| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > lmfval | Unicode version | ||
| Description: The relation
"sequence |
| Ref | Expression |
|---|---|
| lmfval |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-lm 14426 |
. . 3
| |
| 2 | 1 | a1i 9 |
. 2
|
| 3 | simpr 110 |
. . . . . . . 8
| |
| 4 | 3 | unieqd 3850 |
. . . . . . 7
|
| 5 | toponuni 14251 |
. . . . . . . 8
| |
| 6 | 5 | adantr 276 |
. . . . . . 7
|
| 7 | 4, 6 | eqtr4d 2232 |
. . . . . 6
|
| 8 | 7 | oveq1d 5937 |
. . . . 5
|
| 9 | 8 | eleq2d 2266 |
. . . 4
|
| 10 | 7 | eleq2d 2266 |
. . . 4
|
| 11 | 3 | raleqdv 2699 |
. . . 4
|
| 12 | 9, 10, 11 | 3anbi123d 1323 |
. . 3
|
| 13 | 12 | opabbidv 4099 |
. 2
|
| 14 | topontop 14250 |
. 2
| |
| 15 | df-3an 982 |
. . . . 5
| |
| 16 | 15 | opabbii 4100 |
. . . 4
|
| 17 | opabssxp 4737 |
. . . 4
| |
| 18 | 16, 17 | eqsstri 3215 |
. . 3
|
| 19 | fnpm 6715 |
. . . . 5
| |
| 20 | toponmax 14261 |
. . . . . 6
| |
| 21 | 20 | elexd 2776 |
. . . . 5
|
| 22 | cnex 8003 |
. . . . . 6
| |
| 23 | 22 | a1i 9 |
. . . . 5
|
| 24 | fnovex 5955 |
. . . . 5
| |
| 25 | 19, 21, 23, 24 | mp3an2i 1353 |
. . . 4
|
| 26 | xpexg 4777 |
. . . 4
| |
| 27 | 25, 20, 26 | syl2anc 411 |
. . 3
|
| 28 | ssexg 4172 |
. . 3
| |
| 29 | 18, 27, 28 | sylancr 414 |
. 2
|
| 30 | 2, 13, 14, 29 | fvmptd 5642 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-cnex 7970 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-fv 5266 df-ov 5925 df-oprab 5926 df-mpo 5927 df-1st 6198 df-2nd 6199 df-pm 6710 df-top 14234 df-topon 14247 df-lm 14426 |
| This theorem is referenced by: lmreltop 14429 lmbr 14449 sslm 14483 |
| Copyright terms: Public domain | W3C validator |