| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elinp | Unicode version | ||
| Description: Membership in positive reals. (Contributed by Jim Kingdon, 27-Sep-2019.) |
| Ref | Expression |
|---|---|
| elinp |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | npsspw 7586 |
. . . . 5
| |
| 2 | 1 | sseli 3189 |
. . . 4
|
| 3 | opelxp 4706 |
. . . 4
| |
| 4 | 2, 3 | sylib 122 |
. . 3
|
| 5 | elex 2783 |
. . . 4
| |
| 6 | elex 2783 |
. . . 4
| |
| 7 | 5, 6 | anim12i 338 |
. . 3
|
| 8 | 4, 7 | syl 14 |
. 2
|
| 9 | nqex 7478 |
. . . . 5
| |
| 10 | 9 | ssex 4182 |
. . . 4
|
| 11 | 9 | ssex 4182 |
. . . 4
|
| 12 | 10, 11 | anim12i 338 |
. . 3
|
| 13 | 12 | ad2antrr 488 |
. 2
|
| 14 | df-inp 7581 |
. . . 4
| |
| 15 | 14 | eleq2i 2272 |
. . 3
|
| 16 | sseq1 3216 |
. . . . . . 7
| |
| 17 | 16 | anbi1d 465 |
. . . . . 6
|
| 18 | eleq2 2269 |
. . . . . . . 8
| |
| 19 | 18 | rexbidv 2507 |
. . . . . . 7
|
| 20 | 19 | anbi1d 465 |
. . . . . 6
|
| 21 | 17, 20 | anbi12d 473 |
. . . . 5
|
| 22 | eleq2 2269 |
. . . . . . . . . . 11
| |
| 23 | 22 | anbi2d 464 |
. . . . . . . . . 10
|
| 24 | 23 | rexbidv 2507 |
. . . . . . . . 9
|
| 25 | 18, 24 | bibi12d 235 |
. . . . . . . 8
|
| 26 | 25 | ralbidv 2506 |
. . . . . . 7
|
| 27 | 26 | anbi1d 465 |
. . . . . 6
|
| 28 | 18 | anbi1d 465 |
. . . . . . . 8
|
| 29 | 28 | notbid 669 |
. . . . . . 7
|
| 30 | 29 | ralbidv 2506 |
. . . . . 6
|
| 31 | 18 | orbi1d 793 |
. . . . . . . 8
|
| 32 | 31 | imbi2d 230 |
. . . . . . 7
|
| 33 | 32 | 2ralbidv 2530 |
. . . . . 6
|
| 34 | 27, 30, 33 | 3anbi123d 1325 |
. . . . 5
|
| 35 | 21, 34 | anbi12d 473 |
. . . 4
|
| 36 | sseq1 3216 |
. . . . . . 7
| |
| 37 | 36 | anbi2d 464 |
. . . . . 6
|
| 38 | eleq2 2269 |
. . . . . . . 8
| |
| 39 | 38 | rexbidv 2507 |
. . . . . . 7
|
| 40 | 39 | anbi2d 464 |
. . . . . 6
|
| 41 | 37, 40 | anbi12d 473 |
. . . . 5
|
| 42 | eleq2 2269 |
. . . . . . . . . . 11
| |
| 43 | 42 | anbi2d 464 |
. . . . . . . . . 10
|
| 44 | 43 | rexbidv 2507 |
. . . . . . . . 9
|
| 45 | 38, 44 | bibi12d 235 |
. . . . . . . 8
|
| 46 | 45 | ralbidv 2506 |
. . . . . . 7
|
| 47 | 46 | anbi2d 464 |
. . . . . 6
|
| 48 | 42 | anbi2d 464 |
. . . . . . . 8
|
| 49 | 48 | notbid 669 |
. . . . . . 7
|
| 50 | 49 | ralbidv 2506 |
. . . . . 6
|
| 51 | 38 | orbi2d 792 |
. . . . . . . 8
|
| 52 | 51 | imbi2d 230 |
. . . . . . 7
|
| 53 | 52 | 2ralbidv 2530 |
. . . . . 6
|
| 54 | 47, 50, 53 | 3anbi123d 1325 |
. . . . 5
|
| 55 | 41, 54 | anbi12d 473 |
. . . 4
|
| 56 | 35, 55 | opelopabg 4315 |
. . 3
|
| 57 | 15, 56 | bitrid 192 |
. 2
|
| 58 | 8, 13, 57 | pm5.21nii 706 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-coll 4160 ax-sep 4163 ax-pow 4219 ax-pr 4254 ax-un 4481 ax-iinf 4637 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-reu 2491 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-iun 3929 df-br 4046 df-opab 4107 df-mpt 4108 df-id 4341 df-iom 4640 df-xp 4682 df-rel 4683 df-cnv 4684 df-co 4685 df-dm 4686 df-rn 4687 df-res 4688 df-ima 4689 df-iota 5233 df-fun 5274 df-fn 5275 df-f 5276 df-f1 5277 df-fo 5278 df-f1o 5279 df-fv 5280 df-qs 6628 df-ni 7419 df-nqqs 7463 df-inp 7581 |
| This theorem is referenced by: elnp1st2nd 7591 prml 7592 prmu 7593 prssnql 7594 prssnqu 7595 prcdnql 7599 prcunqu 7600 prltlu 7602 prnmaxl 7603 prnminu 7604 prloc 7606 prdisj 7607 nqprxx 7661 suplocexprlemex 7837 |
| Copyright terms: Public domain | W3C validator |