Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > lmfval | Unicode version |
Description: The relation "sequence converges to point " in a metric space. (Contributed by NM, 7-Sep-2006.) (Revised by Mario Carneiro, 21-Aug-2015.) |
Ref | Expression |
---|---|
lmfval | TopOn |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-lm 12830 | . . 3 | |
2 | 1 | a1i 9 | . 2 TopOn |
3 | simpr 109 | . . . . . . . 8 TopOn | |
4 | 3 | unieqd 3800 | . . . . . . 7 TopOn |
5 | toponuni 12653 | . . . . . . . 8 TopOn | |
6 | 5 | adantr 274 | . . . . . . 7 TopOn |
7 | 4, 6 | eqtr4d 2201 | . . . . . 6 TopOn |
8 | 7 | oveq1d 5857 | . . . . 5 TopOn |
9 | 8 | eleq2d 2236 | . . . 4 TopOn |
10 | 7 | eleq2d 2236 | . . . 4 TopOn |
11 | 3 | raleqdv 2667 | . . . 4 TopOn |
12 | 9, 10, 11 | 3anbi123d 1302 | . . 3 TopOn |
13 | 12 | opabbidv 4048 | . 2 TopOn |
14 | topontop 12652 | . 2 TopOn | |
15 | df-3an 970 | . . . . 5 | |
16 | 15 | opabbii 4049 | . . . 4 |
17 | opabssxp 4678 | . . . 4 | |
18 | 16, 17 | eqsstri 3174 | . . 3 |
19 | fnpm 6622 | . . . . 5 | |
20 | toponmax 12663 | . . . . . 6 TopOn | |
21 | 20 | elexd 2739 | . . . . 5 TopOn |
22 | cnex 7877 | . . . . . 6 | |
23 | 22 | a1i 9 | . . . . 5 TopOn |
24 | fnovex 5875 | . . . . 5 | |
25 | 19, 21, 23, 24 | mp3an2i 1332 | . . . 4 TopOn |
26 | xpexg 4718 | . . . 4 | |
27 | 25, 20, 26 | syl2anc 409 | . . 3 TopOn |
28 | ssexg 4121 | . . 3 | |
29 | 18, 27, 28 | sylancr 411 | . 2 TopOn |
30 | 2, 13, 14, 29 | fvmptd 5567 | 1 TopOn |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 w3a 968 wceq 1343 wcel 2136 wral 2444 wrex 2445 cvv 2726 wss 3116 cuni 3789 copab 4042 cmpt 4043 cxp 4602 crn 4605 cres 4606 wfn 5183 wf 5184 cfv 5188 (class class class)co 5842 cpm 6615 cc 7751 cuz 9466 ctop 12635 TopOnctopon 12648 clm 12827 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-cnex 7844 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-fv 5196 df-ov 5845 df-oprab 5846 df-mpo 5847 df-1st 6108 df-2nd 6109 df-pm 6617 df-top 12636 df-topon 12649 df-lm 12830 |
This theorem is referenced by: lmreltop 12833 lmbr 12853 sslm 12887 |
Copyright terms: Public domain | W3C validator |