| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elinp | Unicode version | ||
| Description: Membership in positive reals. (Contributed by Jim Kingdon, 27-Sep-2019.) |
| Ref | Expression |
|---|---|
| elinp |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | npsspw 7555 |
. . . . 5
| |
| 2 | 1 | sseli 3180 |
. . . 4
|
| 3 | opelxp 4694 |
. . . 4
| |
| 4 | 2, 3 | sylib 122 |
. . 3
|
| 5 | elex 2774 |
. . . 4
| |
| 6 | elex 2774 |
. . . 4
| |
| 7 | 5, 6 | anim12i 338 |
. . 3
|
| 8 | 4, 7 | syl 14 |
. 2
|
| 9 | nqex 7447 |
. . . . 5
| |
| 10 | 9 | ssex 4171 |
. . . 4
|
| 11 | 9 | ssex 4171 |
. . . 4
|
| 12 | 10, 11 | anim12i 338 |
. . 3
|
| 13 | 12 | ad2antrr 488 |
. 2
|
| 14 | df-inp 7550 |
. . . 4
| |
| 15 | 14 | eleq2i 2263 |
. . 3
|
| 16 | sseq1 3207 |
. . . . . . 7
| |
| 17 | 16 | anbi1d 465 |
. . . . . 6
|
| 18 | eleq2 2260 |
. . . . . . . 8
| |
| 19 | 18 | rexbidv 2498 |
. . . . . . 7
|
| 20 | 19 | anbi1d 465 |
. . . . . 6
|
| 21 | 17, 20 | anbi12d 473 |
. . . . 5
|
| 22 | eleq2 2260 |
. . . . . . . . . . 11
| |
| 23 | 22 | anbi2d 464 |
. . . . . . . . . 10
|
| 24 | 23 | rexbidv 2498 |
. . . . . . . . 9
|
| 25 | 18, 24 | bibi12d 235 |
. . . . . . . 8
|
| 26 | 25 | ralbidv 2497 |
. . . . . . 7
|
| 27 | 26 | anbi1d 465 |
. . . . . 6
|
| 28 | 18 | anbi1d 465 |
. . . . . . . 8
|
| 29 | 28 | notbid 668 |
. . . . . . 7
|
| 30 | 29 | ralbidv 2497 |
. . . . . 6
|
| 31 | 18 | orbi1d 792 |
. . . . . . . 8
|
| 32 | 31 | imbi2d 230 |
. . . . . . 7
|
| 33 | 32 | 2ralbidv 2521 |
. . . . . 6
|
| 34 | 27, 30, 33 | 3anbi123d 1323 |
. . . . 5
|
| 35 | 21, 34 | anbi12d 473 |
. . . 4
|
| 36 | sseq1 3207 |
. . . . . . 7
| |
| 37 | 36 | anbi2d 464 |
. . . . . 6
|
| 38 | eleq2 2260 |
. . . . . . . 8
| |
| 39 | 38 | rexbidv 2498 |
. . . . . . 7
|
| 40 | 39 | anbi2d 464 |
. . . . . 6
|
| 41 | 37, 40 | anbi12d 473 |
. . . . 5
|
| 42 | eleq2 2260 |
. . . . . . . . . . 11
| |
| 43 | 42 | anbi2d 464 |
. . . . . . . . . 10
|
| 44 | 43 | rexbidv 2498 |
. . . . . . . . 9
|
| 45 | 38, 44 | bibi12d 235 |
. . . . . . . 8
|
| 46 | 45 | ralbidv 2497 |
. . . . . . 7
|
| 47 | 46 | anbi2d 464 |
. . . . . 6
|
| 48 | 42 | anbi2d 464 |
. . . . . . . 8
|
| 49 | 48 | notbid 668 |
. . . . . . 7
|
| 50 | 49 | ralbidv 2497 |
. . . . . 6
|
| 51 | 38 | orbi2d 791 |
. . . . . . . 8
|
| 52 | 51 | imbi2d 230 |
. . . . . . 7
|
| 53 | 52 | 2ralbidv 2521 |
. . . . . 6
|
| 54 | 47, 50, 53 | 3anbi123d 1323 |
. . . . 5
|
| 55 | 41, 54 | anbi12d 473 |
. . . 4
|
| 56 | 35, 55 | opelopabg 4303 |
. . 3
|
| 57 | 15, 56 | bitrid 192 |
. 2
|
| 58 | 8, 13, 57 | pm5.21nii 705 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-iinf 4625 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-iom 4628 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-qs 6607 df-ni 7388 df-nqqs 7432 df-inp 7550 |
| This theorem is referenced by: elnp1st2nd 7560 prml 7561 prmu 7562 prssnql 7563 prssnqu 7564 prcdnql 7568 prcunqu 7569 prltlu 7571 prnmaxl 7572 prnminu 7573 prloc 7575 prdisj 7576 nqprxx 7630 suplocexprlemex 7806 |
| Copyright terms: Public domain | W3C validator |