ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lmfval Unicode version

Theorem lmfval 12391
Description: The relation "sequence  f converges to point  y " in a metric space. (Contributed by NM, 7-Sep-2006.) (Revised by Mario Carneiro, 21-Aug-2015.)
Assertion
Ref Expression
lmfval  |-  ( J  e.  (TopOn `  X
)  ->  ( ~~> t `  J )  =  { <. f ,  x >.  |  ( f  e.  ( X  ^pm  CC )  /\  x  e.  X  /\  A. u  e.  J  ( x  e.  u  ->  E. y  e.  ran  ZZ>= ( f  |`  y
) : y --> u ) ) } )
Distinct variable groups:    x, f, y, X    u, f, J, x, y
Allowed substitution hint:    X( u)

Proof of Theorem lmfval
Dummy variable  j is distinct from all other variables.
StepHypRef Expression
1 df-lm 12389 . . 3  |-  ~~> t  =  ( j  e.  Top  |->  { <. f ,  x >.  |  ( f  e.  ( U. j  ^pm  CC )  /\  x  e. 
U. j  /\  A. u  e.  j  (
x  e.  u  ->  E. y  e.  ran  ZZ>= ( f  |`  y
) : y --> u ) ) } )
21a1i 9 . 2  |-  ( J  e.  (TopOn `  X
)  ->  ~~> t  =  ( j  e.  Top  |->  {
<. f ,  x >.  |  ( f  e.  ( U. j  ^pm  CC )  /\  x  e.  U. j  /\  A. u  e.  j  ( x  e.  u  ->  E. y  e.  ran  ZZ>= ( f  |`  y ) : y --> u ) ) } ) )
3 simpr 109 . . . . . . . 8  |-  ( ( J  e.  (TopOn `  X )  /\  j  =  J )  ->  j  =  J )
43unieqd 3751 . . . . . . 7  |-  ( ( J  e.  (TopOn `  X )  /\  j  =  J )  ->  U. j  =  U. J )
5 toponuni 12212 . . . . . . . 8  |-  ( J  e.  (TopOn `  X
)  ->  X  =  U. J )
65adantr 274 . . . . . . 7  |-  ( ( J  e.  (TopOn `  X )  /\  j  =  J )  ->  X  =  U. J )
74, 6eqtr4d 2176 . . . . . 6  |-  ( ( J  e.  (TopOn `  X )  /\  j  =  J )  ->  U. j  =  X )
87oveq1d 5793 . . . . 5  |-  ( ( J  e.  (TopOn `  X )  /\  j  =  J )  ->  ( U. j  ^pm  CC )  =  ( X  ^pm  CC ) )
98eleq2d 2210 . . . 4  |-  ( ( J  e.  (TopOn `  X )  /\  j  =  J )  ->  (
f  e.  ( U. j  ^pm  CC )  <->  f  e.  ( X  ^pm  CC ) ) )
107eleq2d 2210 . . . 4  |-  ( ( J  e.  (TopOn `  X )  /\  j  =  J )  ->  (
x  e.  U. j  <->  x  e.  X ) )
113raleqdv 2633 . . . 4  |-  ( ( J  e.  (TopOn `  X )  /\  j  =  J )  ->  ( A. u  e.  j 
( x  e.  u  ->  E. y  e.  ran  ZZ>= ( f  |`  y
) : y --> u )  <->  A. u  e.  J  ( x  e.  u  ->  E. y  e.  ran  ZZ>= ( f  |`  y
) : y --> u ) ) )
129, 10, 113anbi123d 1291 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  j  =  J )  ->  (
( f  e.  ( U. j  ^pm  CC )  /\  x  e.  U. j  /\  A. u  e.  j  ( x  e.  u  ->  E. y  e.  ran  ZZ>= ( f  |`  y ) : y --> u ) )  <->  ( f  e.  ( X  ^pm  CC )  /\  x  e.  X  /\  A. u  e.  J  ( x  e.  u  ->  E. y  e.  ran  ZZ>= ( f  |`  y
) : y --> u ) ) ) )
1312opabbidv 3998 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  j  =  J )  ->  { <. f ,  x >.  |  ( f  e.  ( U. j  ^pm  CC )  /\  x  e.  U. j  /\  A. u  e.  j  ( x  e.  u  ->  E. y  e.  ran  ZZ>= ( f  |`  y
) : y --> u ) ) }  =  { <. f ,  x >.  |  ( f  e.  ( X  ^pm  CC )  /\  x  e.  X  /\  A. u  e.  J  ( x  e.  u  ->  E. y  e.  ran  ZZ>= ( f  |`  y
) : y --> u ) ) } )
14 topontop 12211 . 2  |-  ( J  e.  (TopOn `  X
)  ->  J  e.  Top )
15 df-3an 965 . . . . 5  |-  ( ( f  e.  ( X 
^pm  CC )  /\  x  e.  X  /\  A. u  e.  J  ( x  e.  u  ->  E. y  e.  ran  ZZ>= ( f  |`  y ) : y --> u ) )  <->  ( (
f  e.  ( X 
^pm  CC )  /\  x  e.  X )  /\  A. u  e.  J  (
x  e.  u  ->  E. y  e.  ran  ZZ>= ( f  |`  y
) : y --> u ) ) )
1615opabbii 3999 . . . 4  |-  { <. f ,  x >.  |  ( f  e.  ( X 
^pm  CC )  /\  x  e.  X  /\  A. u  e.  J  ( x  e.  u  ->  E. y  e.  ran  ZZ>= ( f  |`  y ) : y --> u ) ) }  =  { <. f ,  x >.  |  (
( f  e.  ( X  ^pm  CC )  /\  x  e.  X
)  /\  A. u  e.  J  ( x  e.  u  ->  E. y  e.  ran  ZZ>= ( f  |`  y ) : y --> u ) ) }
17 opabssxp 4617 . . . 4  |-  { <. f ,  x >.  |  ( ( f  e.  ( X  ^pm  CC )  /\  x  e.  X
)  /\  A. u  e.  J  ( x  e.  u  ->  E. y  e.  ran  ZZ>= ( f  |`  y ) : y --> u ) ) } 
C_  ( ( X 
^pm  CC )  X.  X
)
1816, 17eqsstri 3130 . . 3  |-  { <. f ,  x >.  |  ( f  e.  ( X 
^pm  CC )  /\  x  e.  X  /\  A. u  e.  J  ( x  e.  u  ->  E. y  e.  ran  ZZ>= ( f  |`  y ) : y --> u ) ) } 
C_  ( ( X 
^pm  CC )  X.  X
)
19 fnpm 6554 . . . . 5  |-  ^pm  Fn  ( _V  X.  _V )
20 toponmax 12222 . . . . . 6  |-  ( J  e.  (TopOn `  X
)  ->  X  e.  J )
2120elexd 2700 . . . . 5  |-  ( J  e.  (TopOn `  X
)  ->  X  e.  _V )
22 cnex 7764 . . . . . 6  |-  CC  e.  _V
2322a1i 9 . . . . 5  |-  ( J  e.  (TopOn `  X
)  ->  CC  e.  _V )
24 fnovex 5808 . . . . 5  |-  ( ( 
^pm  Fn  ( _V  X.  _V )  /\  X  e.  _V  /\  CC  e.  _V )  ->  ( X 
^pm  CC )  e.  _V )
2519, 21, 23, 24mp3an2i 1321 . . . 4  |-  ( J  e.  (TopOn `  X
)  ->  ( X  ^pm  CC )  e.  _V )
26 xpexg 4657 . . . 4  |-  ( ( ( X  ^pm  CC )  e.  _V  /\  X  e.  J )  ->  (
( X  ^pm  CC )  X.  X )  e. 
_V )
2725, 20, 26syl2anc 409 . . 3  |-  ( J  e.  (TopOn `  X
)  ->  ( ( X  ^pm  CC )  X.  X )  e.  _V )
28 ssexg 4071 . . 3  |-  ( ( { <. f ,  x >.  |  ( f  e.  ( X  ^pm  CC )  /\  x  e.  X  /\  A. u  e.  J  ( x  e.  u  ->  E. y  e.  ran  ZZ>= ( f  |`  y
) : y --> u ) ) }  C_  ( ( X  ^pm  CC )  X.  X )  /\  ( ( X 
^pm  CC )  X.  X
)  e.  _V )  ->  { <. f ,  x >.  |  ( f  e.  ( X  ^pm  CC )  /\  x  e.  X  /\  A. u  e.  J  ( x  e.  u  ->  E. y  e.  ran  ZZ>= ( f  |`  y
) : y --> u ) ) }  e.  _V )
2918, 27, 28sylancr 411 . 2  |-  ( J  e.  (TopOn `  X
)  ->  { <. f ,  x >.  |  (
f  e.  ( X 
^pm  CC )  /\  x  e.  X  /\  A. u  e.  J  ( x  e.  u  ->  E. y  e.  ran  ZZ>= ( f  |`  y ) : y --> u ) ) }  e.  _V )
302, 13, 14, 29fvmptd 5506 1  |-  ( J  e.  (TopOn `  X
)  ->  ( ~~> t `  J )  =  { <. f ,  x >.  |  ( f  e.  ( X  ^pm  CC )  /\  x  e.  X  /\  A. u  e.  J  ( x  e.  u  ->  E. y  e.  ran  ZZ>= ( f  |`  y
) : y --> u ) ) } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    /\ w3a 963    = wceq 1332    e. wcel 1481   A.wral 2417   E.wrex 2418   _Vcvv 2687    C_ wss 3072   U.cuni 3740   {copab 3992    |-> cmpt 3993    X. cxp 4541   ran crn 4544    |` cres 4545    Fn wfn 5122   -->wf 5123   ` cfv 5127  (class class class)co 5778    ^pm cpm 6547   CCcc 7638   ZZ>=cuz 9346   Topctop 12194  TopOnctopon 12207   ~~> tclm 12386
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4050  ax-pow 4102  ax-pr 4135  ax-un 4359  ax-cnex 7731
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ral 2422  df-rex 2423  df-rab 2426  df-v 2689  df-sbc 2911  df-csb 3005  df-un 3076  df-in 3078  df-ss 3085  df-pw 3513  df-sn 3534  df-pr 3535  df-op 3537  df-uni 3741  df-iun 3819  df-br 3934  df-opab 3994  df-mpt 3995  df-id 4219  df-xp 4549  df-rel 4550  df-cnv 4551  df-co 4552  df-dm 4553  df-rn 4554  df-res 4555  df-ima 4556  df-iota 5092  df-fun 5129  df-fn 5130  df-f 5131  df-fv 5135  df-ov 5781  df-oprab 5782  df-mpo 5783  df-1st 6042  df-2nd 6043  df-pm 6549  df-top 12195  df-topon 12208  df-lm 12389
This theorem is referenced by:  lmreltop  12392  lmbr  12412  sslm  12446
  Copyright terms: Public domain W3C validator