| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elinp | Unicode version | ||
| Description: Membership in positive reals. (Contributed by Jim Kingdon, 27-Sep-2019.) |
| Ref | Expression |
|---|---|
| elinp |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | npsspw 7658 |
. . . . 5
| |
| 2 | 1 | sseli 3220 |
. . . 4
|
| 3 | opelxp 4749 |
. . . 4
| |
| 4 | 2, 3 | sylib 122 |
. . 3
|
| 5 | elex 2811 |
. . . 4
| |
| 6 | elex 2811 |
. . . 4
| |
| 7 | 5, 6 | anim12i 338 |
. . 3
|
| 8 | 4, 7 | syl 14 |
. 2
|
| 9 | nqex 7550 |
. . . . 5
| |
| 10 | 9 | ssex 4221 |
. . . 4
|
| 11 | 9 | ssex 4221 |
. . . 4
|
| 12 | 10, 11 | anim12i 338 |
. . 3
|
| 13 | 12 | ad2antrr 488 |
. 2
|
| 14 | df-inp 7653 |
. . . 4
| |
| 15 | 14 | eleq2i 2296 |
. . 3
|
| 16 | sseq1 3247 |
. . . . . . 7
| |
| 17 | 16 | anbi1d 465 |
. . . . . 6
|
| 18 | eleq2 2293 |
. . . . . . . 8
| |
| 19 | 18 | rexbidv 2531 |
. . . . . . 7
|
| 20 | 19 | anbi1d 465 |
. . . . . 6
|
| 21 | 17, 20 | anbi12d 473 |
. . . . 5
|
| 22 | eleq2 2293 |
. . . . . . . . . . 11
| |
| 23 | 22 | anbi2d 464 |
. . . . . . . . . 10
|
| 24 | 23 | rexbidv 2531 |
. . . . . . . . 9
|
| 25 | 18, 24 | bibi12d 235 |
. . . . . . . 8
|
| 26 | 25 | ralbidv 2530 |
. . . . . . 7
|
| 27 | 26 | anbi1d 465 |
. . . . . 6
|
| 28 | 18 | anbi1d 465 |
. . . . . . . 8
|
| 29 | 28 | notbid 671 |
. . . . . . 7
|
| 30 | 29 | ralbidv 2530 |
. . . . . 6
|
| 31 | 18 | orbi1d 796 |
. . . . . . . 8
|
| 32 | 31 | imbi2d 230 |
. . . . . . 7
|
| 33 | 32 | 2ralbidv 2554 |
. . . . . 6
|
| 34 | 27, 30, 33 | 3anbi123d 1346 |
. . . . 5
|
| 35 | 21, 34 | anbi12d 473 |
. . . 4
|
| 36 | sseq1 3247 |
. . . . . . 7
| |
| 37 | 36 | anbi2d 464 |
. . . . . 6
|
| 38 | eleq2 2293 |
. . . . . . . 8
| |
| 39 | 38 | rexbidv 2531 |
. . . . . . 7
|
| 40 | 39 | anbi2d 464 |
. . . . . 6
|
| 41 | 37, 40 | anbi12d 473 |
. . . . 5
|
| 42 | eleq2 2293 |
. . . . . . . . . . 11
| |
| 43 | 42 | anbi2d 464 |
. . . . . . . . . 10
|
| 44 | 43 | rexbidv 2531 |
. . . . . . . . 9
|
| 45 | 38, 44 | bibi12d 235 |
. . . . . . . 8
|
| 46 | 45 | ralbidv 2530 |
. . . . . . 7
|
| 47 | 46 | anbi2d 464 |
. . . . . 6
|
| 48 | 42 | anbi2d 464 |
. . . . . . . 8
|
| 49 | 48 | notbid 671 |
. . . . . . 7
|
| 50 | 49 | ralbidv 2530 |
. . . . . 6
|
| 51 | 38 | orbi2d 795 |
. . . . . . . 8
|
| 52 | 51 | imbi2d 230 |
. . . . . . 7
|
| 53 | 52 | 2ralbidv 2554 |
. . . . . 6
|
| 54 | 47, 50, 53 | 3anbi123d 1346 |
. . . . 5
|
| 55 | 41, 54 | anbi12d 473 |
. . . 4
|
| 56 | 35, 55 | opelopabg 4356 |
. . 3
|
| 57 | 15, 56 | bitrid 192 |
. 2
|
| 58 | 8, 13, 57 | pm5.21nii 709 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-iinf 4680 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-iom 4683 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-qs 6686 df-ni 7491 df-nqqs 7535 df-inp 7653 |
| This theorem is referenced by: elnp1st2nd 7663 prml 7664 prmu 7665 prssnql 7666 prssnqu 7667 prcdnql 7671 prcunqu 7672 prltlu 7674 prnmaxl 7675 prnminu 7676 prloc 7678 prdisj 7679 nqprxx 7733 suplocexprlemex 7909 |
| Copyright terms: Public domain | W3C validator |