ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lmfval Unicode version

Theorem lmfval 12832
Description: The relation "sequence  f converges to point  y " in a metric space. (Contributed by NM, 7-Sep-2006.) (Revised by Mario Carneiro, 21-Aug-2015.)
Assertion
Ref Expression
lmfval  |-  ( J  e.  (TopOn `  X
)  ->  ( ~~> t `  J )  =  { <. f ,  x >.  |  ( f  e.  ( X  ^pm  CC )  /\  x  e.  X  /\  A. u  e.  J  ( x  e.  u  ->  E. y  e.  ran  ZZ>= ( f  |`  y
) : y --> u ) ) } )
Distinct variable groups:    x, f, y, X    u, f, J, x, y
Allowed substitution hint:    X( u)

Proof of Theorem lmfval
Dummy variable  j is distinct from all other variables.
StepHypRef Expression
1 df-lm 12830 . . 3  |-  ~~> t  =  ( j  e.  Top  |->  { <. f ,  x >.  |  ( f  e.  ( U. j  ^pm  CC )  /\  x  e. 
U. j  /\  A. u  e.  j  (
x  e.  u  ->  E. y  e.  ran  ZZ>= ( f  |`  y
) : y --> u ) ) } )
21a1i 9 . 2  |-  ( J  e.  (TopOn `  X
)  ->  ~~> t  =  ( j  e.  Top  |->  {
<. f ,  x >.  |  ( f  e.  ( U. j  ^pm  CC )  /\  x  e.  U. j  /\  A. u  e.  j  ( x  e.  u  ->  E. y  e.  ran  ZZ>= ( f  |`  y ) : y --> u ) ) } ) )
3 simpr 109 . . . . . . . 8  |-  ( ( J  e.  (TopOn `  X )  /\  j  =  J )  ->  j  =  J )
43unieqd 3800 . . . . . . 7  |-  ( ( J  e.  (TopOn `  X )  /\  j  =  J )  ->  U. j  =  U. J )
5 toponuni 12653 . . . . . . . 8  |-  ( J  e.  (TopOn `  X
)  ->  X  =  U. J )
65adantr 274 . . . . . . 7  |-  ( ( J  e.  (TopOn `  X )  /\  j  =  J )  ->  X  =  U. J )
74, 6eqtr4d 2201 . . . . . 6  |-  ( ( J  e.  (TopOn `  X )  /\  j  =  J )  ->  U. j  =  X )
87oveq1d 5857 . . . . 5  |-  ( ( J  e.  (TopOn `  X )  /\  j  =  J )  ->  ( U. j  ^pm  CC )  =  ( X  ^pm  CC ) )
98eleq2d 2236 . . . 4  |-  ( ( J  e.  (TopOn `  X )  /\  j  =  J )  ->  (
f  e.  ( U. j  ^pm  CC )  <->  f  e.  ( X  ^pm  CC ) ) )
107eleq2d 2236 . . . 4  |-  ( ( J  e.  (TopOn `  X )  /\  j  =  J )  ->  (
x  e.  U. j  <->  x  e.  X ) )
113raleqdv 2667 . . . 4  |-  ( ( J  e.  (TopOn `  X )  /\  j  =  J )  ->  ( A. u  e.  j 
( x  e.  u  ->  E. y  e.  ran  ZZ>= ( f  |`  y
) : y --> u )  <->  A. u  e.  J  ( x  e.  u  ->  E. y  e.  ran  ZZ>= ( f  |`  y
) : y --> u ) ) )
129, 10, 113anbi123d 1302 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  j  =  J )  ->  (
( f  e.  ( U. j  ^pm  CC )  /\  x  e.  U. j  /\  A. u  e.  j  ( x  e.  u  ->  E. y  e.  ran  ZZ>= ( f  |`  y ) : y --> u ) )  <->  ( f  e.  ( X  ^pm  CC )  /\  x  e.  X  /\  A. u  e.  J  ( x  e.  u  ->  E. y  e.  ran  ZZ>= ( f  |`  y
) : y --> u ) ) ) )
1312opabbidv 4048 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  j  =  J )  ->  { <. f ,  x >.  |  ( f  e.  ( U. j  ^pm  CC )  /\  x  e.  U. j  /\  A. u  e.  j  ( x  e.  u  ->  E. y  e.  ran  ZZ>= ( f  |`  y
) : y --> u ) ) }  =  { <. f ,  x >.  |  ( f  e.  ( X  ^pm  CC )  /\  x  e.  X  /\  A. u  e.  J  ( x  e.  u  ->  E. y  e.  ran  ZZ>= ( f  |`  y
) : y --> u ) ) } )
14 topontop 12652 . 2  |-  ( J  e.  (TopOn `  X
)  ->  J  e.  Top )
15 df-3an 970 . . . . 5  |-  ( ( f  e.  ( X 
^pm  CC )  /\  x  e.  X  /\  A. u  e.  J  ( x  e.  u  ->  E. y  e.  ran  ZZ>= ( f  |`  y ) : y --> u ) )  <->  ( (
f  e.  ( X 
^pm  CC )  /\  x  e.  X )  /\  A. u  e.  J  (
x  e.  u  ->  E. y  e.  ran  ZZ>= ( f  |`  y
) : y --> u ) ) )
1615opabbii 4049 . . . 4  |-  { <. f ,  x >.  |  ( f  e.  ( X 
^pm  CC )  /\  x  e.  X  /\  A. u  e.  J  ( x  e.  u  ->  E. y  e.  ran  ZZ>= ( f  |`  y ) : y --> u ) ) }  =  { <. f ,  x >.  |  (
( f  e.  ( X  ^pm  CC )  /\  x  e.  X
)  /\  A. u  e.  J  ( x  e.  u  ->  E. y  e.  ran  ZZ>= ( f  |`  y ) : y --> u ) ) }
17 opabssxp 4678 . . . 4  |-  { <. f ,  x >.  |  ( ( f  e.  ( X  ^pm  CC )  /\  x  e.  X
)  /\  A. u  e.  J  ( x  e.  u  ->  E. y  e.  ran  ZZ>= ( f  |`  y ) : y --> u ) ) } 
C_  ( ( X 
^pm  CC )  X.  X
)
1816, 17eqsstri 3174 . . 3  |-  { <. f ,  x >.  |  ( f  e.  ( X 
^pm  CC )  /\  x  e.  X  /\  A. u  e.  J  ( x  e.  u  ->  E. y  e.  ran  ZZ>= ( f  |`  y ) : y --> u ) ) } 
C_  ( ( X 
^pm  CC )  X.  X
)
19 fnpm 6622 . . . . 5  |-  ^pm  Fn  ( _V  X.  _V )
20 toponmax 12663 . . . . . 6  |-  ( J  e.  (TopOn `  X
)  ->  X  e.  J )
2120elexd 2739 . . . . 5  |-  ( J  e.  (TopOn `  X
)  ->  X  e.  _V )
22 cnex 7877 . . . . . 6  |-  CC  e.  _V
2322a1i 9 . . . . 5  |-  ( J  e.  (TopOn `  X
)  ->  CC  e.  _V )
24 fnovex 5875 . . . . 5  |-  ( ( 
^pm  Fn  ( _V  X.  _V )  /\  X  e.  _V  /\  CC  e.  _V )  ->  ( X 
^pm  CC )  e.  _V )
2519, 21, 23, 24mp3an2i 1332 . . . 4  |-  ( J  e.  (TopOn `  X
)  ->  ( X  ^pm  CC )  e.  _V )
26 xpexg 4718 . . . 4  |-  ( ( ( X  ^pm  CC )  e.  _V  /\  X  e.  J )  ->  (
( X  ^pm  CC )  X.  X )  e. 
_V )
2725, 20, 26syl2anc 409 . . 3  |-  ( J  e.  (TopOn `  X
)  ->  ( ( X  ^pm  CC )  X.  X )  e.  _V )
28 ssexg 4121 . . 3  |-  ( ( { <. f ,  x >.  |  ( f  e.  ( X  ^pm  CC )  /\  x  e.  X  /\  A. u  e.  J  ( x  e.  u  ->  E. y  e.  ran  ZZ>= ( f  |`  y
) : y --> u ) ) }  C_  ( ( X  ^pm  CC )  X.  X )  /\  ( ( X 
^pm  CC )  X.  X
)  e.  _V )  ->  { <. f ,  x >.  |  ( f  e.  ( X  ^pm  CC )  /\  x  e.  X  /\  A. u  e.  J  ( x  e.  u  ->  E. y  e.  ran  ZZ>= ( f  |`  y
) : y --> u ) ) }  e.  _V )
2918, 27, 28sylancr 411 . 2  |-  ( J  e.  (TopOn `  X
)  ->  { <. f ,  x >.  |  (
f  e.  ( X 
^pm  CC )  /\  x  e.  X  /\  A. u  e.  J  ( x  e.  u  ->  E. y  e.  ran  ZZ>= ( f  |`  y ) : y --> u ) ) }  e.  _V )
302, 13, 14, 29fvmptd 5567 1  |-  ( J  e.  (TopOn `  X
)  ->  ( ~~> t `  J )  =  { <. f ,  x >.  |  ( f  e.  ( X  ^pm  CC )  /\  x  e.  X  /\  A. u  e.  J  ( x  e.  u  ->  E. y  e.  ran  ZZ>= ( f  |`  y
) : y --> u ) ) } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    /\ w3a 968    = wceq 1343    e. wcel 2136   A.wral 2444   E.wrex 2445   _Vcvv 2726    C_ wss 3116   U.cuni 3789   {copab 4042    |-> cmpt 4043    X. cxp 4602   ran crn 4605    |` cres 4606    Fn wfn 5183   -->wf 5184   ` cfv 5188  (class class class)co 5842    ^pm cpm 6615   CCcc 7751   ZZ>=cuz 9466   Topctop 12635  TopOnctopon 12648   ~~> tclm 12827
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-cnex 7844
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-fv 5196  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-pm 6617  df-top 12636  df-topon 12649  df-lm 12830
This theorem is referenced by:  lmreltop  12833  lmbr  12853  sslm  12887
  Copyright terms: Public domain W3C validator