| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elinp | Unicode version | ||
| Description: Membership in positive reals. (Contributed by Jim Kingdon, 27-Sep-2019.) |
| Ref | Expression |
|---|---|
| elinp |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | npsspw 7619 |
. . . . 5
| |
| 2 | 1 | sseli 3197 |
. . . 4
|
| 3 | opelxp 4723 |
. . . 4
| |
| 4 | 2, 3 | sylib 122 |
. . 3
|
| 5 | elex 2788 |
. . . 4
| |
| 6 | elex 2788 |
. . . 4
| |
| 7 | 5, 6 | anim12i 338 |
. . 3
|
| 8 | 4, 7 | syl 14 |
. 2
|
| 9 | nqex 7511 |
. . . . 5
| |
| 10 | 9 | ssex 4197 |
. . . 4
|
| 11 | 9 | ssex 4197 |
. . . 4
|
| 12 | 10, 11 | anim12i 338 |
. . 3
|
| 13 | 12 | ad2antrr 488 |
. 2
|
| 14 | df-inp 7614 |
. . . 4
| |
| 15 | 14 | eleq2i 2274 |
. . 3
|
| 16 | sseq1 3224 |
. . . . . . 7
| |
| 17 | 16 | anbi1d 465 |
. . . . . 6
|
| 18 | eleq2 2271 |
. . . . . . . 8
| |
| 19 | 18 | rexbidv 2509 |
. . . . . . 7
|
| 20 | 19 | anbi1d 465 |
. . . . . 6
|
| 21 | 17, 20 | anbi12d 473 |
. . . . 5
|
| 22 | eleq2 2271 |
. . . . . . . . . . 11
| |
| 23 | 22 | anbi2d 464 |
. . . . . . . . . 10
|
| 24 | 23 | rexbidv 2509 |
. . . . . . . . 9
|
| 25 | 18, 24 | bibi12d 235 |
. . . . . . . 8
|
| 26 | 25 | ralbidv 2508 |
. . . . . . 7
|
| 27 | 26 | anbi1d 465 |
. . . . . 6
|
| 28 | 18 | anbi1d 465 |
. . . . . . . 8
|
| 29 | 28 | notbid 669 |
. . . . . . 7
|
| 30 | 29 | ralbidv 2508 |
. . . . . 6
|
| 31 | 18 | orbi1d 793 |
. . . . . . . 8
|
| 32 | 31 | imbi2d 230 |
. . . . . . 7
|
| 33 | 32 | 2ralbidv 2532 |
. . . . . 6
|
| 34 | 27, 30, 33 | 3anbi123d 1325 |
. . . . 5
|
| 35 | 21, 34 | anbi12d 473 |
. . . 4
|
| 36 | sseq1 3224 |
. . . . . . 7
| |
| 37 | 36 | anbi2d 464 |
. . . . . 6
|
| 38 | eleq2 2271 |
. . . . . . . 8
| |
| 39 | 38 | rexbidv 2509 |
. . . . . . 7
|
| 40 | 39 | anbi2d 464 |
. . . . . 6
|
| 41 | 37, 40 | anbi12d 473 |
. . . . 5
|
| 42 | eleq2 2271 |
. . . . . . . . . . 11
| |
| 43 | 42 | anbi2d 464 |
. . . . . . . . . 10
|
| 44 | 43 | rexbidv 2509 |
. . . . . . . . 9
|
| 45 | 38, 44 | bibi12d 235 |
. . . . . . . 8
|
| 46 | 45 | ralbidv 2508 |
. . . . . . 7
|
| 47 | 46 | anbi2d 464 |
. . . . . 6
|
| 48 | 42 | anbi2d 464 |
. . . . . . . 8
|
| 49 | 48 | notbid 669 |
. . . . . . 7
|
| 50 | 49 | ralbidv 2508 |
. . . . . 6
|
| 51 | 38 | orbi2d 792 |
. . . . . . . 8
|
| 52 | 51 | imbi2d 230 |
. . . . . . 7
|
| 53 | 52 | 2ralbidv 2532 |
. . . . . 6
|
| 54 | 47, 50, 53 | 3anbi123d 1325 |
. . . . 5
|
| 55 | 41, 54 | anbi12d 473 |
. . . 4
|
| 56 | 35, 55 | opelopabg 4332 |
. . 3
|
| 57 | 15, 56 | bitrid 192 |
. 2
|
| 58 | 8, 13, 57 | pm5.21nii 706 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-coll 4175 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-iinf 4654 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-reu 2493 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-iun 3943 df-br 4060 df-opab 4122 df-mpt 4123 df-id 4358 df-iom 4657 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-fv 5298 df-qs 6649 df-ni 7452 df-nqqs 7496 df-inp 7614 |
| This theorem is referenced by: elnp1st2nd 7624 prml 7625 prmu 7626 prssnql 7627 prssnqu 7628 prcdnql 7632 prcunqu 7633 prltlu 7635 prnmaxl 7636 prnminu 7637 prloc 7639 prdisj 7640 nqprxx 7694 suplocexprlemex 7870 |
| Copyright terms: Public domain | W3C validator |