Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > lmfval | Unicode version |
Description: The relation "sequence converges to point " in a metric space. (Contributed by NM, 7-Sep-2006.) (Revised by Mario Carneiro, 21-Aug-2015.) |
Ref | Expression |
---|---|
lmfval | TopOn |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-lm 13261 | . . 3 | |
2 | 1 | a1i 9 | . 2 TopOn |
3 | simpr 110 | . . . . . . . 8 TopOn | |
4 | 3 | unieqd 3816 | . . . . . . 7 TopOn |
5 | toponuni 13084 | . . . . . . . 8 TopOn | |
6 | 5 | adantr 276 | . . . . . . 7 TopOn |
7 | 4, 6 | eqtr4d 2211 | . . . . . 6 TopOn |
8 | 7 | oveq1d 5880 | . . . . 5 TopOn |
9 | 8 | eleq2d 2245 | . . . 4 TopOn |
10 | 7 | eleq2d 2245 | . . . 4 TopOn |
11 | 3 | raleqdv 2676 | . . . 4 TopOn |
12 | 9, 10, 11 | 3anbi123d 1312 | . . 3 TopOn |
13 | 12 | opabbidv 4064 | . 2 TopOn |
14 | topontop 13083 | . 2 TopOn | |
15 | df-3an 980 | . . . . 5 | |
16 | 15 | opabbii 4065 | . . . 4 |
17 | opabssxp 4694 | . . . 4 | |
18 | 16, 17 | eqsstri 3185 | . . 3 |
19 | fnpm 6646 | . . . . 5 | |
20 | toponmax 13094 | . . . . . 6 TopOn | |
21 | 20 | elexd 2748 | . . . . 5 TopOn |
22 | cnex 7910 | . . . . . 6 | |
23 | 22 | a1i 9 | . . . . 5 TopOn |
24 | fnovex 5898 | . . . . 5 | |
25 | 19, 21, 23, 24 | mp3an2i 1342 | . . . 4 TopOn |
26 | xpexg 4734 | . . . 4 | |
27 | 25, 20, 26 | syl2anc 411 | . . 3 TopOn |
28 | ssexg 4137 | . . 3 | |
29 | 18, 27, 28 | sylancr 414 | . 2 TopOn |
30 | 2, 13, 14, 29 | fvmptd 5589 | 1 TopOn |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 104 w3a 978 wceq 1353 wcel 2146 wral 2453 wrex 2454 cvv 2735 wss 3127 cuni 3805 copab 4058 cmpt 4059 cxp 4618 crn 4621 cres 4622 wfn 5203 wf 5204 cfv 5208 (class class class)co 5865 cpm 6639 cc 7784 cuz 9501 ctop 13066 TopOnctopon 13079 clm 13258 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-13 2148 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-pow 4169 ax-pr 4203 ax-un 4427 ax-cnex 7877 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ral 2458 df-rex 2459 df-rab 2462 df-v 2737 df-sbc 2961 df-csb 3056 df-un 3131 df-in 3133 df-ss 3140 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-iun 3884 df-br 3999 df-opab 4060 df-mpt 4061 df-id 4287 df-xp 4626 df-rel 4627 df-cnv 4628 df-co 4629 df-dm 4630 df-rn 4631 df-res 4632 df-ima 4633 df-iota 5170 df-fun 5210 df-fn 5211 df-f 5212 df-fv 5216 df-ov 5868 df-oprab 5869 df-mpo 5870 df-1st 6131 df-2nd 6132 df-pm 6641 df-top 13067 df-topon 13080 df-lm 13261 |
This theorem is referenced by: lmreltop 13264 lmbr 13284 sslm 13318 |
Copyright terms: Public domain | W3C validator |