HomeHome Intuitionistic Logic Explorer
Theorem List (p. 137 of 165)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 13601-13700   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremgrpsubinv 13601 Subtraction of an inverse. (Contributed by NM, 7-Apr-2015.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  .-  =  ( -g `  G )   &    |-  N  =  ( invg `
  G )   &    |-  ( ph  ->  G  e.  Grp )   &    |-  ( ph  ->  X  e.  B )   &    |-  ( ph  ->  Y  e.  B )   =>    |-  ( ph  ->  ( X  .-  ( N `  Y ) )  =  ( X  .+  Y ) )
 
Theoremgrplmulf1o 13602* Left multiplication by a group element is a bijection on any group. (Contributed by Mario Carneiro, 17-Jan-2015.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  F  =  ( x  e.  B  |->  ( X  .+  x ) )   =>    |-  ( ( G  e.  Grp  /\  X  e.  B ) 
 ->  F : B -1-1-onto-> B )
 
Theoremgrpinvpropdg 13603* If two structures have the same group components (properties), they have the same group inversion function. (Contributed by Mario Carneiro, 27-Nov-2014.) (Revised by Stefan O'Rear, 21-Mar-2015.)
 |-  ( ph  ->  B  =  ( Base `  K )
 )   &    |-  ( ph  ->  B  =  ( Base `  L )
 )   &    |-  ( ph  ->  K  e.  V )   &    |-  ( ph  ->  L  e.  W )   &    |-  (
 ( ph  /\  ( x  e.  B  /\  y  e.  B ) )  ->  ( x ( +g  `  K ) y )  =  ( x ( +g  `  L ) y ) )   =>    |-  ( ph  ->  ( invg `  K )  =  ( invg `  L ) )
 
Theoremgrpidssd 13604* If the base set of a group is contained in the base set of another group, and the group operation of the group is the restriction of the group operation of the other group to its base set, then both groups have the same identity element. (Contributed by AV, 15-Mar-2019.)
 |-  ( ph  ->  M  e.  Grp )   &    |-  ( ph  ->  S  e.  Grp )   &    |-  B  =  ( Base `  S )   &    |-  ( ph  ->  B  C_  ( Base `  M ) )   &    |-  ( ph  ->  A. x  e.  B  A. y  e.  B  ( x (
 +g  `  M )
 y )  =  ( x ( +g  `  S ) y ) )   =>    |-  ( ph  ->  ( 0g `  M )  =  ( 0g `  S ) )
 
Theoremgrpinvssd 13605* If the base set of a group is contained in the base set of another group, and the group operation of the group is the restriction of the group operation of the other group to its base set, then the elements of the first group have the same inverses in both groups. (Contributed by AV, 15-Mar-2019.)
 |-  ( ph  ->  M  e.  Grp )   &    |-  ( ph  ->  S  e.  Grp )   &    |-  B  =  ( Base `  S )   &    |-  ( ph  ->  B  C_  ( Base `  M ) )   &    |-  ( ph  ->  A. x  e.  B  A. y  e.  B  ( x (
 +g  `  M )
 y )  =  ( x ( +g  `  S ) y ) )   =>    |-  ( ph  ->  ( X  e.  B  ->  ( ( invg `  S ) `
  X )  =  ( ( invg `  M ) `  X ) ) )
 
Theoremgrpinvadd 13606 The inverse of the group operation reverses the arguments. Lemma 2.2.1(d) of [Herstein] p. 55. (Contributed by NM, 27-Oct-2006.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  N  =  ( invg `  G )   =>    |-  ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  ->  ( N `  ( X  .+  Y ) )  =  ( ( N `
  Y )  .+  ( N `  X ) ) )
 
Theoremgrpsubf 13607 Functionality of group subtraction. (Contributed by Mario Carneiro, 9-Sep-2014.)
 |-  B  =  ( Base `  G )   &    |-  .-  =  ( -g `  G )   =>    |-  ( G  e.  Grp 
 ->  .-  : ( B  X.  B ) --> B )
 
Theoremgrpsubcl 13608 Closure of group subtraction. (Contributed by NM, 31-Mar-2014.)
 |-  B  =  ( Base `  G )   &    |-  .-  =  ( -g `  G )   =>    |-  ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .-  Y )  e.  B )
 
Theoremgrpsubrcan 13609 Right cancellation law for group subtraction. (Contributed by NM, 31-Mar-2014.)
 |-  B  =  ( Base `  G )   &    |-  .-  =  ( -g `  G )   =>    |-  ( ( G  e.  Grp  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B ) )  ->  ( ( X  .-  Z )  =  ( Y  .-  Z )  <->  X  =  Y ) )
 
Theoremgrpinvsub 13610 Inverse of a group subtraction. (Contributed by NM, 9-Sep-2014.)
 |-  B  =  ( Base `  G )   &    |-  .-  =  ( -g `  G )   &    |-  N  =  ( invg `  G )   =>    |-  ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  ->  ( N `  ( X  .-  Y ) )  =  ( Y  .-  X ) )
 
Theoremgrpinvval2 13611 A df-neg 8316-like equation for inverse in terms of group subtraction. (Contributed by Mario Carneiro, 4-Oct-2015.)
 |-  B  =  ( Base `  G )   &    |-  .-  =  ( -g `  G )   &    |-  N  =  ( invg `  G )   &    |-  .0.  =  ( 0g `  G )   =>    |-  ( ( G  e.  Grp  /\  X  e.  B ) 
 ->  ( N `  X )  =  (  .0.  .-  X ) )
 
Theoremgrpsubid 13612 Subtraction of a group element from itself. (Contributed by NM, 31-Mar-2014.)
 |-  B  =  ( Base `  G )   &    |-  .0.  =  ( 0g `  G )   &    |-  .-  =  ( -g `  G )   =>    |-  ( ( G  e.  Grp  /\  X  e.  B ) 
 ->  ( X  .-  X )  =  .0.  )
 
Theoremgrpsubid1 13613 Subtraction of the identity from a group element. (Contributed by Mario Carneiro, 14-Jan-2015.)
 |-  B  =  ( Base `  G )   &    |-  .0.  =  ( 0g `  G )   &    |-  .-  =  ( -g `  G )   =>    |-  ( ( G  e.  Grp  /\  X  e.  B ) 
 ->  ( X  .-  .0.  )  =  X )
 
Theoremgrpsubeq0 13614 If the difference between two group elements is zero, they are equal. (subeq0 8368 analog.) (Contributed by NM, 31-Mar-2014.)
 |-  B  =  ( Base `  G )   &    |-  .0.  =  ( 0g `  G )   &    |-  .-  =  ( -g `  G )   =>    |-  ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  ->  ( ( X  .-  Y )  =  .0.  <->  X  =  Y ) )
 
Theoremgrpsubadd0sub 13615 Subtraction expressed as addition of the difference of the identity element and the subtrahend. (Contributed by AV, 9-Nov-2019.)
 |-  B  =  ( Base `  G )   &    |-  .0.  =  ( 0g `  G )   &    |-  .-  =  ( -g `  G )   &    |- 
 .+  =  ( +g  `  G )   =>    |-  ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .-  Y )  =  ( X  .+  (  .0.  .-  Y ) ) )
 
Theoremgrpsubadd 13616 Relationship between group subtraction and addition. (Contributed by NM, 31-Mar-2014.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  .-  =  ( -g `  G )   =>    |-  ( ( G  e.  Grp  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )
 )  ->  ( ( X  .-  Y )  =  Z  <->  ( Z  .+  Y )  =  X ) )
 
Theoremgrpsubsub 13617 Double group subtraction. (Contributed by NM, 24-Feb-2008.) (Revised by Mario Carneiro, 2-Dec-2014.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  .-  =  ( -g `  G )   =>    |-  ( ( G  e.  Grp  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )
 )  ->  ( X  .-  ( Y  .-  Z ) )  =  ( X  .+  ( Z  .-  Y ) ) )
 
Theoremgrpaddsubass 13618 Associative-type law for group subtraction and addition. (Contributed by NM, 16-Apr-2014.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  .-  =  ( -g `  G )   =>    |-  ( ( G  e.  Grp  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )
 )  ->  ( ( X  .+  Y )  .-  Z )  =  ( X  .+  ( Y  .-  Z ) ) )
 
Theoremgrppncan 13619 Cancellation law for subtraction (pncan 8348 analog). (Contributed by NM, 16-Apr-2014.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  .-  =  ( -g `  G )   =>    |-  ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  ->  ( ( X  .+  Y )  .-  Y )  =  X )
 
Theoremgrpnpcan 13620 Cancellation law for subtraction (npcan 8351 analog). (Contributed by NM, 19-Apr-2014.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  .-  =  ( -g `  G )   =>    |-  ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  ->  ( ( X  .-  Y )  .+  Y )  =  X )
 
Theoremgrpsubsub4 13621 Double group subtraction (subsub4 8375 analog). (Contributed by Mario Carneiro, 2-Dec-2014.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  .-  =  ( -g `  G )   =>    |-  ( ( G  e.  Grp  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )
 )  ->  ( ( X  .-  Y )  .-  Z )  =  ( X  .-  ( Z  .+  Y ) ) )
 
Theoremgrppnpcan2 13622 Cancellation law for mixed addition and subtraction. (pnpcan2 8382 analog.) (Contributed by NM, 15-Feb-2008.) (Revised by Mario Carneiro, 2-Dec-2014.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  .-  =  ( -g `  G )   =>    |-  ( ( G  e.  Grp  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )
 )  ->  ( ( X  .+  Z )  .-  ( Y  .+  Z ) )  =  ( X 
 .-  Y ) )
 
Theoremgrpnpncan 13623 Cancellation law for group subtraction. (npncan 8363 analog.) (Contributed by NM, 15-Feb-2008.) (Revised by Mario Carneiro, 2-Dec-2014.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  .-  =  ( -g `  G )   =>    |-  ( ( G  e.  Grp  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )
 )  ->  ( ( X  .-  Y )  .+  ( Y  .-  Z ) )  =  ( X 
 .-  Z ) )
 
Theoremgrpnpncan0 13624 Cancellation law for group subtraction (npncan2 8369 analog). (Contributed by AV, 24-Nov-2019.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  .-  =  ( -g `  G )   &    |-  .0.  =  ( 0g `  G )   =>    |-  ( ( G  e.  Grp  /\  ( X  e.  B  /\  Y  e.  B ) )  ->  ( ( X  .-  Y )  .+  ( Y  .-  X ) )  =  .0.  )
 
Theoremgrpnnncan2 13625 Cancellation law for group subtraction. (nnncan2 8379 analog.) (Contributed by NM, 15-Feb-2008.) (Revised by Mario Carneiro, 2-Dec-2014.)
 |-  B  =  ( Base `  G )   &    |-  .-  =  ( -g `  G )   =>    |-  ( ( G  e.  Grp  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B ) )  ->  ( ( X  .-  Z )  .-  ( Y 
 .-  Z ) )  =  ( X  .-  Y ) )
 
Theoremdfgrp3mlem 13626* Lemma for dfgrp3m 13627. (Contributed by AV, 28-Aug-2021.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   =>    |-  ( ( G  e. Smgrp  /\  E. w  w  e.  B  /\  A. x  e.  B  A. y  e.  B  ( E. l  e.  B  ( l  .+  x )  =  y  /\  E. r  e.  B  ( x  .+  r )  =  y ) ) 
 ->  E. u  e.  B  A. a  e.  B  ( ( u  .+  a
 )  =  a  /\  E. i  e.  B  ( i  .+  a )  =  u ) )
 
Theoremdfgrp3m 13627* Alternate definition of a group as semigroup (with at least one element) which is also a quasigroup, i.e. a magma in which solutions  x and  y of the equations  ( a  .+  x )  =  b and  ( x  .+  a
)  =  b exist. Theorem 3.2 of [Bruck] p. 28. (Contributed by AV, 28-Aug-2021.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   =>    |-  ( G  e.  Grp  <->  ( G  e. Smgrp  /\  E. w  w  e.  B  /\  A. x  e.  B  A. y  e.  B  ( E. l  e.  B  ( l  .+  x )  =  y  /\  E. r  e.  B  ( x  .+  r )  =  y ) ) )
 
Theoremdfgrp3me 13628* Alternate definition of a group as a set with a closed, associative operation, for which solutions  x and  y of the equations  ( a  .+  x )  =  b and  ( x  .+  a
)  =  b exist. Exercise 1 of [Herstein] p. 57. (Contributed by NM, 5-Dec-2006.) (Revised by AV, 28-Aug-2021.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   =>    |-  ( G  e.  Grp  <->  ( E. w  w  e.  B  /\  A. x  e.  B  A. y  e.  B  ( ( x 
 .+  y )  e.  B  /\  A. z  e.  B  ( ( x 
 .+  y )  .+  z )  =  ( x  .+  ( y  .+  z ) )  /\  ( E. l  e.  B  ( l  .+  x )  =  y  /\  E. r  e.  B  ( x  .+  r )  =  y ) ) ) )
 
Theoremgrplactfval 13629* The left group action of element  A of group  G. (Contributed by Paul Chapman, 18-Mar-2008.)
 |-  F  =  ( g  e.  X  |->  ( a  e.  X  |->  ( g 
 .+  a ) ) )   &    |-  X  =  (
 Base `  G )   =>    |-  ( A  e.  X  ->  ( F `  A )  =  (
 a  e.  X  |->  ( A  .+  a ) ) )
 
Theoremgrplactcnv 13630* The left group action of element  A of group  G maps the underlying set  X of  G one-to-one onto itself. (Contributed by Paul Chapman, 18-Mar-2008.) (Proof shortened by Mario Carneiro, 14-Aug-2015.)
 |-  F  =  ( g  e.  X  |->  ( a  e.  X  |->  ( g 
 .+  a ) ) )   &    |-  X  =  (
 Base `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  I  =  ( invg `  G )   =>    |-  ( ( G  e.  Grp  /\  A  e.  X ) 
 ->  ( ( F `  A ) : X -1-1-onto-> X  /\  `' ( F `  A )  =  ( F `  ( I `  A ) ) ) )
 
Theoremgrplactf1o 13631* The left group action of element  A of group  G maps the underlying set  X of  G one-to-one onto itself. (Contributed by Paul Chapman, 18-Mar-2008.) (Proof shortened by Mario Carneiro, 14-Aug-2015.)
 |-  F  =  ( g  e.  X  |->  ( a  e.  X  |->  ( g 
 .+  a ) ) )   &    |-  X  =  (
 Base `  G )   &    |-  .+  =  ( +g  `  G )   =>    |-  (
 ( G  e.  Grp  /\  A  e.  X ) 
 ->  ( F `  A ) : X -1-1-onto-> X )
 
Theoremgrpsubpropdg 13632 Weak property deduction for the group subtraction operation. (Contributed by Mario Carneiro, 27-Mar-2015.)
 |-  ( ph  ->  ( Base `  G )  =  ( Base `  H )
 )   &    |-  ( ph  ->  ( +g  `  G )  =  ( +g  `  H ) )   &    |-  ( ph  ->  G  e.  V )   &    |-  ( ph  ->  H  e.  W )   =>    |-  ( ph  ->  ( -g `  G )  =  ( -g `  H ) )
 
Theoremgrpsubpropd2 13633* Strong property deduction for the group subtraction operation. (Contributed by Mario Carneiro, 4-Oct-2015.)
 |-  ( ph  ->  B  =  ( Base `  G )
 )   &    |-  ( ph  ->  B  =  ( Base `  H )
 )   &    |-  ( ph  ->  G  e.  Grp )   &    |-  ( ( ph  /\  ( x  e.  B  /\  y  e.  B ) )  ->  ( x ( +g  `  G ) y )  =  ( x ( +g  `  H ) y ) )   =>    |-  ( ph  ->  ( -g `  G )  =  ( -g `  H ) )
 
Theoremgrp1 13634 The (smallest) structure representing a trivial group. According to Wikipedia ("Trivial group", 28-Apr-2019, https://en.wikipedia.org/wiki/Trivial_group) "In mathematics, a trivial group is a group consisting of a single element. All such groups are isomorphic, so one often speaks of the trivial group. The single element of the trivial group is the identity element". (Contributed by AV, 28-Apr-2019.)
 |-  M  =  { <. (
 Base `  ndx ) ,  { I } >. , 
 <. ( +g  `  ndx ) ,  { <. <. I ,  I >. ,  I >. }
 >. }   =>    |-  ( I  e.  V  ->  M  e.  Grp )
 
Theoremgrp1inv 13635 The inverse function of the trivial group. (Contributed by FL, 21-Jun-2010.) (Revised by AV, 26-Aug-2021.)
 |-  M  =  { <. (
 Base `  ndx ) ,  { I } >. , 
 <. ( +g  `  ndx ) ,  { <. <. I ,  I >. ,  I >. }
 >. }   =>    |-  ( I  e.  V  ->  ( invg `  M )  =  (  _I  |`  { I }
 ) )
 
Theoremprdsinvlem 13636* Characterization of inverses in a structure product. (Contributed by Mario Carneiro, 10-Jan-2015.)
 |-  Y  =  ( S
 X_s
 R )   &    |-  B  =  (
 Base `  Y )   &    |-  .+  =  ( +g  `  Y )   &    |-  ( ph  ->  S  e.  V )   &    |-  ( ph  ->  I  e.  W )   &    |-  ( ph  ->  R : I --> Grp )   &    |-  ( ph  ->  F  e.  B )   &    |- 
 .0.  =  ( 0g  o.  R )   &    |-  N  =  ( y  e.  I  |->  ( ( invg `  ( R `  y ) ) `  ( F `
  y ) ) )   =>    |-  ( ph  ->  ( N  e.  B  /\  ( N  .+  F )  =  .0.  ) )
 
Theoremprdsgrpd 13637 The product of a family of groups is a group. (Contributed by Stefan O'Rear, 10-Jan-2015.)
 |-  Y  =  ( S
 X_s
 R )   &    |-  ( ph  ->  I  e.  W )   &    |-  ( ph  ->  S  e.  V )   &    |-  ( ph  ->  R : I --> Grp )   =>    |-  ( ph  ->  Y  e.  Grp )
 
Theoremprdsinvgd 13638* Negation in a product of groups. (Contributed by Stefan O'Rear, 10-Jan-2015.)
 |-  Y  =  ( S
 X_s
 R )   &    |-  ( ph  ->  I  e.  W )   &    |-  ( ph  ->  S  e.  V )   &    |-  ( ph  ->  R : I --> Grp )   &    |-  B  =  (
 Base `  Y )   &    |-  N  =  ( invg `  Y )   &    |-  ( ph  ->  X  e.  B )   =>    |-  ( ph  ->  ( N `  X )  =  ( x  e.  I  |->  ( ( invg `  ( R `
  x ) ) `
  ( X `  x ) ) ) )
 
Theorempwsgrp 13639 A structure power of a group is a group. (Contributed by Mario Carneiro, 11-Jan-2015.)
 |-  Y  =  ( R 
 ^s  I )   =>    |-  ( ( R  e.  Grp  /\  I  e.  V )  ->  Y  e.  Grp )
 
Theorempwsinvg 13640 Negation in a group power. (Contributed by Mario Carneiro, 11-Jan-2015.)
 |-  Y  =  ( R 
 ^s  I )   &    |-  B  =  (
 Base `  Y )   &    |-  M  =  ( invg `  R )   &    |-  N  =  ( invg `  Y )   =>    |-  ( ( R  e.  Grp  /\  I  e.  V  /\  X  e.  B ) 
 ->  ( N `  X )  =  ( M  o.  X ) )
 
Theorempwssub 13641 Subtraction in a group power. (Contributed by Mario Carneiro, 12-Jan-2015.)
 |-  Y  =  ( R 
 ^s  I )   &    |-  B  =  (
 Base `  Y )   &    |-  M  =  ( -g `  R )   &    |-  .-  =  ( -g `  Y )   =>    |-  ( ( ( R  e.  Grp  /\  I  e.  V )  /\  ( F  e.  B  /\  G  e.  B )
 )  ->  ( F  .-  G )  =  ( F  oF M G ) )
 
Theoremimasgrp2 13642* The image structure of a group is a group. (Contributed by Mario Carneiro, 24-Feb-2015.) (Revised by Mario Carneiro, 5-Sep-2015.)
 |-  ( ph  ->  U  =  ( F  "s  R )
 )   &    |-  ( ph  ->  V  =  ( Base `  R )
 )   &    |-  ( ph  ->  .+  =  ( +g  `  R )
 )   &    |-  ( ph  ->  F : V -onto-> B )   &    |-  ( ( ph  /\  ( a  e.  V  /\  b  e.  V )  /\  ( p  e.  V  /\  q  e.  V ) )  ->  ( ( ( F `
  a )  =  ( F `  p )  /\  ( F `  b )  =  ( F `  q ) ) 
 ->  ( F `  (
 a  .+  b )
 )  =  ( F `
  ( p  .+  q ) ) ) )   &    |-  ( ph  ->  R  e.  W )   &    |-  (
 ( ph  /\  x  e.  V  /\  y  e.  V )  ->  ( x  .+  y )  e.  V )   &    |-  ( ( ph  /\  ( x  e.  V  /\  y  e.  V  /\  z  e.  V ) )  ->  ( F `
  ( ( x 
 .+  y )  .+  z ) )  =  ( F `  ( x  .+  ( y  .+  z ) ) ) )   &    |-  ( ph  ->  .0. 
 e.  V )   &    |-  (
 ( ph  /\  x  e.  V )  ->  ( F `  (  .0.  .+  x ) )  =  ( F `  x ) )   &    |-  ( ( ph  /\  x  e.  V ) 
 ->  N  e.  V )   &    |-  ( ( ph  /\  x  e.  V )  ->  ( F `  ( N  .+  x ) )  =  ( F `  .0.  ) )   =>    |-  ( ph  ->  ( U  e.  Grp  /\  ( F `  .0.  )  =  ( 0g `  U ) ) )
 
Theoremimasgrp 13643* The image structure of a group is a group. (Contributed by Mario Carneiro, 24-Feb-2015.) (Revised by Mario Carneiro, 5-Sep-2015.)
 |-  ( ph  ->  U  =  ( F  "s  R )
 )   &    |-  ( ph  ->  V  =  ( Base `  R )
 )   &    |-  ( ph  ->  .+  =  ( +g  `  R )
 )   &    |-  ( ph  ->  F : V -onto-> B )   &    |-  ( ( ph  /\  ( a  e.  V  /\  b  e.  V )  /\  ( p  e.  V  /\  q  e.  V ) )  ->  ( ( ( F `
  a )  =  ( F `  p )  /\  ( F `  b )  =  ( F `  q ) ) 
 ->  ( F `  (
 a  .+  b )
 )  =  ( F `
  ( p  .+  q ) ) ) )   &    |-  ( ph  ->  R  e.  Grp )   &    |-  .0.  =  ( 0g `  R )   =>    |-  ( ph  ->  ( U  e.  Grp  /\  ( F `  .0.  )  =  ( 0g `  U ) ) )
 
Theoremimasgrpf1 13644 The image of a group under an injection is a group. (Contributed by Mario Carneiro, 20-Aug-2015.)
 |-  U  =  ( F 
 "s 
 R )   &    |-  V  =  (
 Base `  R )   =>    |-  ( ( F : V -1-1-> B  /\  R  e.  Grp )  ->  U  e.  Grp )
 
Theoremqusgrp2 13645* Prove that a quotient structure is a group. (Contributed by Mario Carneiro, 14-Jun-2015.) (Revised by Mario Carneiro, 12-Aug-2015.)
 |-  ( ph  ->  U  =  ( R  /.s  .~  ) )   &    |-  ( ph  ->  V  =  ( Base `  R )
 )   &    |-  ( ph  ->  .+  =  ( +g  `  R )
 )   &    |-  ( ph  ->  .~  Er  V )   &    |-  ( ph  ->  R  e.  X )   &    |-  ( ph  ->  ( ( a 
 .~  p  /\  b  .~  q )  ->  (
 a  .+  b )  .~  ( p  .+  q
 ) ) )   &    |-  (
 ( ph  /\  x  e.  V  /\  y  e.  V )  ->  ( x  .+  y )  e.  V )   &    |-  ( ( ph  /\  ( x  e.  V  /\  y  e.  V  /\  z  e.  V ) )  ->  ( ( x  .+  y ) 
 .+  z )  .~  ( x  .+  ( y 
 .+  z ) ) )   &    |-  ( ph  ->  .0. 
 e.  V )   &    |-  (
 ( ph  /\  x  e.  V )  ->  (  .0.  .+  x )  .~  x )   &    |-  ( ( ph  /\  x  e.  V ) 
 ->  N  e.  V )   &    |-  ( ( ph  /\  x  e.  V )  ->  ( N  .+  x )  .~  .0.  )   =>    |-  ( ph  ->  ( U  e.  Grp  /\  [  .0.  ]  .~  =  ( 0g `  U ) ) )
 
Theoremmhmlem 13646* Lemma for mhmmnd 13648 and ghmgrp 13650. (Contributed by Paul Chapman, 25-Apr-2008.) (Revised by Mario Carneiro, 12-May-2014.) (Revised by Thierry Arnoux, 25-Jan-2020.)
 |-  ( ( ph  /\  x  e.  X  /\  y  e.  X )  ->  ( F `  ( x  .+  y ) )  =  ( ( F `  x )  .+^  ( F `
  y ) ) )   &    |-  ( ph  ->  A  e.  X )   &    |-  ( ph  ->  B  e.  X )   =>    |-  ( ph  ->  ( F `  ( A  .+  B ) )  =  ( ( F `  A )  .+^  ( F `
  B ) ) )
 
Theoremmhmid 13647* A surjective monoid morphism preserves identity element. (Contributed by Thierry Arnoux, 25-Jan-2020.)
 |-  ( ( ph  /\  x  e.  X  /\  y  e.  X )  ->  ( F `  ( x  .+  y ) )  =  ( ( F `  x )  .+^  ( F `
  y ) ) )   &    |-  X  =  (
 Base `  G )   &    |-  Y  =  ( Base `  H )   &    |-  .+  =  ( +g  `  G )   &    |-  .+^  =  (
 +g  `  H )   &    |-  ( ph  ->  F : X -onto-> Y )   &    |-  ( ph  ->  G  e.  Mnd )   &    |-  .0.  =  ( 0g `  G )   =>    |-  ( ph  ->  ( F `  .0.  )  =  ( 0g `  H ) )
 
Theoremmhmmnd 13648* The image of a monoid  G under a monoid homomorphism  F is a monoid. (Contributed by Thierry Arnoux, 25-Jan-2020.)
 |-  ( ( ph  /\  x  e.  X  /\  y  e.  X )  ->  ( F `  ( x  .+  y ) )  =  ( ( F `  x )  .+^  ( F `
  y ) ) )   &    |-  X  =  (
 Base `  G )   &    |-  Y  =  ( Base `  H )   &    |-  .+  =  ( +g  `  G )   &    |-  .+^  =  (
 +g  `  H )   &    |-  ( ph  ->  F : X -onto-> Y )   &    |-  ( ph  ->  G  e.  Mnd )   =>    |-  ( ph  ->  H  e.  Mnd )
 
Theoremmhmfmhm 13649* The function fulfilling the conditions of mhmmnd 13648 is a monoid homomorphism. (Contributed by Thierry Arnoux, 26-Jan-2020.)
 |-  ( ( ph  /\  x  e.  X  /\  y  e.  X )  ->  ( F `  ( x  .+  y ) )  =  ( ( F `  x )  .+^  ( F `
  y ) ) )   &    |-  X  =  (
 Base `  G )   &    |-  Y  =  ( Base `  H )   &    |-  .+  =  ( +g  `  G )   &    |-  .+^  =  (
 +g  `  H )   &    |-  ( ph  ->  F : X -onto-> Y )   &    |-  ( ph  ->  G  e.  Mnd )   =>    |-  ( ph  ->  F  e.  ( G MndHom  H ) )
 
Theoremghmgrp 13650* The image of a group  G under a group homomorphism  F is a group. This is a stronger result than that usually found in the literature, since the target of the homomorphism (operator  O in our model) need not have any of the properties of a group as a prerequisite. (Contributed by Paul Chapman, 25-Apr-2008.) (Revised by Mario Carneiro, 12-May-2014.) (Revised by Thierry Arnoux, 25-Jan-2020.)
 |-  ( ( ph  /\  x  e.  X  /\  y  e.  X )  ->  ( F `  ( x  .+  y ) )  =  ( ( F `  x )  .+^  ( F `
  y ) ) )   &    |-  X  =  (
 Base `  G )   &    |-  Y  =  ( Base `  H )   &    |-  .+  =  ( +g  `  G )   &    |-  .+^  =  (
 +g  `  H )   &    |-  ( ph  ->  F : X -onto-> Y )   &    |-  ( ph  ->  G  e.  Grp )   =>    |-  ( ph  ->  H  e.  Grp )
 
7.2.2  Group multiple operation

The "group multiple" operation (if the group is multiplicative, also called "group power" or "group exponentiation" operation), can be defined for arbitrary magmas, if the multiplier/exponent is a nonnegative integer. See also the definition in [Lang] p. 6, where an element  x(of a monoid) to the power of a nonnegative integer 
n is defined and denoted by  x ^ n. Definition df-mulg 13652, however, defines the group multiple for arbitrary (i.e. also negative) integers. This is meaningful for groups only, and requires Definition df-minusg 13532 of the inverse operation  invg.

 
Syntaxcmg 13651 Extend class notation with a function mapping a group operation to the multiple/power operation for the magma/group.
 class .g
 
Definitiondf-mulg 13652* Define the group multiple function, also known as group exponentiation when viewed multiplicatively. (Contributed by Mario Carneiro, 11-Dec-2014.)
 |- .g  =  ( g  e.  _V  |->  ( n  e.  ZZ ,  x  e.  ( Base `  g )  |->  if ( n  =  0 ,  ( 0g `  g ) ,  [_  seq 1 ( ( +g  `  g ) ,  ( NN  X.  { x }
 ) )  /  s ]_ if ( 0  < 
 n ,  ( s `
  n ) ,  ( ( invg `  g ) `  (
 s `  -u n ) ) ) ) ) )
 
Theoremmulgfvalg 13653* Group multiple (exponentiation) operation. (Contributed by Mario Carneiro, 11-Dec-2014.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  .0.  =  ( 0g `  G )   &    |-  I  =  ( invg `  G )   &    |-  .x. 
 =  (.g `  G )   =>    |-  ( G  e.  V  ->  .x.  =  ( n  e.  ZZ ,  x  e.  B  |->  if ( n  =  0 ,  .0.  ,  if ( 0  <  n ,  (  seq 1
 (  .+  ,  ( NN  X.  { x }
 ) ) `  n ) ,  ( I `  (  seq 1
 (  .+  ,  ( NN  X.  { x }
 ) ) `  -u n ) ) ) ) ) )
 
Theoremmulgval 13654 Value of the group multiple (exponentiation) operation. (Contributed by Mario Carneiro, 11-Dec-2014.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  .0.  =  ( 0g `  G )   &    |-  I  =  ( invg `  G )   &    |-  .x. 
 =  (.g `  G )   &    |-  S  =  seq 1 (  .+  ,  ( NN  X.  { X } ) )   =>    |-  ( ( N  e.  ZZ  /\  X  e.  B )  ->  ( N  .x.  X )  =  if ( N  =  0 ,  .0.  ,  if ( 0  <  N ,  ( S `  N ) ,  ( I `  ( S `  -u N ) ) ) ) )
 
Theoremmulgex 13655 Existence of the group multiple operation. (Contributed by Jim Kingdon, 22-Apr-2025.)
 |-  ( G  e.  V  ->  (.g `  G )  e. 
 _V )
 
Theoremmulgfng 13656 Functionality of the group multiple operation. (Contributed by Mario Carneiro, 21-Mar-2015.) (Revised by Mario Carneiro, 2-Oct-2015.)
 |-  B  =  ( Base `  G )   &    |-  .x.  =  (.g `  G )   =>    |-  ( G  e.  V  ->  .x.  Fn  ( ZZ 
 X.  B ) )
 
Theoremmulg0 13657 Group multiple (exponentiation) operation at zero. (Contributed by Mario Carneiro, 11-Dec-2014.)
 |-  B  =  ( Base `  G )   &    |-  .0.  =  ( 0g `  G )   &    |-  .x. 
 =  (.g `  G )   =>    |-  ( X  e.  B  ->  ( 0  .x.  X )  =  .0.  )
 
Theoremmulgnn 13658 Group multiple (exponentiation) operation at a positive integer. (Contributed by Mario Carneiro, 11-Dec-2014.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  .x.  =  (.g `  G )   &    |-  S  =  seq 1 (  .+  ,  ( NN  X.  { X }
 ) )   =>    |-  ( ( N  e.  NN  /\  X  e.  B )  ->  ( N  .x.  X )  =  ( S `
  N ) )
 
Theoremmulgnngsum 13659* Group multiple (exponentiation) operation at a positive integer expressed by a group sum. (Contributed by AV, 28-Dec-2023.)
 |-  B  =  ( Base `  G )   &    |-  .x.  =  (.g `  G )   &    |-  F  =  ( x  e.  ( 1
 ... N )  |->  X )   =>    |-  ( ( N  e.  NN  /\  X  e.  B )  ->  ( N  .x.  X )  =  ( G 
 gsumg  F ) )
 
Theoremmulgnn0gsum 13660* Group multiple (exponentiation) operation at a nonnegative integer expressed by a group sum. This corresponds to the definition in [Lang] p. 6, second formula. (Contributed by AV, 28-Dec-2023.)
 |-  B  =  ( Base `  G )   &    |-  .x.  =  (.g `  G )   &    |-  F  =  ( x  e.  ( 1
 ... N )  |->  X )   =>    |-  ( ( N  e.  NN0  /\  X  e.  B ) 
 ->  ( N  .x.  X )  =  ( G  gsumg  F ) )
 
Theoremmulg1 13661 Group multiple (exponentiation) operation at one. (Contributed by Mario Carneiro, 11-Dec-2014.)
 |-  B  =  ( Base `  G )   &    |-  .x.  =  (.g `  G )   =>    |-  ( X  e.  B  ->  ( 1  .x.  X )  =  X )
 
Theoremmulgnnp1 13662 Group multiple (exponentiation) operation at a successor. (Contributed by Mario Carneiro, 11-Dec-2014.)
 |-  B  =  ( Base `  G )   &    |-  .x.  =  (.g `  G )   &    |-  .+  =  ( +g  `  G )   =>    |-  ( ( N  e.  NN  /\  X  e.  B )  ->  (
 ( N  +  1 )  .x.  X )  =  ( ( N  .x.  X )  .+  X ) )
 
Theoremmulg2 13663 Group multiple (exponentiation) operation at two. (Contributed by Mario Carneiro, 15-Oct-2015.)
 |-  B  =  ( Base `  G )   &    |-  .x.  =  (.g `  G )   &    |-  .+  =  ( +g  `  G )   =>    |-  ( X  e.  B  ->  ( 2  .x.  X )  =  ( X 
 .+  X ) )
 
Theoremmulgnegnn 13664 Group multiple (exponentiation) operation at a negative integer. (Contributed by Mario Carneiro, 11-Dec-2014.)
 |-  B  =  ( Base `  G )   &    |-  .x.  =  (.g `  G )   &    |-  I  =  ( invg `  G )   =>    |-  ( ( N  e.  NN  /\  X  e.  B )  ->  ( -u N  .x.  X )  =  ( I `  ( N 
 .x.  X ) ) )
 
Theoremmulgnn0p1 13665 Group multiple (exponentiation) operation at a successor, extended to  NN0. (Contributed by Mario Carneiro, 11-Dec-2014.)
 |-  B  =  ( Base `  G )   &    |-  .x.  =  (.g `  G )   &    |-  .+  =  ( +g  `  G )   =>    |-  ( ( G  e.  Mnd  /\  N  e.  NN0  /\  X  e.  B ) 
 ->  ( ( N  +  1 )  .x.  X )  =  ( ( N 
 .x.  X )  .+  X ) )
 
Theoremmulgnnsubcl 13666* Closure of the group multiple (exponentiation) operation in a subsemigroup. (Contributed by Mario Carneiro, 10-Jan-2015.)
 |-  B  =  ( Base `  G )   &    |-  .x.  =  (.g `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  ( ph  ->  G  e.  V )   &    |-  ( ph  ->  S  C_  B )   &    |-  ( ( ph  /\  x  e.  S  /\  y  e.  S )  ->  ( x  .+  y
 )  e.  S )   =>    |-  ( ( ph  /\  N  e.  NN  /\  X  e.  S )  ->  ( N 
 .x.  X )  e.  S )
 
Theoremmulgnn0subcl 13667* Closure of the group multiple (exponentiation) operation in a submonoid. (Contributed by Mario Carneiro, 10-Jan-2015.)
 |-  B  =  ( Base `  G )   &    |-  .x.  =  (.g `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  ( ph  ->  G  e.  V )   &    |-  ( ph  ->  S  C_  B )   &    |-  ( ( ph  /\  x  e.  S  /\  y  e.  S )  ->  ( x  .+  y
 )  e.  S )   &    |-  .0.  =  ( 0g `  G )   &    |-  ( ph  ->  .0. 
 e.  S )   =>    |-  ( ( ph  /\  N  e.  NN0  /\  X  e.  S )  ->  ( N  .x.  X )  e.  S )
 
Theoremmulgsubcl 13668* Closure of the group multiple (exponentiation) operation in a subgroup. (Contributed by Mario Carneiro, 10-Jan-2015.)
 |-  B  =  ( Base `  G )   &    |-  .x.  =  (.g `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  ( ph  ->  G  e.  V )   &    |-  ( ph  ->  S  C_  B )   &    |-  ( ( ph  /\  x  e.  S  /\  y  e.  S )  ->  ( x  .+  y
 )  e.  S )   &    |-  .0.  =  ( 0g `  G )   &    |-  ( ph  ->  .0. 
 e.  S )   &    |-  I  =  ( invg `  G )   &    |-  ( ( ph  /\  x  e.  S ) 
 ->  ( I `  x )  e.  S )   =>    |-  (
 ( ph  /\  N  e.  ZZ  /\  X  e.  S )  ->  ( N  .x.  X )  e.  S )
 
Theoremmulgnncl 13669 Closure of the group multiple (exponentiation) operation for a positive multiplier in a magma. (Contributed by Mario Carneiro, 11-Dec-2014.) (Revised by AV, 29-Aug-2021.)
 |-  B  =  ( Base `  G )   &    |-  .x.  =  (.g `  G )   =>    |-  ( ( G  e. Mgm  /\  N  e.  NN  /\  X  e.  B )  ->  ( N  .x.  X )  e.  B )
 
Theoremmulgnn0cl 13670 Closure of the group multiple (exponentiation) operation for a nonnegative multiplier in a monoid. (Contributed by Mario Carneiro, 11-Dec-2014.)
 |-  B  =  ( Base `  G )   &    |-  .x.  =  (.g `  G )   =>    |-  ( ( G  e.  Mnd  /\  N  e.  NN0  /\  X  e.  B )  ->  ( N  .x.  X )  e.  B )
 
Theoremmulgcl 13671 Closure of the group multiple (exponentiation) operation. (Contributed by Mario Carneiro, 11-Dec-2014.)
 |-  B  =  ( Base `  G )   &    |-  .x.  =  (.g `  G )   =>    |-  ( ( G  e.  Grp  /\  N  e.  ZZ  /\  X  e.  B )  ->  ( N  .x.  X )  e.  B )
 
Theoremmulgneg 13672 Group multiple (exponentiation) operation at a negative integer. (Contributed by Paul Chapman, 17-Apr-2009.) (Revised by Mario Carneiro, 11-Dec-2014.)
 |-  B  =  ( Base `  G )   &    |-  .x.  =  (.g `  G )   &    |-  I  =  ( invg `  G )   =>    |-  ( ( G  e.  Grp  /\  N  e.  ZZ  /\  X  e.  B )  ->  ( -u N  .x.  X )  =  ( I `  ( N  .x.  X ) ) )
 
Theoremmulgnegneg 13673 The inverse of a negative group multiple is the positive group multiple. (Contributed by Paul Chapman, 17-Apr-2009.) (Revised by AV, 30-Aug-2021.)
 |-  B  =  ( Base `  G )   &    |-  .x.  =  (.g `  G )   &    |-  I  =  ( invg `  G )   =>    |-  ( ( G  e.  Grp  /\  N  e.  ZZ  /\  X  e.  B )  ->  ( I `  ( -u N  .x.  X )
 )  =  ( N 
 .x.  X ) )
 
Theoremmulgm1 13674 Group multiple (exponentiation) operation at negative one. (Contributed by Paul Chapman, 17-Apr-2009.) (Revised by Mario Carneiro, 20-Dec-2014.)
 |-  B  =  ( Base `  G )   &    |-  .x.  =  (.g `  G )   &    |-  I  =  ( invg `  G )   =>    |-  ( ( G  e.  Grp  /\  X  e.  B ) 
 ->  ( -u 1  .x.  X )  =  ( I `  X ) )
 
Theoremmulgnn0cld 13675 Closure of the group multiple (exponentiation) operation for a nonnegative multiplier in a monoid. Deduction associated with mulgnn0cl 13670. (Contributed by SN, 1-Feb-2025.)
 |-  B  =  ( Base `  G )   &    |-  .x.  =  (.g `  G )   &    |-  ( ph  ->  G  e.  Mnd )   &    |-  ( ph  ->  N  e.  NN0 )   &    |-  ( ph  ->  X  e.  B )   =>    |-  ( ph  ->  ( N  .x.  X )  e.  B )
 
Theoremmulgcld 13676 Deduction associated with mulgcl 13671. (Contributed by Rohan Ridenour, 3-Aug-2023.)
 |-  B  =  ( Base `  G )   &    |-  .x.  =  (.g `  G )   &    |-  ( ph  ->  G  e.  Grp )   &    |-  ( ph  ->  N  e.  ZZ )   &    |-  ( ph  ->  X  e.  B )   =>    |-  ( ph  ->  ( N  .x.  X )  e.  B )
 
Theoremmulgaddcomlem 13677 Lemma for mulgaddcom 13678. (Contributed by Paul Chapman, 17-Apr-2009.) (Revised by AV, 31-Aug-2021.)
 |-  B  =  ( Base `  G )   &    |-  .x.  =  (.g `  G )   &    |-  .+  =  ( +g  `  G )   =>    |-  ( ( ( G  e.  Grp  /\  y  e.  ZZ  /\  X  e.  B )  /\  (
 ( y  .x.  X )  .+  X )  =  ( X  .+  (
 y  .x.  X )
 ) )  ->  (
 ( -u y  .x.  X )  .+  X )  =  ( X  .+  ( -u y  .x.  X )
 ) )
 
Theoremmulgaddcom 13678 The group multiple operator commutes with the group operation. (Contributed by Paul Chapman, 17-Apr-2009.) (Revised by AV, 31-Aug-2021.)
 |-  B  =  ( Base `  G )   &    |-  .x.  =  (.g `  G )   &    |-  .+  =  ( +g  `  G )   =>    |-  ( ( G  e.  Grp  /\  N  e.  ZZ  /\  X  e.  B )  ->  ( ( N 
 .x.  X )  .+  X )  =  ( X  .+  ( N  .x.  X ) ) )
 
Theoremmulginvcom 13679 The group multiple operator commutes with the group inverse function. (Contributed by Paul Chapman, 17-Apr-2009.) (Revised by AV, 31-Aug-2021.)
 |-  B  =  ( Base `  G )   &    |-  .x.  =  (.g `  G )   &    |-  I  =  ( invg `  G )   =>    |-  ( ( G  e.  Grp  /\  N  e.  ZZ  /\  X  e.  B )  ->  ( N  .x.  ( I `  X ) )  =  ( I `  ( N  .x.  X ) ) )
 
Theoremmulginvinv 13680 The group multiple operator commutes with the group inverse function. (Contributed by Paul Chapman, 17-Apr-2009.) (Revised by AV, 31-Aug-2021.)
 |-  B  =  ( Base `  G )   &    |-  .x.  =  (.g `  G )   &    |-  I  =  ( invg `  G )   =>    |-  ( ( G  e.  Grp  /\  N  e.  ZZ  /\  X  e.  B )  ->  ( I `  ( N  .x.  ( I `  X ) ) )  =  ( N  .x.  X ) )
 
Theoremmulgnn0z 13681 A group multiple of the identity, for nonnegative multiple. (Contributed by Mario Carneiro, 13-Dec-2014.)
 |-  B  =  ( Base `  G )   &    |-  .x.  =  (.g `  G )   &    |-  .0.  =  ( 0g `  G )   =>    |-  ( ( G  e.  Mnd  /\  N  e.  NN0 )  ->  ( N  .x.  .0.  )  =  .0.  )
 
Theoremmulgz 13682 A group multiple of the identity, for integer multiple. (Contributed by Mario Carneiro, 13-Dec-2014.)
 |-  B  =  ( Base `  G )   &    |-  .x.  =  (.g `  G )   &    |-  .0.  =  ( 0g `  G )   =>    |-  ( ( G  e.  Grp  /\  N  e.  ZZ )  ->  ( N  .x.  .0.  )  =  .0.  )
 
Theoremmulgnndir 13683 Sum of group multiples, for positive multiples. (Contributed by Mario Carneiro, 11-Dec-2014.) (Revised by AV, 29-Aug-2021.)
 |-  B  =  ( Base `  G )   &    |-  .x.  =  (.g `  G )   &    |-  .+  =  ( +g  `  G )   =>    |-  ( ( G  e. Smgrp  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B ) )  ->  ( ( M  +  N )  .x.  X )  =  ( ( M  .x.  X )  .+  ( N  .x.  X ) ) )
 
Theoremmulgnn0dir 13684 Sum of group multiples, generalized to  NN0. (Contributed by Mario Carneiro, 11-Dec-2014.)
 |-  B  =  ( Base `  G )   &    |-  .x.  =  (.g `  G )   &    |-  .+  =  ( +g  `  G )   =>    |-  ( ( G  e.  Mnd  /\  ( M  e.  NN0  /\  N  e.  NN0  /\  X  e.  B ) )  ->  ( ( M  +  N )  .x.  X )  =  ( ( M  .x.  X )  .+  ( N  .x.  X ) ) )
 
Theoremmulgdirlem 13685 Lemma for mulgdir 13686. (Contributed by Mario Carneiro, 13-Dec-2014.)
 |-  B  =  ( Base `  G )   &    |-  .x.  =  (.g `  G )   &    |-  .+  =  ( +g  `  G )   =>    |-  ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )  /\  ( M  +  N )  e. 
 NN0 )  ->  (
 ( M  +  N )  .x.  X )  =  ( ( M  .x.  X )  .+  ( N 
 .x.  X ) ) )
 
Theoremmulgdir 13686 Sum of group multiples, generalized to  ZZ. (Contributed by Mario Carneiro, 13-Dec-2014.)
 |-  B  =  ( Base `  G )   &    |-  .x.  =  (.g `  G )   &    |-  .+  =  ( +g  `  G )   =>    |-  ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B ) )  ->  ( ( M  +  N )  .x.  X )  =  ( ( M 
 .x.  X )  .+  ( N  .x.  X ) ) )
 
Theoremmulgp1 13687 Group multiple (exponentiation) operation at a successor, extended to  ZZ. (Contributed by Mario Carneiro, 11-Dec-2014.)
 |-  B  =  ( Base `  G )   &    |-  .x.  =  (.g `  G )   &    |-  .+  =  ( +g  `  G )   =>    |-  ( ( G  e.  Grp  /\  N  e.  ZZ  /\  X  e.  B )  ->  ( ( N  +  1 )  .x.  X )  =  ( ( N  .x.  X )  .+  X ) )
 
Theoremmulgneg2 13688 Group multiple (exponentiation) operation at a negative integer. (Contributed by Mario Carneiro, 13-Dec-2014.)
 |-  B  =  ( Base `  G )   &    |-  .x.  =  (.g `  G )   &    |-  I  =  ( invg `  G )   =>    |-  ( ( G  e.  Grp  /\  N  e.  ZZ  /\  X  e.  B )  ->  ( -u N  .x.  X )  =  ( N  .x.  ( I `  X ) ) )
 
Theoremmulgnnass 13689 Product of group multiples, for positive multiples in a semigroup. (Contributed by Mario Carneiro, 13-Dec-2014.) (Revised by AV, 29-Aug-2021.)
 |-  B  =  ( Base `  G )   &    |-  .x.  =  (.g `  G )   =>    |-  ( ( G  e. Smgrp  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B )
 )  ->  ( ( M  x.  N )  .x.  X )  =  ( M 
 .x.  ( N  .x.  X ) ) )
 
Theoremmulgnn0ass 13690 Product of group multiples, generalized to  NN0. (Contributed by Mario Carneiro, 13-Dec-2014.)
 |-  B  =  ( Base `  G )   &    |-  .x.  =  (.g `  G )   =>    |-  ( ( G  e.  Mnd  /\  ( M  e.  NN0  /\  N  e.  NN0  /\  X  e.  B ) )  ->  ( ( M  x.  N )  .x.  X )  =  ( M  .x.  ( N  .x.  X ) ) )
 
Theoremmulgass 13691 Product of group multiples, generalized to  ZZ. (Contributed by Mario Carneiro, 13-Dec-2014.)
 |-  B  =  ( Base `  G )   &    |-  .x.  =  (.g `  G )   =>    |-  ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
 )  ->  ( ( M  x.  N )  .x.  X )  =  ( M 
 .x.  ( N  .x.  X ) ) )
 
Theoremmulgassr 13692 Reversed product of group multiples. (Contributed by Paul Chapman, 17-Apr-2009.) (Revised by AV, 30-Aug-2021.)
 |-  B  =  ( Base `  G )   &    |-  .x.  =  (.g `  G )   =>    |-  ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
 )  ->  ( ( N  x.  M )  .x.  X )  =  ( M 
 .x.  ( N  .x.  X ) ) )
 
Theoremmulgmodid 13693 Casting out multiples of the identity element leaves the group multiple unchanged. (Contributed by Paul Chapman, 17-Apr-2009.) (Revised by AV, 30-Aug-2021.)
 |-  B  =  ( Base `  G )   &    |-  .0.  =  ( 0g `  G )   &    |-  .x. 
 =  (.g `  G )   =>    |-  ( ( G  e.  Grp  /\  ( N  e.  ZZ  /\  M  e.  NN )  /\  ( X  e.  B  /\  ( M  .x.  X )  =  .0.  ) ) 
 ->  ( ( N  mod  M )  .x.  X )  =  ( N  .x.  X ) )
 
Theoremmulgsubdir 13694 Distribution of group multiples over subtraction for group elements, subdir 8528 analog. (Contributed by Mario Carneiro, 13-Dec-2014.)
 |-  B  =  ( Base `  G )   &    |-  .x.  =  (.g `  G )   &    |-  .-  =  ( -g `  G )   =>    |-  ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B ) )  ->  ( ( M  -  N )  .x.  X )  =  ( ( M 
 .x.  X )  .-  ( N  .x.  X ) ) )
 
Theoremmhmmulg 13695 A homomorphism of monoids preserves group multiples. (Contributed by Mario Carneiro, 14-Jun-2015.)
 |-  B  =  ( Base `  G )   &    |-  .x.  =  (.g `  G )   &    |-  .X.  =  (.g `  H )   =>    |-  ( ( F  e.  ( G MndHom  H )  /\  N  e.  NN0  /\  X  e.  B )  ->  ( F `  ( N  .x.  X ) )  =  ( N  .X.  ( F `  X ) ) )
 
Theoremmulgpropdg 13696* Two structures with the same group-nature have the same group multiple function.  K is expected to either be  _V (when strong equality is available) or  B (when closure is available). (Contributed by Stefan O'Rear, 21-Mar-2015.) (Revised by Mario Carneiro, 2-Oct-2015.)
 |-  ( ph  ->  .x.  =  (.g `  G ) )   &    |-  ( ph  ->  .X.  =  (.g `  H ) )   &    |-  ( ph  ->  G  e.  V )   &    |-  ( ph  ->  H  e.  W )   &    |-  ( ph  ->  B  =  ( Base `  G )
 )   &    |-  ( ph  ->  B  =  ( Base `  H )
 )   &    |-  ( ph  ->  B  C_  K )   &    |-  ( ( ph  /\  ( x  e.  K  /\  y  e.  K ) )  ->  ( x ( +g  `  G ) y )  e.  K )   &    |-  ( ( ph  /\  ( x  e.  K  /\  y  e.  K ) )  ->  ( x ( +g  `  G ) y )  =  ( x ( +g  `  H ) y ) )   =>    |-  ( ph  ->  .x.  =  .X.  )
 
Theoremsubmmulgcl 13697 Closure of the group multiple (exponentiation) operation in a submonoid. (Contributed by Mario Carneiro, 13-Jan-2015.)
 |-  .xb  =  (.g `  G )   =>    |-  ( ( S  e.  (SubMnd `  G )  /\  N  e.  NN0  /\  X  e.  S ) 
 ->  ( N  .xb  X )  e.  S )
 
Theoremsubmmulg 13698 A group multiple is the same if evaluated in a submonoid. (Contributed by Mario Carneiro, 15-Jun-2015.)
 |-  .xb  =  (.g `  G )   &    |-  H  =  ( Gs  S )   &    |-  .x.  =  (.g `  H )   =>    |-  ( ( S  e.  (SubMnd `  G )  /\  N  e.  NN0  /\  X  e.  S )  ->  ( N  .xb  X )  =  ( N  .x.  X ) )
 
7.2.3  Subgroups and Quotient groups
 
Syntaxcsubg 13699 Extend class notation with all subgroups of a group.
 class SubGrp
 
Syntaxcnsg 13700 Extend class notation with all normal subgroups of a group.
 class NrmSGrp
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16411
  Copyright terms: Public domain < Previous  Next >