ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lmfval Unicode version

Theorem lmfval 12733
Description: The relation "sequence  f converges to point  y " in a metric space. (Contributed by NM, 7-Sep-2006.) (Revised by Mario Carneiro, 21-Aug-2015.)
Assertion
Ref Expression
lmfval  |-  ( J  e.  (TopOn `  X
)  ->  ( ~~> t `  J )  =  { <. f ,  x >.  |  ( f  e.  ( X  ^pm  CC )  /\  x  e.  X  /\  A. u  e.  J  ( x  e.  u  ->  E. y  e.  ran  ZZ>= ( f  |`  y
) : y --> u ) ) } )
Distinct variable groups:    x, f, y, X    u, f, J, x, y
Allowed substitution hint:    X( u)

Proof of Theorem lmfval
Dummy variable  j is distinct from all other variables.
StepHypRef Expression
1 df-lm 12731 . . 3  |-  ~~> t  =  ( j  e.  Top  |->  { <. f ,  x >.  |  ( f  e.  ( U. j  ^pm  CC )  /\  x  e. 
U. j  /\  A. u  e.  j  (
x  e.  u  ->  E. y  e.  ran  ZZ>= ( f  |`  y
) : y --> u ) ) } )
21a1i 9 . 2  |-  ( J  e.  (TopOn `  X
)  ->  ~~> t  =  ( j  e.  Top  |->  {
<. f ,  x >.  |  ( f  e.  ( U. j  ^pm  CC )  /\  x  e.  U. j  /\  A. u  e.  j  ( x  e.  u  ->  E. y  e.  ran  ZZ>= ( f  |`  y ) : y --> u ) ) } ) )
3 simpr 109 . . . . . . . 8  |-  ( ( J  e.  (TopOn `  X )  /\  j  =  J )  ->  j  =  J )
43unieqd 3794 . . . . . . 7  |-  ( ( J  e.  (TopOn `  X )  /\  j  =  J )  ->  U. j  =  U. J )
5 toponuni 12554 . . . . . . . 8  |-  ( J  e.  (TopOn `  X
)  ->  X  =  U. J )
65adantr 274 . . . . . . 7  |-  ( ( J  e.  (TopOn `  X )  /\  j  =  J )  ->  X  =  U. J )
74, 6eqtr4d 2200 . . . . . 6  |-  ( ( J  e.  (TopOn `  X )  /\  j  =  J )  ->  U. j  =  X )
87oveq1d 5851 . . . . 5  |-  ( ( J  e.  (TopOn `  X )  /\  j  =  J )  ->  ( U. j  ^pm  CC )  =  ( X  ^pm  CC ) )
98eleq2d 2234 . . . 4  |-  ( ( J  e.  (TopOn `  X )  /\  j  =  J )  ->  (
f  e.  ( U. j  ^pm  CC )  <->  f  e.  ( X  ^pm  CC ) ) )
107eleq2d 2234 . . . 4  |-  ( ( J  e.  (TopOn `  X )  /\  j  =  J )  ->  (
x  e.  U. j  <->  x  e.  X ) )
113raleqdv 2665 . . . 4  |-  ( ( J  e.  (TopOn `  X )  /\  j  =  J )  ->  ( A. u  e.  j 
( x  e.  u  ->  E. y  e.  ran  ZZ>= ( f  |`  y
) : y --> u )  <->  A. u  e.  J  ( x  e.  u  ->  E. y  e.  ran  ZZ>= ( f  |`  y
) : y --> u ) ) )
129, 10, 113anbi123d 1301 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  j  =  J )  ->  (
( f  e.  ( U. j  ^pm  CC )  /\  x  e.  U. j  /\  A. u  e.  j  ( x  e.  u  ->  E. y  e.  ran  ZZ>= ( f  |`  y ) : y --> u ) )  <->  ( f  e.  ( X  ^pm  CC )  /\  x  e.  X  /\  A. u  e.  J  ( x  e.  u  ->  E. y  e.  ran  ZZ>= ( f  |`  y
) : y --> u ) ) ) )
1312opabbidv 4042 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  j  =  J )  ->  { <. f ,  x >.  |  ( f  e.  ( U. j  ^pm  CC )  /\  x  e.  U. j  /\  A. u  e.  j  ( x  e.  u  ->  E. y  e.  ran  ZZ>= ( f  |`  y
) : y --> u ) ) }  =  { <. f ,  x >.  |  ( f  e.  ( X  ^pm  CC )  /\  x  e.  X  /\  A. u  e.  J  ( x  e.  u  ->  E. y  e.  ran  ZZ>= ( f  |`  y
) : y --> u ) ) } )
14 topontop 12553 . 2  |-  ( J  e.  (TopOn `  X
)  ->  J  e.  Top )
15 df-3an 969 . . . . 5  |-  ( ( f  e.  ( X 
^pm  CC )  /\  x  e.  X  /\  A. u  e.  J  ( x  e.  u  ->  E. y  e.  ran  ZZ>= ( f  |`  y ) : y --> u ) )  <->  ( (
f  e.  ( X 
^pm  CC )  /\  x  e.  X )  /\  A. u  e.  J  (
x  e.  u  ->  E. y  e.  ran  ZZ>= ( f  |`  y
) : y --> u ) ) )
1615opabbii 4043 . . . 4  |-  { <. f ,  x >.  |  ( f  e.  ( X 
^pm  CC )  /\  x  e.  X  /\  A. u  e.  J  ( x  e.  u  ->  E. y  e.  ran  ZZ>= ( f  |`  y ) : y --> u ) ) }  =  { <. f ,  x >.  |  (
( f  e.  ( X  ^pm  CC )  /\  x  e.  X
)  /\  A. u  e.  J  ( x  e.  u  ->  E. y  e.  ran  ZZ>= ( f  |`  y ) : y --> u ) ) }
17 opabssxp 4672 . . . 4  |-  { <. f ,  x >.  |  ( ( f  e.  ( X  ^pm  CC )  /\  x  e.  X
)  /\  A. u  e.  J  ( x  e.  u  ->  E. y  e.  ran  ZZ>= ( f  |`  y ) : y --> u ) ) } 
C_  ( ( X 
^pm  CC )  X.  X
)
1816, 17eqsstri 3169 . . 3  |-  { <. f ,  x >.  |  ( f  e.  ( X 
^pm  CC )  /\  x  e.  X  /\  A. u  e.  J  ( x  e.  u  ->  E. y  e.  ran  ZZ>= ( f  |`  y ) : y --> u ) ) } 
C_  ( ( X 
^pm  CC )  X.  X
)
19 fnpm 6613 . . . . 5  |-  ^pm  Fn  ( _V  X.  _V )
20 toponmax 12564 . . . . . 6  |-  ( J  e.  (TopOn `  X
)  ->  X  e.  J )
2120elexd 2734 . . . . 5  |-  ( J  e.  (TopOn `  X
)  ->  X  e.  _V )
22 cnex 7868 . . . . . 6  |-  CC  e.  _V
2322a1i 9 . . . . 5  |-  ( J  e.  (TopOn `  X
)  ->  CC  e.  _V )
24 fnovex 5866 . . . . 5  |-  ( ( 
^pm  Fn  ( _V  X.  _V )  /\  X  e.  _V  /\  CC  e.  _V )  ->  ( X 
^pm  CC )  e.  _V )
2519, 21, 23, 24mp3an2i 1331 . . . 4  |-  ( J  e.  (TopOn `  X
)  ->  ( X  ^pm  CC )  e.  _V )
26 xpexg 4712 . . . 4  |-  ( ( ( X  ^pm  CC )  e.  _V  /\  X  e.  J )  ->  (
( X  ^pm  CC )  X.  X )  e. 
_V )
2725, 20, 26syl2anc 409 . . 3  |-  ( J  e.  (TopOn `  X
)  ->  ( ( X  ^pm  CC )  X.  X )  e.  _V )
28 ssexg 4115 . . 3  |-  ( ( { <. f ,  x >.  |  ( f  e.  ( X  ^pm  CC )  /\  x  e.  X  /\  A. u  e.  J  ( x  e.  u  ->  E. y  e.  ran  ZZ>= ( f  |`  y
) : y --> u ) ) }  C_  ( ( X  ^pm  CC )  X.  X )  /\  ( ( X 
^pm  CC )  X.  X
)  e.  _V )  ->  { <. f ,  x >.  |  ( f  e.  ( X  ^pm  CC )  /\  x  e.  X  /\  A. u  e.  J  ( x  e.  u  ->  E. y  e.  ran  ZZ>= ( f  |`  y
) : y --> u ) ) }  e.  _V )
2918, 27, 28sylancr 411 . 2  |-  ( J  e.  (TopOn `  X
)  ->  { <. f ,  x >.  |  (
f  e.  ( X 
^pm  CC )  /\  x  e.  X  /\  A. u  e.  J  ( x  e.  u  ->  E. y  e.  ran  ZZ>= ( f  |`  y ) : y --> u ) ) }  e.  _V )
302, 13, 14, 29fvmptd 5561 1  |-  ( J  e.  (TopOn `  X
)  ->  ( ~~> t `  J )  =  { <. f ,  x >.  |  ( f  e.  ( X  ^pm  CC )  /\  x  e.  X  /\  A. u  e.  J  ( x  e.  u  ->  E. y  e.  ran  ZZ>= ( f  |`  y
) : y --> u ) ) } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    /\ w3a 967    = wceq 1342    e. wcel 2135   A.wral 2442   E.wrex 2443   _Vcvv 2721    C_ wss 3111   U.cuni 3783   {copab 4036    |-> cmpt 4037    X. cxp 4596   ran crn 4599    |` cres 4600    Fn wfn 5177   -->wf 5178   ` cfv 5182  (class class class)co 5836    ^pm cpm 6606   CCcc 7742   ZZ>=cuz 9457   Topctop 12536  TopOnctopon 12549   ~~> tclm 12728
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-10 1492  ax-11 1493  ax-i12 1494  ax-bndl 1496  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-13 2137  ax-14 2138  ax-ext 2146  ax-sep 4094  ax-pow 4147  ax-pr 4181  ax-un 4405  ax-cnex 7835
This theorem depends on definitions:  df-bi 116  df-3an 969  df-tru 1345  df-nf 1448  df-sb 1750  df-eu 2016  df-mo 2017  df-clab 2151  df-cleq 2157  df-clel 2160  df-nfc 2295  df-ral 2447  df-rex 2448  df-rab 2451  df-v 2723  df-sbc 2947  df-csb 3041  df-un 3115  df-in 3117  df-ss 3124  df-pw 3555  df-sn 3576  df-pr 3577  df-op 3579  df-uni 3784  df-iun 3862  df-br 3977  df-opab 4038  df-mpt 4039  df-id 4265  df-xp 4604  df-rel 4605  df-cnv 4606  df-co 4607  df-dm 4608  df-rn 4609  df-res 4610  df-ima 4611  df-iota 5147  df-fun 5184  df-fn 5185  df-f 5186  df-fv 5190  df-ov 5839  df-oprab 5840  df-mpo 5841  df-1st 6100  df-2nd 6101  df-pm 6608  df-top 12537  df-topon 12550  df-lm 12731
This theorem is referenced by:  lmreltop  12734  lmbr  12754  sslm  12788
  Copyright terms: Public domain W3C validator