ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lmrcl Unicode version

Theorem lmrcl 14859
Description: Reverse closure for the convergence relation. (Contributed by Mario Carneiro, 7-Sep-2015.)
Assertion
Ref Expression
lmrcl  |-  ( F ( ~~> t `  J
) P  ->  J  e.  Top )

Proof of Theorem lmrcl
Dummy variables  j  f  x  y  u are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-lm 14858 . . 3  |-  ~~> t  =  ( j  e.  Top  |->  { <. f ,  x >.  |  ( f  e.  ( U. j  ^pm  CC )  /\  x  e. 
U. j  /\  A. u  e.  j  (
x  e.  u  ->  E. y  e.  ran  ZZ>= ( f  |`  y
) : y --> u ) ) } )
21dmmptss 5224 . 2  |-  dom  ~~> t  C_  Top
3 df-br 4083 . . 3  |-  ( F ( ~~> t `  J
) P  <->  <. F ,  P >.  e.  ( ~~> t `  J ) )
41funmpt2 5356 . . . . 5  |-  Fun  ~~> t
5 funrel 5334 . . . . 5  |-  ( Fun  ~~> t  ->  Rel  ~~> t )
64, 5ax-mp 5 . . . 4  |-  Rel  ~~> t
7 relelfvdm 5658 . . . 4  |-  ( ( Rel  ~~> t  /\  <. F ,  P >.  e.  ( ~~> t `  J ) )  ->  J  e.  dom 
~~> t )
86, 7mpan 424 . . 3  |-  ( <. F ,  P >.  e.  ( ~~> t `  J
)  ->  J  e.  dom 
~~> t )
93, 8sylbi 121 . 2  |-  ( F ( ~~> t `  J
) P  ->  J  e.  dom  ~~> t )
102, 9sselid 3222 1  |-  ( F ( ~~> t `  J
) P  ->  J  e.  Top )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 1002    e. wcel 2200   A.wral 2508   E.wrex 2509   <.cop 3669   U.cuni 3887   class class class wbr 4082   {copab 4143   dom cdm 4718   ran crn 4719    |` cres 4720   Rel wrel 4723   Fun wfun 5311   -->wf 5313   ` cfv 5317  (class class class)co 6000    ^pm cpm 6794   CCcc 7993   ZZ>=cuz 9718   Topctop 14665   ~~> tclm 14855
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fv 5325  df-lm 14858
This theorem is referenced by:  lmcvg  14885  lmtopcnp  14918
  Copyright terms: Public domain W3C validator