r

Proof of Theorem elinp
Dummy variables  u  l are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 npsspw 7009 . . . . 5  |-  P.  C_  ( ~P Q.  X.  ~P Q. )
21sseli 3019 . . . 4  |-  ( <. L ,  U >.  e. 
P.  ->  <. L ,  U >.  e.  ( ~P Q.  X.  ~P Q. ) )
3 opelxp 4457 . . . 4  |-  ( <. L ,  U >.  e.  ( ~P Q.  X.  ~P Q. )  <->  ( L  e.  ~P Q.  /\  U  e.  ~P Q. ) )
42, 3sylib 120 . . 3  |-  ( <. L ,  U >.  e. 
P.  ->  ( L  e. 
~P Q.  /\  U  e. 
~P Q. ) )
5 elex 2630 . . . 4  |-  ( L  e.  ~P Q.  ->  L  e.  _V )
6 elex 2630 . . . 4  |-  ( U  e.  ~P Q.  ->  U  e.  _V )
75, 6anim12i 331 . . 3  |-  ( ( L  e.  ~P Q.  /\  U  e.  ~P Q. )  ->  ( L  e. 
_V  /\  U  e.  _V ) )
84, 7syl 14 . 2  |-  ( <. L ,  U >.  e. 
P.  ->  ( L  e. 
_V  /\  U  e.  _V ) )
9 nqex 6901 . . . . 5  |-  Q.  e.  _V
109ssex 3968 . . . 4  |-  ( L 
C_  Q.  ->  L  e. 
_V )
119ssex 3968 . . . 4  |-  ( U 
C_  Q.  ->  U  e. 
_V )
1210, 11anim12i 331 . . 3  |-  ( ( L  C_  Q.  /\  U  C_ 
Q. )  ->  ( L  e.  _V  /\  U  e.  _V ) )
1312ad2antrr 472 . 2  |-  ( ( ( ( L  C_  Q.  /\  U  C_  Q. )  /\  ( E. q  e.  Q.  q  e.  L  /\  E. r  e.  Q.  r  e.  U )
)  /\  ( ( A. q  e.  Q.  ( q  e.  L  <->  E. r  e.  Q.  (
q  <Q  r  /\  r  e.  L ) )  /\  A. r  e.  Q.  (
r  e.  U  <->  E. q  e.  Q.  ( q  <Q 
r  /\  q  e.  U ) ) )  /\  A. q  e. 
Q.  -.  ( q  e.  L  /\  q  e.  U )  /\  A. q  e.  Q.  A. r  e.  Q.  ( q  <Q 
r  ->  ( q  e.  L  \/  r  e.  U ) ) ) )  ->  ( L  e.  _V  /\  U  e. 
_V ) )
14 df-inp 7004 . . . 4  |-  P.  =  { <. l ,  u >.  |  ( ( ( l  C_  Q.  /\  u  C_ 
Q. )  /\  ( E. q  e.  Q.  q  e.  l  /\  E. r  e.  Q.  r  e.  u ) )  /\  ( ( A. q  e.  Q.  ( q  e.  l  <->  E. r  e.  Q.  ( q  <Q  r  /\  r  e.  l
) )  /\  A. r  e.  Q.  (
r  e.  u  <->  E. q  e.  Q.  ( q  <Q 
r  /\  q  e.  u ) ) )  /\  A. q  e. 
Q.  -.  ( q  e.  l  /\  q  e.  u )  /\  A. q  e.  Q.  A. r  e.  Q.  ( q  <Q 
r  ->  ( q  e.  l  \/  r  e.  u ) ) ) ) }
1514eleq2i 2154 . . 3  |-  ( <. L ,  U >.  e. 
P. 
<-> 
<. L ,  U >.  e. 
{ <. l ,  u >.  |  ( ( ( l  C_  Q.  /\  u  C_ 
Q. )  /\  ( E. q  e.  Q.  q  e.  l  /\  E. r  e.  Q.  r  e.  u ) )  /\  ( ( A. q  e.  Q.  ( q  e.  l  <->  E. r  e.  Q.  ( q  <Q  r  /\  r  e.  l
) )  /\  A. r  e.  Q.  (
r  e.  u  <->  E. q  e.  Q.  ( q  <Q 
r  /\  q  e.  u ) ) )  /\  A. q  e. 
Q.  -.  ( q  e.  l  /\  q  e.  u )  /\  A. q  e.  Q.  A. r  e.  Q.  ( q  <Q 
r  ->  ( q  e.  l  \/  r  e.  u ) ) ) ) } )
16 sseq1 3045 . . . . . . 7  |-  ( l  =  L  ->  (
l  C_  Q.  <->  L  C_  Q. ) )
1716anbi1d 453 . . . . . 6  |-  ( l  =  L  ->  (
( l  C_  Q.  /\  u  C_  Q. )  <->  ( L  C_  Q.  /\  u  C_ 
Q. ) ) )
18 eleq2 2151 . . . . . . . 8  |-  ( l  =  L  ->  (
q  e.  l  <->  q  e.  L ) )
1918rexbidv 2381 . . . . . . 7  |-  ( l  =  L  ->  ( E. q  e.  Q.  q  e.  l  <->  E. q  e.  Q.  q  e.  L
) )
2019anbi1d 453 . . . . . 6  |-  ( l  =  L  ->  (
( E. q  e. 
Q.  q  e.  l  /\  E. r  e. 
Q.  r  e.  u
)  <->  ( E. q  e.  Q.  q  e.  L  /\  E. r  e.  Q.  r  e.  u )
) )
2117, 20anbi12d 457 . . . . 5  |-  ( l  =  L  ->  (
( ( l  C_  Q.  /\  u  C_  Q. )  /\  ( E. q  e.  Q.  q  e.  l  /\  E. r  e. 
Q.  r  e.  u
) )  <->  ( ( L  C_  Q.  /\  u  C_ 
Q. )  /\  ( E. q  e.  Q.  q  e.  L  /\  E. r  e.  Q.  r  e.  u ) ) ) )
22 eleq2 2151 . . . . . . . . . . 11  |-  ( l  =  L  ->  (
r  e.  l  <->  r  e.  L ) )
2322anbi2d 452 . . . . . . . . . 10  |-  ( l  =  L  ->  (
( q  <Q  r  /\  r  e.  l
)  <->  ( q  <Q 
r  /\  r  e.  L ) ) )
2423rexbidv 2381 . . . . . . . . 9  |-  ( l  =  L  ->  ( E. r  e.  Q.  ( q  <Q  r  /\  r  e.  l
)  <->  E. r  e.  Q.  ( q  <Q  r  /\  r  e.  L
) ) )
2518, 24bibi12d 233 . . . . . . . 8  |-  ( l  =  L  ->  (
( q  e.  l  <->  E. r  e.  Q.  ( q  <Q  r  /\  r  e.  l
) )  <->  ( q  e.  L  <->  E. r  e.  Q.  ( q  <Q  r  /\  r  e.  L
) ) ) )
2625ralbidv 2380 . . . . . . 7  |-  ( l  =  L  ->  ( A. q  e.  Q.  ( q  e.  l  <->  E. r  e.  Q.  ( q  <Q  r  /\  r  e.  l
) )  <->  A. q  e.  Q.  ( q  e.  L  <->  E. r  e.  Q.  ( q  <Q  r  /\  r  e.  L
) ) ) )
2726anbi1d 453 . . . . . 6  |-  ( l  =  L  ->  (
( A. q  e. 
Q.  ( q  e.  l  <->  E. r  e.  Q.  ( q  <Q  r  /\  r  e.  l
) )  /\  A. r  e.  Q.  (
r  e.  u  <->  E. q  e.  Q.  ( q  <Q 
r  /\  q  e.  u ) ) )  <-> 
( A. q  e. 
Q.  ( q  e.  L  <->  E. r  e.  Q.  ( q  <Q  r  /\  r  e.  L
) )  /\  A. r  e.  Q.  (
r  e.  u  <->  E. q  e.  Q.  ( q  <Q 
r  /\  q  e.  u ) ) ) ) )
2818anbi1d 453 . . . . . . . 8  |-  ( l  =  L  ->  (
( q  e.  l  /\  q  e.  u
)  <->  ( q  e.  L  /\  q  e.  u ) ) )
2928notbid 627 . . . . . . 7  |-  ( l  =  L  ->  ( -.  ( q  e.  l  /\  q  e.  u
)  <->  -.  ( q  e.  L  /\  q  e.  u ) ) )
3029ralbidv 2380 . . . . . 6  |-  ( l  =  L  ->  ( A. q  e.  Q.  -.  ( q  e.  l  /\  q  e.  u
)  <->  A. q  e.  Q.  -.  ( q  e.  L  /\  q  e.  u
) ) )
3118orbi1d 740 . . . . . . . 8  |-  ( l  =  L  ->  (
( q  e.  l  \/  r  e.  u
)  <->  ( q  e.  L  \/  r  e.  u ) ) )
3231imbi2d 228 . . . . . . 7  |-  ( l  =  L  ->  (
( q  <Q  r  ->  ( q  e.  l  \/  r  e.  u
) )  <->  ( q  <Q  r  ->  ( q  e.  L  \/  r  e.  u ) ) ) )
33322ralbidv 2402 . . . . . 6  |-  ( l  =  L  ->  ( A. q  e.  Q.  A. r  e.  Q.  (
q  <Q  r  ->  (
q  e.  l  \/  r  e.  u ) )  <->  A. q  e.  Q.  A. r  e.  Q.  (
q  <Q  r  ->  (
q  e.  L  \/  r  e.  u )
) ) )
3427, 30, 333anbi123d 1248 . . . . 5  |-  ( l  =  L  ->  (
( ( A. q  e.  Q.  ( q  e.  l  <->  E. r  e.  Q.  ( q  <Q  r  /\  r  e.  l
) )  /\  A. r  e.  Q.  (
r  e.  u  <->  E. q  e.  Q.  ( q  <Q 
r  /\  q  e.  u ) ) )  /\  A. q  e. 
Q.  -.  ( q  e.  l  /\  q  e.  u )  /\  A. q  e.  Q.  A. r  e.  Q.  ( q  <Q 
r  ->  ( q  e.  l  \/  r  e.  u ) ) )  <-> 
( ( A. q  e.  Q.  ( q  e.  L  <->  E. r  e.  Q.  ( q  <Q  r  /\  r  e.  L
) )  /\  A. r  e.  Q.  (
r  e.  u  <->  E. q  e.  Q.  ( q  <Q 
r  /\  q  e.  u ) ) )  /\  A. q  e. 
Q.  -.  ( q  e.  L  /\  q  e.  u )  /\  A. q  e.  Q.  A. r  e.  Q.  ( q  <Q 
r  ->  ( q  e.  L  \/  r  e.  u ) ) ) ) )
3521, 34anbi12d 457 . . . 4  |-  ( l  =  L  ->  (
( ( ( l 
C_  Q.  /\  u  C_ 
Q. )  /\  ( E. q  e.  Q.  q  e.  l  /\  E. r  e.  Q.  r  e.  u ) )  /\  ( ( A. q  e.  Q.  ( q  e.  l  <->  E. r  e.  Q.  ( q  <Q  r  /\  r  e.  l
) )  /\  A. r  e.  Q.  (
r  e.  u  <->  E. q  e.  Q.  ( q  <Q 
r  /\  q  e.  u ) ) )  /\  A. q  e. 
Q.  -.  ( q  e.  l  /\  q  e.  u )  /\  A. q  e.  Q.  A. r  e.  Q.  ( q  <Q 
r  ->  ( q  e.  l  \/  r  e.  u ) ) ) )  <->  ( ( ( L  C_  Q.  /\  u  C_ 
Q. )  /\  ( E. q  e.  Q.  q  e.  L  /\  E. r  e.  Q.  r  e.  u ) )  /\  ( ( A. q  e.  Q.  ( q  e.  L  <->  E. r  e.  Q.  ( q  <Q  r  /\  r  e.  L
) )  /\  A. r  e.  Q.  (
r  e.  u  <->  E. q  e.  Q.  ( q  <Q 
r  /\  q  e.  u ) ) )  /\  A. q  e. 
Q.  -.  ( q  e.  L  /\  q  e.  u )  /\  A. q  e.  Q.  A. r  e.  Q.  ( q  <Q 
r  ->  ( q  e.  L  \/  r  e.  u ) ) ) ) ) )
36 sseq1 3045 . . . . . . 7  |-  ( u  =  U  ->  (
u  C_  Q.  <->  U  C_  Q. ) )
3736anbi2d 452 . . . . . 6  |-  ( u  =  U  ->  (
( L  C_  Q.  /\  u  C_  Q. )  <->  ( L  C_  Q.  /\  U  C_ 
Q. ) ) )
38 eleq2 2151 . . . . . . . 8  |-  ( u  =  U  ->  (
r  e.  u  <->  r  e.  U ) )
3938rexbidv 2381 . . . . . . 7  |-  ( u  =  U  ->  ( E. r  e.  Q.  r  e.  u  <->  E. r  e.  Q.  r  e.  U
) )
4039anbi2d 452 . . . . . 6  |-  ( u  =  U  ->  (
( E. q  e. 
Q.  q  e.  L  /\  E. r  e.  Q.  r  e.  u )  <->  ( E. q  e.  Q.  q  e.  L  /\  E. r  e.  Q.  r  e.  U ) ) )
4137, 40anbi12d 457 . . . . 5  |-  ( u  =  U  ->  (
( ( L  C_  Q.  /\  u  C_  Q. )  /\  ( E. q  e.  Q.  q  e.  L  /\  E. r  e.  Q.  r  e.  u )
)  <->  ( ( L 
C_  Q.  /\  U  C_  Q. )  /\  ( E. q  e.  Q.  q  e.  L  /\  E. r  e.  Q.  r  e.  U ) ) ) )
42 eleq2 2151 . . . . . . . . . . 11  |-  ( u  =  U  ->  (
q  e.  u  <->  q  e.  U ) )
4342anbi2d 452 . . . . . . . . . 10  |-  ( u  =  U  ->  (
( q  <Q  r  /\  q  e.  u
)  <->  ( q  <Q 
r  /\  q  e.  U ) ) )
4443rexbidv 2381 . . . . . . . . 9  |-  ( u  =  U  ->  ( E. q  e.  Q.  ( q  <Q  r  /\  q  e.  u
)  <->  E. q  e.  Q.  ( q  <Q  r  /\  q  e.  U
) ) )
4538, 44bibi12d 233 . . . . . . . 8  |-  ( u  =  U  ->  (
( r  e.  u  <->  E. q  e.  Q.  (
q  <Q  r  /\  q  e.  u ) )  <->  ( r  e.  U  <->  E. q  e.  Q.  ( q  <Q  r  /\  q  e.  U
) ) ) )
4645ralbidv 2380 . . . . . . 7  |-  ( u  =  U  ->  ( A. r  e.  Q.  ( r  e.  u  <->  E. q  e.  Q.  (
q  <Q  r  /\  q  e.  u ) )  <->  A. r  e.  Q.  ( r  e.  U  <->  E. q  e.  Q.  ( q  <Q  r  /\  q  e.  U
) ) ) )
4746anbi2d 452 . . . . . 6  |-  ( u  =  U  ->  (
( A. q  e. 
Q.  ( q  e.  L  <->  E. r  e.  Q.  ( q  <Q  r  /\  r  e.  L
) )  /\  A. r  e.  Q.  (
r  e.  u  <->  E. q  e.  Q.  ( q  <Q 
r  /\  q  e.  u ) ) )  <-> 
( A. q  e. 
Q.  ( q  e.  L  <->  E. r  e.  Q.  ( q  <Q  r  /\  r  e.  L
) )  /\  A. r  e.  Q.  (
r  e.  U  <->  E. q  e.  Q.  ( q  <Q 
r  /\  q  e.  U ) ) ) ) )
4842anbi2d 452 . . . . . . . 8  |-  ( u  =  U  ->  (
( q  e.  L  /\  q  e.  u
)  <->  ( q  e.  L  /\  q  e.  U ) ) )
4948notbid 627 . . . . . . 7  |-  ( u  =  U  ->  ( -.  ( q  e.  L  /\  q  e.  u
)  <->  -.  ( q  e.  L  /\  q  e.  U ) ) )
5049ralbidv 2380 . . . . . 6  |-  ( u  =  U  ->  ( A. q  e.  Q.  -.  ( q  e.  L  /\  q  e.  u
)  <->  A. q  e.  Q.  -.  ( q  e.  L  /\  q  e.  U
) ) )
5138orbi2d 739 . . . . . . . 8  |-  ( u  =  U  ->  (
( q  e.  L  \/  r  e.  u
)  <->  ( q  e.  L  \/  r  e.  U ) ) )
5251imbi2d 228 . . . . . . 7  |-  ( u  =  U  ->  (
( q  <Q  r  ->  ( q  e.  L  \/  r  e.  u
) )  <->  ( q  <Q  r  ->  ( q  e.  L  \/  r  e.  U ) ) ) )
53522ralbidv 2402 . . . . . 6  |-  ( u  =  U  ->  ( A. q  e.  Q.  A. r  e.  Q.  (
q  <Q  r  ->  (
q  e.  L  \/  r  e.  u )
)  <->  A. q  e.  Q.  A. r  e.  Q.  (
q  <Q  r  ->  (
q  e.  L  \/  r  e.  U )
) ) )
5447, 50, 533anbi123d 1248 . . . . 5  |-  ( u  =  U  ->  (
( ( A. q  e.  Q.  ( q  e.  L  <->  E. r  e.  Q.  ( q  <Q  r  /\  r  e.  L
) )  /\  A. r  e.  Q.  (
r  e.  u  <->  E. q  e.  Q.  ( q  <Q 
r  /\  q  e.  u ) ) )  /\  A. q  e. 
Q.  -.  ( q  e.  L  /\  q  e.  u )  /\  A. q  e.  Q.  A. r  e.  Q.  ( q  <Q 
r  ->  ( q  e.  L  \/  r  e.  u ) ) )  <-> 
( ( A. q  e.  Q.  ( q  e.  L  <->  E. r  e.  Q.  ( q  <Q  r  /\  r  e.  L
) )  /\  A. r  e.  Q.  (
r  e.  U  <->  E. q  e.  Q.  ( q  <Q 
r  /\  q  e.  U ) ) )  /\  A. q  e. 
Q.  -.  ( q  e.  L  /\  q  e.  U )  /\  A. q  e.  Q.  A. r  e.  Q.  ( q  <Q 
r  ->  ( q  e.  L  \/  r  e.  U ) ) ) ) )
5541, 54anbi12d 457 . . . 4  |-  ( u  =  U  ->  (
( ( ( L 
C_  Q.  /\  u  C_ 
Q. )  /\  ( E. q  e.  Q.  q  e.  L  /\  E. r  e.  Q.  r  e.  u ) )  /\  ( ( A. q  e.  Q.  ( q  e.  L  <->  E. r  e.  Q.  ( q  <Q  r  /\  r  e.  L
) )  /\  A. r  e.  Q.  (
r  e.  u  <->  E. q  e.  Q.  ( q  <Q 
r  /\  q  e.  u ) ) )  /\  A. q  e. 
Q.  -.  ( q  e.  L  /\  q  e.  u )  /\  A. q  e.  Q.  A. r  e.  Q.  ( q  <Q 
r  ->  ( q  e.  L  \/  r  e.  u ) ) ) )  <->  ( ( ( L  C_  Q.  /\  U  C_ 
Q. )  /\  ( E. q  e.  Q.  q  e.  L  /\  E. r  e.  Q.  r  e.  U ) )  /\  ( ( A. q  e.  Q.  ( q  e.  L  <->  E. r  e.  Q.  ( q  <Q  r  /\  r  e.  L
) )  /\  A. r  e.  Q.  (
r  e.  U  <->  E. q  e.  Q.  ( q  <Q 
r  /\  q  e.  U ) ) )  /\  A. q  e. 
Q.  -.  ( q  e.  L  /\  q  e.  U )  /\  A. q  e.  Q.  A. r  e.  Q.  ( q  <Q 
r  ->  ( q  e.  L  \/  r  e.  U ) ) ) ) ) )
5635, 55opelopabg 4086 . . 3  |-  ( ( L  e.  _V  /\  U  e.  _V )  ->  ( <. L ,  U >.  e.  { <. l ,  u >.  |  (
( ( l  C_  Q.  /\  u  C_  Q. )  /\  ( E. q  e.  Q.  q  e.  l  /\  E. r  e. 
Q.  r  e.  u
) )  /\  (
( A. q  e. 
Q.  ( q  e.  l  <->  E. r  e.  Q.  ( q  <Q  r  /\  r  e.  l
) )  /\  A. r  e.  Q.  (
r  e.  u  <->  E. q  e.  Q.  ( q  <Q 
r  /\  q  e.  u ) ) )  /\  A. q  e. 
Q.  -.  ( q  e.  l  /\  q  e.  u )  /\  A. q  e.  Q.  A. r  e.  Q.  ( q  <Q 
r  ->  ( q  e.  l  \/  r  e.  u ) ) ) ) }  <->  ( (
( L  C_  Q.  /\  U  C_  Q. )  /\  ( E. q  e. 
Q.  q  e.  L  /\  E. r  e.  Q.  r  e.  U )
)  /\  ( ( A. q  e.  Q.  ( q  e.  L  <->  E. r  e.  Q.  (
q  <Q  r  /\  r  e.  L ) )  /\  A. r  e.  Q.  (
r  e.  U  <->  E. q  e.  Q.  ( q  <Q 
r  /\  q  e.  U ) ) )  /\  A. q  e. 
Q.  -.  ( q  e.  L  /\  q  e.  U )  /\  A. q  e.  Q.  A. r  e.  Q.  ( q  <Q 
r  ->  ( q  e.  L  \/  r  e.  U ) ) ) ) ) )
5715, 56syl5bb 190 . 2  |-  ( ( L  e.  _V  /\  U  e.  _V )  ->  ( <. L ,  U >.  e.  P.  <->  ( (
( L  C_  Q.  /\  U  C_  Q. )  /\  ( E. q  e. 
Q.  q  e.  L  /\  E. r  e.  Q.  r  e.  U )
)  /\  ( ( A. q  e.  Q.  ( q  e.  L  <->  E. r  e.  Q.  (
q  <Q  r  /\  r  e.  L ) )  /\  A. r  e.  Q.  (
r  e.  U  <->  E. q  e.  Q.  ( q  <Q 
r  /\  q  e.  U ) ) )  /\  A. q  e. 
Q.  -.  ( q  e.  L  /\  q  e.  U )  /\  A. q  e.  Q.  A. r  e.  Q.  ( q  <Q 
r  ->  ( q  e.  L  \/  r  e.  U ) ) ) ) ) )
588, 13, 57pm5.21nii 655 1  |-  ( <. L ,  U >.  e. 
P. 
<->  ( ( ( L 
C_  Q.  /\  U  C_  Q. )  /\  ( E. q  e.  Q.  q  e.  L  /\  E. r  e.  Q.  r  e.  U ) )  /\  ( ( A. q  e.  Q.  ( q  e.  L  <->  E. r  e.  Q.  ( q  <Q  r  /\  r  e.  L
) )  /\  A. r  e.  Q.  (
r  e.  U  <->  E. q  e.  Q.  ( q  <Q 
r  /\  q  e.  U ) ) )  /\  A. q  e. 
Q.  -.  ( q  e.  L  /\  q  e.  U )  /\  A. q  e.  Q.  A. r  e.  Q.  ( q  <Q 
r  ->  ( q  e.  L  \/  r  e.  U ) ) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 102    <-> wb 103    \/ wo 664    /\ w3a 924    = wceq 1289    e. wcel 1438   A.wral 2359   E.wrex 2360   _Vcvv 2619    C_ wss 2997   ~Pcpw 3425   <.cop 3444   class class class wbr 3837   {copab 3890    X. cxp 4426   Q.cnq 6818    <Q cltq 6823   P.cnp 6829
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 579  ax-in2 580  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-13 1449  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-coll 3946  ax-sep 3949  ax-pow 4001  ax-pr 4027  ax-un 4251  ax-iinf 4393
This theorem depends on definitions:  df-bi 115  df-3an 926  df-tru 1292  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ral 2364  df-rex 2365  df-reu 2366  df-rab 2368  df-v 2621  df-sbc 2839  df-csb 2932  df-dif 2999  df-un 3001  df-in 3003  df-ss 3010  df-pw 3427  df-sn 3447  df-pr 3448  df-op 3450  df-uni 3649  df-int 3684  df-iun 3727  df-br 3838  df-opab 3892  df-mpt 3893  df-id 4111  df-iom 4396  df-xp 4434  df-rel 4435  df-cnv 4436  df-co 4437  df-dm 4438  df-rn 4439  df-res 4440  df-ima 4441  df-iota 4967  df-fun 5004  df-fn 5005  df-f 5006  df-f1 5007  df-fo 5008  df-f1o 5009  df-fv 5010  df-qs 6278  df-ni 6842  df-nqqs 6886  df-inp 7004
This theorem is referenced by:  elnp1st2nd  7014  prml  7015  prmu  7016  prssnql  7017  prssnqu  7018  prcdnql  7022  prcunqu  7023  prltlu  7025  prnmaxl  7026  prnminu  7027  prloc  7029  prdisj  7030  nqprxx  7084
  Copyright terms: Public domain W3C validator