ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elinp Unicode version

Theorem elinp 7246
Description: Membership in positive reals. (Contributed by Jim Kingdon, 27-Sep-2019.)
Assertion
Ref Expression
elinp  |-  ( <. L ,  U >.  e. 
P. 
<->  ( ( ( L 
C_  Q.  /\  U  C_  Q. )  /\  ( E. q  e.  Q.  q  e.  L  /\  E. r  e.  Q.  r  e.  U ) )  /\  ( ( A. q  e.  Q.  ( q  e.  L  <->  E. r  e.  Q.  ( q  <Q  r  /\  r  e.  L
) )  /\  A. r  e.  Q.  (
r  e.  U  <->  E. q  e.  Q.  ( q  <Q 
r  /\  q  e.  U ) ) )  /\  A. q  e. 
Q.  -.  ( q  e.  L  /\  q  e.  U )  /\  A. q  e.  Q.  A. r  e.  Q.  ( q  <Q 
r  ->  ( q  e.  L  \/  r  e.  U ) ) ) ) )
Distinct variable groups:    r, q, L    U, q, r

Proof of Theorem elinp
Dummy variables  u  l are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 npsspw 7243 . . . . 5  |-  P.  C_  ( ~P Q.  X.  ~P Q. )
21sseli 3061 . . . 4  |-  ( <. L ,  U >.  e. 
P.  ->  <. L ,  U >.  e.  ( ~P Q.  X.  ~P Q. ) )
3 opelxp 4537 . . . 4  |-  ( <. L ,  U >.  e.  ( ~P Q.  X.  ~P Q. )  <->  ( L  e.  ~P Q.  /\  U  e.  ~P Q. ) )
42, 3sylib 121 . . 3  |-  ( <. L ,  U >.  e. 
P.  ->  ( L  e. 
~P Q.  /\  U  e. 
~P Q. ) )
5 elex 2669 . . . 4  |-  ( L  e.  ~P Q.  ->  L  e.  _V )
6 elex 2669 . . . 4  |-  ( U  e.  ~P Q.  ->  U  e.  _V )
75, 6anim12i 334 . . 3  |-  ( ( L  e.  ~P Q.  /\  U  e.  ~P Q. )  ->  ( L  e. 
_V  /\  U  e.  _V ) )
84, 7syl 14 . 2  |-  ( <. L ,  U >.  e. 
P.  ->  ( L  e. 
_V  /\  U  e.  _V ) )
9 nqex 7135 . . . . 5  |-  Q.  e.  _V
109ssex 4033 . . . 4  |-  ( L 
C_  Q.  ->  L  e. 
_V )
119ssex 4033 . . . 4  |-  ( U 
C_  Q.  ->  U  e. 
_V )
1210, 11anim12i 334 . . 3  |-  ( ( L  C_  Q.  /\  U  C_ 
Q. )  ->  ( L  e.  _V  /\  U  e.  _V ) )
1312ad2antrr 477 . 2  |-  ( ( ( ( L  C_  Q.  /\  U  C_  Q. )  /\  ( E. q  e.  Q.  q  e.  L  /\  E. r  e.  Q.  r  e.  U )
)  /\  ( ( A. q  e.  Q.  ( q  e.  L  <->  E. r  e.  Q.  (
q  <Q  r  /\  r  e.  L ) )  /\  A. r  e.  Q.  (
r  e.  U  <->  E. q  e.  Q.  ( q  <Q 
r  /\  q  e.  U ) ) )  /\  A. q  e. 
Q.  -.  ( q  e.  L  /\  q  e.  U )  /\  A. q  e.  Q.  A. r  e.  Q.  ( q  <Q 
r  ->  ( q  e.  L  \/  r  e.  U ) ) ) )  ->  ( L  e.  _V  /\  U  e. 
_V ) )
14 df-inp 7238 . . . 4  |-  P.  =  { <. l ,  u >.  |  ( ( ( l  C_  Q.  /\  u  C_ 
Q. )  /\  ( E. q  e.  Q.  q  e.  l  /\  E. r  e.  Q.  r  e.  u ) )  /\  ( ( A. q  e.  Q.  ( q  e.  l  <->  E. r  e.  Q.  ( q  <Q  r  /\  r  e.  l
) )  /\  A. r  e.  Q.  (
r  e.  u  <->  E. q  e.  Q.  ( q  <Q 
r  /\  q  e.  u ) ) )  /\  A. q  e. 
Q.  -.  ( q  e.  l  /\  q  e.  u )  /\  A. q  e.  Q.  A. r  e.  Q.  ( q  <Q 
r  ->  ( q  e.  l  \/  r  e.  u ) ) ) ) }
1514eleq2i 2182 . . 3  |-  ( <. L ,  U >.  e. 
P. 
<-> 
<. L ,  U >.  e. 
{ <. l ,  u >.  |  ( ( ( l  C_  Q.  /\  u  C_ 
Q. )  /\  ( E. q  e.  Q.  q  e.  l  /\  E. r  e.  Q.  r  e.  u ) )  /\  ( ( A. q  e.  Q.  ( q  e.  l  <->  E. r  e.  Q.  ( q  <Q  r  /\  r  e.  l
) )  /\  A. r  e.  Q.  (
r  e.  u  <->  E. q  e.  Q.  ( q  <Q 
r  /\  q  e.  u ) ) )  /\  A. q  e. 
Q.  -.  ( q  e.  l  /\  q  e.  u )  /\  A. q  e.  Q.  A. r  e.  Q.  ( q  <Q 
r  ->  ( q  e.  l  \/  r  e.  u ) ) ) ) } )
16 sseq1 3088 . . . . . . 7  |-  ( l  =  L  ->  (
l  C_  Q.  <->  L  C_  Q. ) )
1716anbi1d 458 . . . . . 6  |-  ( l  =  L  ->  (
( l  C_  Q.  /\  u  C_  Q. )  <->  ( L  C_  Q.  /\  u  C_ 
Q. ) ) )
18 eleq2 2179 . . . . . . . 8  |-  ( l  =  L  ->  (
q  e.  l  <->  q  e.  L ) )
1918rexbidv 2413 . . . . . . 7  |-  ( l  =  L  ->  ( E. q  e.  Q.  q  e.  l  <->  E. q  e.  Q.  q  e.  L
) )
2019anbi1d 458 . . . . . 6  |-  ( l  =  L  ->  (
( E. q  e. 
Q.  q  e.  l  /\  E. r  e. 
Q.  r  e.  u
)  <->  ( E. q  e.  Q.  q  e.  L  /\  E. r  e.  Q.  r  e.  u )
) )
2117, 20anbi12d 462 . . . . 5  |-  ( l  =  L  ->  (
( ( l  C_  Q.  /\  u  C_  Q. )  /\  ( E. q  e.  Q.  q  e.  l  /\  E. r  e. 
Q.  r  e.  u
) )  <->  ( ( L  C_  Q.  /\  u  C_ 
Q. )  /\  ( E. q  e.  Q.  q  e.  L  /\  E. r  e.  Q.  r  e.  u ) ) ) )
22 eleq2 2179 . . . . . . . . . . 11  |-  ( l  =  L  ->  (
r  e.  l  <->  r  e.  L ) )
2322anbi2d 457 . . . . . . . . . 10  |-  ( l  =  L  ->  (
( q  <Q  r  /\  r  e.  l
)  <->  ( q  <Q 
r  /\  r  e.  L ) ) )
2423rexbidv 2413 . . . . . . . . 9  |-  ( l  =  L  ->  ( E. r  e.  Q.  ( q  <Q  r  /\  r  e.  l
)  <->  E. r  e.  Q.  ( q  <Q  r  /\  r  e.  L
) ) )
2518, 24bibi12d 234 . . . . . . . 8  |-  ( l  =  L  ->  (
( q  e.  l  <->  E. r  e.  Q.  ( q  <Q  r  /\  r  e.  l
) )  <->  ( q  e.  L  <->  E. r  e.  Q.  ( q  <Q  r  /\  r  e.  L
) ) ) )
2625ralbidv 2412 . . . . . . 7  |-  ( l  =  L  ->  ( A. q  e.  Q.  ( q  e.  l  <->  E. r  e.  Q.  ( q  <Q  r  /\  r  e.  l
) )  <->  A. q  e.  Q.  ( q  e.  L  <->  E. r  e.  Q.  ( q  <Q  r  /\  r  e.  L
) ) ) )
2726anbi1d 458 . . . . . 6  |-  ( l  =  L  ->  (
( A. q  e. 
Q.  ( q  e.  l  <->  E. r  e.  Q.  ( q  <Q  r  /\  r  e.  l
) )  /\  A. r  e.  Q.  (
r  e.  u  <->  E. q  e.  Q.  ( q  <Q 
r  /\  q  e.  u ) ) )  <-> 
( A. q  e. 
Q.  ( q  e.  L  <->  E. r  e.  Q.  ( q  <Q  r  /\  r  e.  L
) )  /\  A. r  e.  Q.  (
r  e.  u  <->  E. q  e.  Q.  ( q  <Q 
r  /\  q  e.  u ) ) ) ) )
2818anbi1d 458 . . . . . . . 8  |-  ( l  =  L  ->  (
( q  e.  l  /\  q  e.  u
)  <->  ( q  e.  L  /\  q  e.  u ) ) )
2928notbid 639 . . . . . . 7  |-  ( l  =  L  ->  ( -.  ( q  e.  l  /\  q  e.  u
)  <->  -.  ( q  e.  L  /\  q  e.  u ) ) )
3029ralbidv 2412 . . . . . 6  |-  ( l  =  L  ->  ( A. q  e.  Q.  -.  ( q  e.  l  /\  q  e.  u
)  <->  A. q  e.  Q.  -.  ( q  e.  L  /\  q  e.  u
) ) )
3118orbi1d 763 . . . . . . . 8  |-  ( l  =  L  ->  (
( q  e.  l  \/  r  e.  u
)  <->  ( q  e.  L  \/  r  e.  u ) ) )
3231imbi2d 229 . . . . . . 7  |-  ( l  =  L  ->  (
( q  <Q  r  ->  ( q  e.  l  \/  r  e.  u
) )  <->  ( q  <Q  r  ->  ( q  e.  L  \/  r  e.  u ) ) ) )
33322ralbidv 2434 . . . . . 6  |-  ( l  =  L  ->  ( A. q  e.  Q.  A. r  e.  Q.  (
q  <Q  r  ->  (
q  e.  l  \/  r  e.  u ) )  <->  A. q  e.  Q.  A. r  e.  Q.  (
q  <Q  r  ->  (
q  e.  L  \/  r  e.  u )
) ) )
3427, 30, 333anbi123d 1273 . . . . 5  |-  ( l  =  L  ->  (
( ( A. q  e.  Q.  ( q  e.  l  <->  E. r  e.  Q.  ( q  <Q  r  /\  r  e.  l
) )  /\  A. r  e.  Q.  (
r  e.  u  <->  E. q  e.  Q.  ( q  <Q 
r  /\  q  e.  u ) ) )  /\  A. q  e. 
Q.  -.  ( q  e.  l  /\  q  e.  u )  /\  A. q  e.  Q.  A. r  e.  Q.  ( q  <Q 
r  ->  ( q  e.  l  \/  r  e.  u ) ) )  <-> 
( ( A. q  e.  Q.  ( q  e.  L  <->  E. r  e.  Q.  ( q  <Q  r  /\  r  e.  L
) )  /\  A. r  e.  Q.  (
r  e.  u  <->  E. q  e.  Q.  ( q  <Q 
r  /\  q  e.  u ) ) )  /\  A. q  e. 
Q.  -.  ( q  e.  L  /\  q  e.  u )  /\  A. q  e.  Q.  A. r  e.  Q.  ( q  <Q 
r  ->  ( q  e.  L  \/  r  e.  u ) ) ) ) )
3521, 34anbi12d 462 . . . 4  |-  ( l  =  L  ->  (
( ( ( l 
C_  Q.  /\  u  C_ 
Q. )  /\  ( E. q  e.  Q.  q  e.  l  /\  E. r  e.  Q.  r  e.  u ) )  /\  ( ( A. q  e.  Q.  ( q  e.  l  <->  E. r  e.  Q.  ( q  <Q  r  /\  r  e.  l
) )  /\  A. r  e.  Q.  (
r  e.  u  <->  E. q  e.  Q.  ( q  <Q 
r  /\  q  e.  u ) ) )  /\  A. q  e. 
Q.  -.  ( q  e.  l  /\  q  e.  u )  /\  A. q  e.  Q.  A. r  e.  Q.  ( q  <Q 
r  ->  ( q  e.  l  \/  r  e.  u ) ) ) )  <->  ( ( ( L  C_  Q.  /\  u  C_ 
Q. )  /\  ( E. q  e.  Q.  q  e.  L  /\  E. r  e.  Q.  r  e.  u ) )  /\  ( ( A. q  e.  Q.  ( q  e.  L  <->  E. r  e.  Q.  ( q  <Q  r  /\  r  e.  L
) )  /\  A. r  e.  Q.  (
r  e.  u  <->  E. q  e.  Q.  ( q  <Q 
r  /\  q  e.  u ) ) )  /\  A. q  e. 
Q.  -.  ( q  e.  L  /\  q  e.  u )  /\  A. q  e.  Q.  A. r  e.  Q.  ( q  <Q 
r  ->  ( q  e.  L  \/  r  e.  u ) ) ) ) ) )
36 sseq1 3088 . . . . . . 7  |-  ( u  =  U  ->  (
u  C_  Q.  <->  U  C_  Q. ) )
3736anbi2d 457 . . . . . 6  |-  ( u  =  U  ->  (
( L  C_  Q.  /\  u  C_  Q. )  <->  ( L  C_  Q.  /\  U  C_ 
Q. ) ) )
38 eleq2 2179 . . . . . . . 8  |-  ( u  =  U  ->  (
r  e.  u  <->  r  e.  U ) )
3938rexbidv 2413 . . . . . . 7  |-  ( u  =  U  ->  ( E. r  e.  Q.  r  e.  u  <->  E. r  e.  Q.  r  e.  U
) )
4039anbi2d 457 . . . . . 6  |-  ( u  =  U  ->  (
( E. q  e. 
Q.  q  e.  L  /\  E. r  e.  Q.  r  e.  u )  <->  ( E. q  e.  Q.  q  e.  L  /\  E. r  e.  Q.  r  e.  U ) ) )
4137, 40anbi12d 462 . . . . 5  |-  ( u  =  U  ->  (
( ( L  C_  Q.  /\  u  C_  Q. )  /\  ( E. q  e.  Q.  q  e.  L  /\  E. r  e.  Q.  r  e.  u )
)  <->  ( ( L 
C_  Q.  /\  U  C_  Q. )  /\  ( E. q  e.  Q.  q  e.  L  /\  E. r  e.  Q.  r  e.  U ) ) ) )
42 eleq2 2179 . . . . . . . . . . 11  |-  ( u  =  U  ->  (
q  e.  u  <->  q  e.  U ) )
4342anbi2d 457 . . . . . . . . . 10  |-  ( u  =  U  ->  (
( q  <Q  r  /\  q  e.  u
)  <->  ( q  <Q 
r  /\  q  e.  U ) ) )
4443rexbidv 2413 . . . . . . . . 9  |-  ( u  =  U  ->  ( E. q  e.  Q.  ( q  <Q  r  /\  q  e.  u
)  <->  E. q  e.  Q.  ( q  <Q  r  /\  q  e.  U
) ) )
4538, 44bibi12d 234 . . . . . . . 8  |-  ( u  =  U  ->  (
( r  e.  u  <->  E. q  e.  Q.  (
q  <Q  r  /\  q  e.  u ) )  <->  ( r  e.  U  <->  E. q  e.  Q.  ( q  <Q  r  /\  q  e.  U
) ) ) )
4645ralbidv 2412 . . . . . . 7  |-  ( u  =  U  ->  ( A. r  e.  Q.  ( r  e.  u  <->  E. q  e.  Q.  (
q  <Q  r  /\  q  e.  u ) )  <->  A. r  e.  Q.  ( r  e.  U  <->  E. q  e.  Q.  ( q  <Q  r  /\  q  e.  U
) ) ) )
4746anbi2d 457 . . . . . 6  |-  ( u  =  U  ->  (
( A. q  e. 
Q.  ( q  e.  L  <->  E. r  e.  Q.  ( q  <Q  r  /\  r  e.  L
) )  /\  A. r  e.  Q.  (
r  e.  u  <->  E. q  e.  Q.  ( q  <Q 
r  /\  q  e.  u ) ) )  <-> 
( A. q  e. 
Q.  ( q  e.  L  <->  E. r  e.  Q.  ( q  <Q  r  /\  r  e.  L
) )  /\  A. r  e.  Q.  (
r  e.  U  <->  E. q  e.  Q.  ( q  <Q 
r  /\  q  e.  U ) ) ) ) )
4842anbi2d 457 . . . . . . . 8  |-  ( u  =  U  ->  (
( q  e.  L  /\  q  e.  u
)  <->  ( q  e.  L  /\  q  e.  U ) ) )
4948notbid 639 . . . . . . 7  |-  ( u  =  U  ->  ( -.  ( q  e.  L  /\  q  e.  u
)  <->  -.  ( q  e.  L  /\  q  e.  U ) ) )
5049ralbidv 2412 . . . . . 6  |-  ( u  =  U  ->  ( A. q  e.  Q.  -.  ( q  e.  L  /\  q  e.  u
)  <->  A. q  e.  Q.  -.  ( q  e.  L  /\  q  e.  U
) ) )
5138orbi2d 762 . . . . . . . 8  |-  ( u  =  U  ->  (
( q  e.  L  \/  r  e.  u
)  <->  ( q  e.  L  \/  r  e.  U ) ) )
5251imbi2d 229 . . . . . . 7  |-  ( u  =  U  ->  (
( q  <Q  r  ->  ( q  e.  L  \/  r  e.  u
) )  <->  ( q  <Q  r  ->  ( q  e.  L  \/  r  e.  U ) ) ) )
53522ralbidv 2434 . . . . . 6  |-  ( u  =  U  ->  ( A. q  e.  Q.  A. r  e.  Q.  (
q  <Q  r  ->  (
q  e.  L  \/  r  e.  u )
)  <->  A. q  e.  Q.  A. r  e.  Q.  (
q  <Q  r  ->  (
q  e.  L  \/  r  e.  U )
) ) )
5447, 50, 533anbi123d 1273 . . . . 5  |-  ( u  =  U  ->  (
( ( A. q  e.  Q.  ( q  e.  L  <->  E. r  e.  Q.  ( q  <Q  r  /\  r  e.  L
) )  /\  A. r  e.  Q.  (
r  e.  u  <->  E. q  e.  Q.  ( q  <Q 
r  /\  q  e.  u ) ) )  /\  A. q  e. 
Q.  -.  ( q  e.  L  /\  q  e.  u )  /\  A. q  e.  Q.  A. r  e.  Q.  ( q  <Q 
r  ->  ( q  e.  L  \/  r  e.  u ) ) )  <-> 
( ( A. q  e.  Q.  ( q  e.  L  <->  E. r  e.  Q.  ( q  <Q  r  /\  r  e.  L
) )  /\  A. r  e.  Q.  (
r  e.  U  <->  E. q  e.  Q.  ( q  <Q 
r  /\  q  e.  U ) ) )  /\  A. q  e. 
Q.  -.  ( q  e.  L  /\  q  e.  U )  /\  A. q  e.  Q.  A. r  e.  Q.  ( q  <Q 
r  ->  ( q  e.  L  \/  r  e.  U ) ) ) ) )
5541, 54anbi12d 462 . . . 4  |-  ( u  =  U  ->  (
( ( ( L 
C_  Q.  /\  u  C_ 
Q. )  /\  ( E. q  e.  Q.  q  e.  L  /\  E. r  e.  Q.  r  e.  u ) )  /\  ( ( A. q  e.  Q.  ( q  e.  L  <->  E. r  e.  Q.  ( q  <Q  r  /\  r  e.  L
) )  /\  A. r  e.  Q.  (
r  e.  u  <->  E. q  e.  Q.  ( q  <Q 
r  /\  q  e.  u ) ) )  /\  A. q  e. 
Q.  -.  ( q  e.  L  /\  q  e.  u )  /\  A. q  e.  Q.  A. r  e.  Q.  ( q  <Q 
r  ->  ( q  e.  L  \/  r  e.  u ) ) ) )  <->  ( ( ( L  C_  Q.  /\  U  C_ 
Q. )  /\  ( E. q  e.  Q.  q  e.  L  /\  E. r  e.  Q.  r  e.  U ) )  /\  ( ( A. q  e.  Q.  ( q  e.  L  <->  E. r  e.  Q.  ( q  <Q  r  /\  r  e.  L
) )  /\  A. r  e.  Q.  (
r  e.  U  <->  E. q  e.  Q.  ( q  <Q 
r  /\  q  e.  U ) ) )  /\  A. q  e. 
Q.  -.  ( q  e.  L  /\  q  e.  U )  /\  A. q  e.  Q.  A. r  e.  Q.  ( q  <Q 
r  ->  ( q  e.  L  \/  r  e.  U ) ) ) ) ) )
5635, 55opelopabg 4158 . . 3  |-  ( ( L  e.  _V  /\  U  e.  _V )  ->  ( <. L ,  U >.  e.  { <. l ,  u >.  |  (
( ( l  C_  Q.  /\  u  C_  Q. )  /\  ( E. q  e.  Q.  q  e.  l  /\  E. r  e. 
Q.  r  e.  u
) )  /\  (
( A. q  e. 
Q.  ( q  e.  l  <->  E. r  e.  Q.  ( q  <Q  r  /\  r  e.  l
) )  /\  A. r  e.  Q.  (
r  e.  u  <->  E. q  e.  Q.  ( q  <Q 
r  /\  q  e.  u ) ) )  /\  A. q  e. 
Q.  -.  ( q  e.  l  /\  q  e.  u )  /\  A. q  e.  Q.  A. r  e.  Q.  ( q  <Q 
r  ->  ( q  e.  l  \/  r  e.  u ) ) ) ) }  <->  ( (
( L  C_  Q.  /\  U  C_  Q. )  /\  ( E. q  e. 
Q.  q  e.  L  /\  E. r  e.  Q.  r  e.  U )
)  /\  ( ( A. q  e.  Q.  ( q  e.  L  <->  E. r  e.  Q.  (
q  <Q  r  /\  r  e.  L ) )  /\  A. r  e.  Q.  (
r  e.  U  <->  E. q  e.  Q.  ( q  <Q 
r  /\  q  e.  U ) ) )  /\  A. q  e. 
Q.  -.  ( q  e.  L  /\  q  e.  U )  /\  A. q  e.  Q.  A. r  e.  Q.  ( q  <Q 
r  ->  ( q  e.  L  \/  r  e.  U ) ) ) ) ) )
5715, 56syl5bb 191 . 2  |-  ( ( L  e.  _V  /\  U  e.  _V )  ->  ( <. L ,  U >.  e.  P.  <->  ( (
( L  C_  Q.  /\  U  C_  Q. )  /\  ( E. q  e. 
Q.  q  e.  L  /\  E. r  e.  Q.  r  e.  U )
)  /\  ( ( A. q  e.  Q.  ( q  e.  L  <->  E. r  e.  Q.  (
q  <Q  r  /\  r  e.  L ) )  /\  A. r  e.  Q.  (
r  e.  U  <->  E. q  e.  Q.  ( q  <Q 
r  /\  q  e.  U ) ) )  /\  A. q  e. 
Q.  -.  ( q  e.  L  /\  q  e.  U )  /\  A. q  e.  Q.  A. r  e.  Q.  ( q  <Q 
r  ->  ( q  e.  L  \/  r  e.  U ) ) ) ) ) )
588, 13, 57pm5.21nii 676 1  |-  ( <. L ,  U >.  e. 
P. 
<->  ( ( ( L 
C_  Q.  /\  U  C_  Q. )  /\  ( E. q  e.  Q.  q  e.  L  /\  E. r  e.  Q.  r  e.  U ) )  /\  ( ( A. q  e.  Q.  ( q  e.  L  <->  E. r  e.  Q.  ( q  <Q  r  /\  r  e.  L
) )  /\  A. r  e.  Q.  (
r  e.  U  <->  E. q  e.  Q.  ( q  <Q 
r  /\  q  e.  U ) ) )  /\  A. q  e. 
Q.  -.  ( q  e.  L  /\  q  e.  U )  /\  A. q  e.  Q.  A. r  e.  Q.  ( q  <Q 
r  ->  ( q  e.  L  \/  r  e.  U ) ) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 680    /\ w3a 945    = wceq 1314    e. wcel 1463   A.wral 2391   E.wrex 2392   _Vcvv 2658    C_ wss 3039   ~Pcpw 3478   <.cop 3498   class class class wbr 3897   {copab 3956    X. cxp 4505   Q.cnq 7052    <Q cltq 7057   P.cnp 7063
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-13 1474  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-coll 4011  ax-sep 4014  ax-pow 4066  ax-pr 4099  ax-un 4323  ax-iinf 4470
This theorem depends on definitions:  df-bi 116  df-3an 947  df-tru 1317  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2245  df-ral 2396  df-rex 2397  df-reu 2398  df-rab 2400  df-v 2660  df-sbc 2881  df-csb 2974  df-dif 3041  df-un 3043  df-in 3045  df-ss 3052  df-pw 3480  df-sn 3501  df-pr 3502  df-op 3504  df-uni 3705  df-int 3740  df-iun 3783  df-br 3898  df-opab 3958  df-mpt 3959  df-id 4183  df-iom 4473  df-xp 4513  df-rel 4514  df-cnv 4515  df-co 4516  df-dm 4517  df-rn 4518  df-res 4519  df-ima 4520  df-iota 5056  df-fun 5093  df-fn 5094  df-f 5095  df-f1 5096  df-fo 5097  df-f1o 5098  df-fv 5099  df-qs 6401  df-ni 7076  df-nqqs 7120  df-inp 7238
This theorem is referenced by:  elnp1st2nd  7248  prml  7249  prmu  7250  prssnql  7251  prssnqu  7252  prcdnql  7256  prcunqu  7257  prltlu  7259  prnmaxl  7260  prnminu  7261  prloc  7263  prdisj  7264  nqprxx  7318  suplocexprlemex  7494
  Copyright terms: Public domain W3C validator