| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > lmfval | Unicode version | ||
| Description: The relation
"sequence |
| Ref | Expression |
|---|---|
| lmfval |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-lm 14858 |
. . 3
| |
| 2 | 1 | a1i 9 |
. 2
|
| 3 | simpr 110 |
. . . . . . . 8
| |
| 4 | 3 | unieqd 3898 |
. . . . . . 7
|
| 5 | toponuni 14683 |
. . . . . . . 8
| |
| 6 | 5 | adantr 276 |
. . . . . . 7
|
| 7 | 4, 6 | eqtr4d 2265 |
. . . . . 6
|
| 8 | 7 | oveq1d 6015 |
. . . . 5
|
| 9 | 8 | eleq2d 2299 |
. . . 4
|
| 10 | 7 | eleq2d 2299 |
. . . 4
|
| 11 | 3 | raleqdv 2734 |
. . . 4
|
| 12 | 9, 10, 11 | 3anbi123d 1346 |
. . 3
|
| 13 | 12 | opabbidv 4149 |
. 2
|
| 14 | topontop 14682 |
. 2
| |
| 15 | df-3an 1004 |
. . . . 5
| |
| 16 | 15 | opabbii 4150 |
. . . 4
|
| 17 | opabssxp 4792 |
. . . 4
| |
| 18 | 16, 17 | eqsstri 3256 |
. . 3
|
| 19 | fnpm 6801 |
. . . . 5
| |
| 20 | toponmax 14693 |
. . . . . 6
| |
| 21 | 20 | elexd 2813 |
. . . . 5
|
| 22 | cnex 8119 |
. . . . . 6
| |
| 23 | 22 | a1i 9 |
. . . . 5
|
| 24 | fnovex 6033 |
. . . . 5
| |
| 25 | 19, 21, 23, 24 | mp3an2i 1376 |
. . . 4
|
| 26 | xpexg 4832 |
. . . 4
| |
| 27 | 25, 20, 26 | syl2anc 411 |
. . 3
|
| 28 | ssexg 4222 |
. . 3
| |
| 29 | 18, 27, 28 | sylancr 414 |
. 2
|
| 30 | 2, 13, 14, 29 | fvmptd 5714 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-cnex 8086 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4383 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-fv 5325 df-ov 6003 df-oprab 6004 df-mpo 6005 df-1st 6284 df-2nd 6285 df-pm 6796 df-top 14666 df-topon 14679 df-lm 14858 |
| This theorem is referenced by: lmreltop 14861 lmbr 14881 sslm 14915 |
| Copyright terms: Public domain | W3C validator |