ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lmrcl Unicode version

Theorem lmrcl 13776
Description: Reverse closure for the convergence relation. (Contributed by Mario Carneiro, 7-Sep-2015.)
Assertion
Ref Expression
lmrcl  |-  ( F ( ~~> t `  J
) P  ->  J  e.  Top )

Proof of Theorem lmrcl
Dummy variables  j  f  x  y  u are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-lm 13775 . . 3  |-  ~~> t  =  ( j  e.  Top  |->  { <. f ,  x >.  |  ( f  e.  ( U. j  ^pm  CC )  /\  x  e. 
U. j  /\  A. u  e.  j  (
x  e.  u  ->  E. y  e.  ran  ZZ>= ( f  |`  y
) : y --> u ) ) } )
21dmmptss 5127 . 2  |-  dom  ~~> t  C_  Top
3 df-br 4006 . . 3  |-  ( F ( ~~> t `  J
) P  <->  <. F ,  P >.  e.  ( ~~> t `  J ) )
41funmpt2 5257 . . . . 5  |-  Fun  ~~> t
5 funrel 5235 . . . . 5  |-  ( Fun  ~~> t  ->  Rel  ~~> t )
64, 5ax-mp 5 . . . 4  |-  Rel  ~~> t
7 relelfvdm 5549 . . . 4  |-  ( ( Rel  ~~> t  /\  <. F ,  P >.  e.  ( ~~> t `  J ) )  ->  J  e.  dom 
~~> t )
86, 7mpan 424 . . 3  |-  ( <. F ,  P >.  e.  ( ~~> t `  J
)  ->  J  e.  dom 
~~> t )
93, 8sylbi 121 . 2  |-  ( F ( ~~> t `  J
) P  ->  J  e.  dom  ~~> t )
102, 9sselid 3155 1  |-  ( F ( ~~> t `  J
) P  ->  J  e.  Top )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 978    e. wcel 2148   A.wral 2455   E.wrex 2456   <.cop 3597   U.cuni 3811   class class class wbr 4005   {copab 4065   dom cdm 4628   ran crn 4629    |` cres 4630   Rel wrel 4633   Fun wfun 5212   -->wf 5214   ` cfv 5218  (class class class)co 5877    ^pm cpm 6651   CCcc 7811   ZZ>=cuz 9530   Topctop 13582   ~~> tclm 13772
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2741  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fv 5226  df-lm 13775
This theorem is referenced by:  lmcvg  13802  lmtopcnp  13835
  Copyright terms: Public domain W3C validator