Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > lmfval | Unicode version |
Description: The relation "sequence converges to point " in a metric space. (Contributed by NM, 7-Sep-2006.) (Revised by Mario Carneiro, 21-Aug-2015.) |
Ref | Expression |
---|---|
lmfval | TopOn |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-lm 12984 | . . 3 | |
2 | 1 | a1i 9 | . 2 TopOn |
3 | simpr 109 | . . . . . . . 8 TopOn | |
4 | 3 | unieqd 3807 | . . . . . . 7 TopOn |
5 | toponuni 12807 | . . . . . . . 8 TopOn | |
6 | 5 | adantr 274 | . . . . . . 7 TopOn |
7 | 4, 6 | eqtr4d 2206 | . . . . . 6 TopOn |
8 | 7 | oveq1d 5868 | . . . . 5 TopOn |
9 | 8 | eleq2d 2240 | . . . 4 TopOn |
10 | 7 | eleq2d 2240 | . . . 4 TopOn |
11 | 3 | raleqdv 2671 | . . . 4 TopOn |
12 | 9, 10, 11 | 3anbi123d 1307 | . . 3 TopOn |
13 | 12 | opabbidv 4055 | . 2 TopOn |
14 | topontop 12806 | . 2 TopOn | |
15 | df-3an 975 | . . . . 5 | |
16 | 15 | opabbii 4056 | . . . 4 |
17 | opabssxp 4685 | . . . 4 | |
18 | 16, 17 | eqsstri 3179 | . . 3 |
19 | fnpm 6634 | . . . . 5 | |
20 | toponmax 12817 | . . . . . 6 TopOn | |
21 | 20 | elexd 2743 | . . . . 5 TopOn |
22 | cnex 7898 | . . . . . 6 | |
23 | 22 | a1i 9 | . . . . 5 TopOn |
24 | fnovex 5886 | . . . . 5 | |
25 | 19, 21, 23, 24 | mp3an2i 1337 | . . . 4 TopOn |
26 | xpexg 4725 | . . . 4 | |
27 | 25, 20, 26 | syl2anc 409 | . . 3 TopOn |
28 | ssexg 4128 | . . 3 | |
29 | 18, 27, 28 | sylancr 412 | . 2 TopOn |
30 | 2, 13, 14, 29 | fvmptd 5577 | 1 TopOn |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 w3a 973 wceq 1348 wcel 2141 wral 2448 wrex 2449 cvv 2730 wss 3121 cuni 3796 copab 4049 cmpt 4050 cxp 4609 crn 4612 cres 4613 wfn 5193 wf 5194 cfv 5198 (class class class)co 5853 cpm 6627 cc 7772 cuz 9487 ctop 12789 TopOnctopon 12802 clm 12981 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-cnex 7865 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-fv 5206 df-ov 5856 df-oprab 5857 df-mpo 5858 df-1st 6119 df-2nd 6120 df-pm 6629 df-top 12790 df-topon 12803 df-lm 12984 |
This theorem is referenced by: lmreltop 12987 lmbr 13007 sslm 13041 |
Copyright terms: Public domain | W3C validator |