ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lmrcl Unicode version

Theorem lmrcl 12831
Description: Reverse closure for the convergence relation. (Contributed by Mario Carneiro, 7-Sep-2015.)
Assertion
Ref Expression
lmrcl  |-  ( F ( ~~> t `  J
) P  ->  J  e.  Top )

Proof of Theorem lmrcl
Dummy variables  j  f  x  y  u are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-lm 12830 . . 3  |-  ~~> t  =  ( j  e.  Top  |->  { <. f ,  x >.  |  ( f  e.  ( U. j  ^pm  CC )  /\  x  e. 
U. j  /\  A. u  e.  j  (
x  e.  u  ->  E. y  e.  ran  ZZ>= ( f  |`  y
) : y --> u ) ) } )
21dmmptss 5100 . 2  |-  dom  ~~> t  C_  Top
3 df-br 3983 . . 3  |-  ( F ( ~~> t `  J
) P  <->  <. F ,  P >.  e.  ( ~~> t `  J ) )
41funmpt2 5227 . . . . 5  |-  Fun  ~~> t
5 funrel 5205 . . . . 5  |-  ( Fun  ~~> t  ->  Rel  ~~> t )
64, 5ax-mp 5 . . . 4  |-  Rel  ~~> t
7 relelfvdm 5518 . . . 4  |-  ( ( Rel  ~~> t  /\  <. F ,  P >.  e.  ( ~~> t `  J ) )  ->  J  e.  dom 
~~> t )
86, 7mpan 421 . . 3  |-  ( <. F ,  P >.  e.  ( ~~> t `  J
)  ->  J  e.  dom 
~~> t )
93, 8sylbi 120 . 2  |-  ( F ( ~~> t `  J
) P  ->  J  e.  dom  ~~> t )
102, 9sselid 3140 1  |-  ( F ( ~~> t `  J
) P  ->  J  e.  Top )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 968    e. wcel 2136   A.wral 2444   E.wrex 2445   <.cop 3579   U.cuni 3789   class class class wbr 3982   {copab 4042   dom cdm 4604   ran crn 4605    |` cres 4606   Rel wrel 4609   Fun wfun 5182   -->wf 5184   ` cfv 5188  (class class class)co 5842    ^pm cpm 6615   CCcc 7751   ZZ>=cuz 9466   Topctop 12635   ~~> tclm 12827
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-rab 2453  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fv 5196  df-lm 12830
This theorem is referenced by:  lmcvg  12857  lmtopcnp  12890
  Copyright terms: Public domain W3C validator