| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > lmfval | Unicode version | ||
| Description: The relation
"sequence |
| Ref | Expression |
|---|---|
| lmfval |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-lm 14747 |
. . 3
| |
| 2 | 1 | a1i 9 |
. 2
|
| 3 | simpr 110 |
. . . . . . . 8
| |
| 4 | 3 | unieqd 3870 |
. . . . . . 7
|
| 5 | toponuni 14572 |
. . . . . . . 8
| |
| 6 | 5 | adantr 276 |
. . . . . . 7
|
| 7 | 4, 6 | eqtr4d 2242 |
. . . . . 6
|
| 8 | 7 | oveq1d 5977 |
. . . . 5
|
| 9 | 8 | eleq2d 2276 |
. . . 4
|
| 10 | 7 | eleq2d 2276 |
. . . 4
|
| 11 | 3 | raleqdv 2709 |
. . . 4
|
| 12 | 9, 10, 11 | 3anbi123d 1325 |
. . 3
|
| 13 | 12 | opabbidv 4121 |
. 2
|
| 14 | topontop 14571 |
. 2
| |
| 15 | df-3an 983 |
. . . . 5
| |
| 16 | 15 | opabbii 4122 |
. . . 4
|
| 17 | opabssxp 4762 |
. . . 4
| |
| 18 | 16, 17 | eqsstri 3229 |
. . 3
|
| 19 | fnpm 6761 |
. . . . 5
| |
| 20 | toponmax 14582 |
. . . . . 6
| |
| 21 | 20 | elexd 2787 |
. . . . 5
|
| 22 | cnex 8079 |
. . . . . 6
| |
| 23 | 22 | a1i 9 |
. . . . 5
|
| 24 | fnovex 5995 |
. . . . 5
| |
| 25 | 19, 21, 23, 24 | mp3an2i 1355 |
. . . 4
|
| 26 | xpexg 4802 |
. . . 4
| |
| 27 | 25, 20, 26 | syl2anc 411 |
. . 3
|
| 28 | ssexg 4194 |
. . 3
| |
| 29 | 18, 27, 28 | sylancr 414 |
. 2
|
| 30 | 2, 13, 14, 29 | fvmptd 5678 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4173 ax-pow 4229 ax-pr 4264 ax-un 4493 ax-cnex 8046 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3860 df-iun 3938 df-br 4055 df-opab 4117 df-mpt 4118 df-id 4353 df-xp 4694 df-rel 4695 df-cnv 4696 df-co 4697 df-dm 4698 df-rn 4699 df-res 4700 df-ima 4701 df-iota 5246 df-fun 5287 df-fn 5288 df-f 5289 df-fv 5293 df-ov 5965 df-oprab 5966 df-mpo 5967 df-1st 6244 df-2nd 6245 df-pm 6756 df-top 14555 df-topon 14568 df-lm 14747 |
| This theorem is referenced by: lmreltop 14750 lmbr 14770 sslm 14804 |
| Copyright terms: Public domain | W3C validator |