HomeHome Intuitionistic Logic Explorer
Theorem List (p. 137 of 160)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 13601-13700   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremablnnncan 13601 Cancellation law for group subtraction. (nnncan 8306 analog.) (Contributed by NM, 29-Feb-2008.) (Revised by AV, 27-Aug-2021.)
 |-  B  =  ( Base `  G )   &    |-  .-  =  ( -g `  G )   &    |-  ( ph  ->  G  e.  Abel )   &    |-  ( ph  ->  X  e.  B )   &    |-  ( ph  ->  Y  e.  B )   &    |-  ( ph  ->  Z  e.  B )   =>    |-  ( ph  ->  (
 ( X  .-  ( Y  .-  Z ) ) 
 .-  Z )  =  ( X  .-  Y ) )
 
Theoremablnnncan1 13602 Cancellation law for group subtraction. (nnncan1 8307 analog.) (Contributed by NM, 7-Apr-2015.)
 |-  B  =  ( Base `  G )   &    |-  .-  =  ( -g `  G )   &    |-  ( ph  ->  G  e.  Abel )   &    |-  ( ph  ->  X  e.  B )   &    |-  ( ph  ->  Y  e.  B )   &    |-  ( ph  ->  Z  e.  B )   =>    |-  ( ph  ->  (
 ( X  .-  Y )  .-  ( X  .-  Z ) )  =  ( Z  .-  Y ) )
 
Theoremablsubsub23 13603 Swap subtrahend and result of group subtraction. (Contributed by NM, 14-Dec-2007.) (Revised by AV, 7-Oct-2021.)
 |-  V  =  ( Base `  G )   &    |-  .-  =  ( -g `  G )   =>    |-  ( ( G  e.  Abel  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V ) )  ->  ( ( A  .-  B )  =  C  <->  ( A  .-  C )  =  B ) )
 
Theoremghmfghm 13604* The function fulfilling the conditions of ghmgrp 13396 is a group homomorphism. (Contributed by Thierry Arnoux, 26-Jan-2020.)
 |-  X  =  ( Base `  G )   &    |-  Y  =  (
 Base `  H )   &    |-  .+  =  ( +g  `  G )   &    |-  .+^  =  (
 +g  `  H )   &    |-  (
 ( ph  /\  x  e.  X  /\  y  e.  X )  ->  ( F `  ( x  .+  y ) )  =  ( ( F `  x )  .+^  ( F `
  y ) ) )   &    |-  ( ph  ->  F : X -onto-> Y )   &    |-  ( ph  ->  G  e.  Grp )   =>    |-  ( ph  ->  F  e.  ( G  GrpHom  H ) )
 
Theoremghmcmn 13605* The image of a commutative monoid 
G under a group homomorphism  F is a commutative monoid. (Contributed by Thierry Arnoux, 26-Jan-2020.)
 |-  X  =  ( Base `  G )   &    |-  Y  =  (
 Base `  H )   &    |-  .+  =  ( +g  `  G )   &    |-  .+^  =  (
 +g  `  H )   &    |-  (
 ( ph  /\  x  e.  X  /\  y  e.  X )  ->  ( F `  ( x  .+  y ) )  =  ( ( F `  x )  .+^  ( F `
  y ) ) )   &    |-  ( ph  ->  F : X -onto-> Y )   &    |-  ( ph  ->  G  e. CMnd )   =>    |-  ( ph  ->  H  e. CMnd )
 
Theoremghmabl 13606* The image of an abelian group  G under a group homomorphism  F is an abelian group. (Contributed by Mario Carneiro, 12-May-2014.) (Revised by Thierry Arnoux, 26-Jan-2020.)
 |-  X  =  ( Base `  G )   &    |-  Y  =  (
 Base `  H )   &    |-  .+  =  ( +g  `  G )   &    |-  .+^  =  (
 +g  `  H )   &    |-  (
 ( ph  /\  x  e.  X  /\  y  e.  X )  ->  ( F `  ( x  .+  y ) )  =  ( ( F `  x )  .+^  ( F `
  y ) ) )   &    |-  ( ph  ->  F : X -onto-> Y )   &    |-  ( ph  ->  G  e.  Abel
 )   =>    |-  ( ph  ->  H  e.  Abel )
 
Theoreminvghm 13607 The inversion map is a group automorphism if and only if the group is abelian. (In general it is only a group homomorphism into the opposite group, but in an abelian group the opposite group coincides with the group itself.) (Contributed by Mario Carneiro, 4-May-2015.)
 |-  B  =  ( Base `  G )   &    |-  I  =  ( invg `  G )   =>    |-  ( G  e.  Abel  <->  I  e.  ( G  GrpHom  G ) )
 
Theoremeqgabl 13608 Value of the subgroup coset equivalence relation on an abelian group. (Contributed by Mario Carneiro, 14-Jun-2015.)
 |-  X  =  ( Base `  G )   &    |-  .-  =  ( -g `  G )   &    |-  .~  =  ( G ~QG  S )   =>    |-  ( ( G  e.  Abel  /\  S  C_  X )  ->  ( A  .~  B  <->  ( A  e.  X  /\  B  e.  X  /\  ( B  .-  A )  e.  S ) ) )
 
Theoremqusecsub 13609 Two subgroup cosets are equal if and only if the difference of their representatives is a member of the subgroup. (Contributed by AV, 7-Mar-2025.)
 |-  B  =  ( Base `  G )   &    |-  .-  =  ( -g `  G )   &    |-  .~  =  ( G ~QG  S )   =>    |-  ( ( ( G  e.  Abel  /\  S  e.  (SubGrp `  G ) ) 
 /\  ( X  e.  B  /\  Y  e.  B ) )  ->  ( [ X ]  .~  =  [ Y ]  .~  <->  ( Y  .-  X )  e.  S ) )
 
Theoremsubgabl 13610 A subgroup of an abelian group is also abelian. (Contributed by Mario Carneiro, 3-Dec-2014.)
 |-  H  =  ( Gs  S )   =>    |-  ( ( G  e.  Abel  /\  S  e.  (SubGrp `  G ) )  ->  H  e.  Abel
 )
 
Theoremsubcmnd 13611 A submonoid of a commutative monoid is also commutative. (Contributed by Mario Carneiro, 10-Jan-2015.)
 |-  ( ph  ->  H  =  ( Gs  S ) )   &    |-  ( ph  ->  G  e. CMnd )   &    |-  ( ph  ->  H  e.  Mnd )   &    |-  ( ph  ->  S  e.  V )   =>    |-  ( ph  ->  H  e. CMnd )
 
Theoremablnsg 13612 Every subgroup of an abelian group is normal. (Contributed by Mario Carneiro, 14-Jun-2015.)
 |-  ( G  e.  Abel  ->  (NrmSGrp `  G )  =  (SubGrp `  G )
 )
 
Theoremablressid 13613 A commutative group restricted to its base set is a commutative group. It will usually be the original group exactly, of course, but to show that needs additional conditions such as those in strressid 12845. (Contributed by Jim Kingdon, 5-May-2025.)
 |-  B  =  ( Base `  G )   =>    |-  ( G  e.  Abel  ->  ( Gs  B )  e.  Abel )
 
Theoremimasabl 13614* The image structure of an abelian group is an abelian group (imasgrp 13389 analog). (Contributed by AV, 22-Feb-2025.)
 |-  ( ph  ->  U  =  ( F  "s  R )
 )   &    |-  ( ph  ->  V  =  ( Base `  R )
 )   &    |-  ( ph  ->  .+  =  ( +g  `  R )
 )   &    |-  ( ph  ->  F : V -onto-> B )   &    |-  ( ( ph  /\  ( a  e.  V  /\  b  e.  V )  /\  ( p  e.  V  /\  q  e.  V ) )  ->  ( ( ( F `
  a )  =  ( F `  p )  /\  ( F `  b )  =  ( F `  q ) ) 
 ->  ( F `  (
 a  .+  b )
 )  =  ( F `
  ( p  .+  q ) ) ) )   &    |-  ( ph  ->  R  e.  Abel )   &    |-  .0.  =  ( 0g `  R )   =>    |-  ( ph  ->  ( U  e.  Abel  /\  ( F ` 
 .0.  )  =  ( 0g `  U ) ) )
 
7.2.5.2  Group sum operation
 
Theoremgsumfzreidx 13615 Re-index a finite group sum using a bijection. Corresponds to the first equation in [Lang] p. 5 with  M  =  1. (Contributed by AV, 26-Dec-2023.)
 |-  B  =  ( Base `  G )   &    |-  .0.  =  ( 0g `  G )   &    |-  ( ph  ->  G  e. CMnd )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  N  e.  ZZ )   &    |-  ( ph  ->  F : ( M ... N ) --> B )   &    |-  ( ph  ->  H : ( M ... N ) -1-1-onto-> ( M ... N ) )   =>    |-  ( ph  ->  ( G  gsumg 
 F )  =  ( G  gsumg  ( F  o.  H ) ) )
 
Theoremgsumfzsubmcl 13616 Closure of a group sum in a submonoid. (Contributed by Mario Carneiro, 10-Jan-2015.) (Revised by AV, 3-Jun-2019.) (Revised by Jim Kingdon, 30-Aug-2025.)
 |-  ( ph  ->  G  e.  Mnd )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  N  e.  ZZ )   &    |-  ( ph  ->  S  e.  (SubMnd `  G )
 )   &    |-  ( ph  ->  F : ( M ... N ) --> S )   =>    |-  ( ph  ->  ( G  gsumg 
 F )  e.  S )
 
Theoremgsumfzmptfidmadd 13617* The sum of two group sums expressed as mappings with finite domain. (Contributed by AV, 23-Jul-2019.) (Revised by Jim Kingdon, 31-Aug-2025.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  ( ph  ->  G  e. CMnd )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  N  e.  ZZ )   &    |-  ( ( ph  /\  x  e.  ( M
 ... N ) ) 
 ->  C  e.  B )   &    |-  ( ( ph  /\  x  e.  ( M ... N ) )  ->  D  e.  B )   &    |-  F  =  ( x  e.  ( M
 ... N )  |->  C )   &    |-  H  =  ( x  e.  ( M
 ... N )  |->  D )   =>    |-  ( ph  ->  ( G  gsumg  ( x  e.  ( M ... N )  |->  ( C  .+  D ) ) )  =  ( ( G  gsumg 
 F )  .+  ( G  gsumg 
 H ) ) )
 
Theoremgsumfzmptfidmadd2 13618* The sum of two group sums expressed as mappings with finite domain, using a function operation. (Contributed by AV, 23-Jul-2019.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  ( ph  ->  G  e. CMnd )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  N  e.  ZZ )   &    |-  ( ( ph  /\  x  e.  ( M
 ... N ) ) 
 ->  C  e.  B )   &    |-  ( ( ph  /\  x  e.  ( M ... N ) )  ->  D  e.  B )   &    |-  F  =  ( x  e.  ( M
 ... N )  |->  C )   &    |-  H  =  ( x  e.  ( M
 ... N )  |->  D )   =>    |-  ( ph  ->  ( G  gsumg  ( F  oF  .+  H ) )  =  ( ( G  gsumg  F ) 
 .+  ( G  gsumg  H ) ) )
 
Theoremgsumfzconst 13619* Sum of a constant series. (Contributed by Mario Carneiro, 19-Dec-2014.) (Revised by Jim Kingdon, 6-Sep-2025.)
 |-  B  =  ( Base `  G )   &    |-  .x.  =  (.g `  G )   =>    |-  ( ( G  e.  Mnd  /\  N  e.  ( ZZ>= `  M )  /\  X  e.  B )  ->  ( G 
 gsumg  ( k  e.  ( M ... N )  |->  X ) )  =  ( ( ( N  -  M )  +  1
 )  .x.  X )
 )
 
Theoremgsumfzconstf 13620* Sum of a constant series. (Contributed by Thierry Arnoux, 5-Jul-2017.)
 |-  F/_ k X   &    |-  B  =  (
 Base `  G )   &    |-  .x.  =  (.g `  G )   =>    |-  ( ( G  e.  Mnd  /\  N  e.  ( ZZ>= `  M )  /\  X  e.  B )  ->  ( G 
 gsumg  ( k  e.  ( M ... N )  |->  X ) )  =  ( ( ( N  -  M )  +  1
 )  .x.  X )
 )
 
Theoremgsumfzmhm 13621 Apply a monoid homomorphism to a group sum. (Contributed by Mario Carneiro, 15-Dec-2014.) (Revised by AV, 6-Jun-2019.) (Revised by Jim Kingdon, 8-Sep-2025.)
 |-  B  =  ( Base `  G )   &    |-  .0.  =  ( 0g `  G )   &    |-  ( ph  ->  G  e. CMnd )   &    |-  ( ph  ->  H  e.  Mnd )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  N  e.  ZZ )   &    |-  ( ph  ->  K  e.  ( G MndHom  H )
 )   &    |-  ( ph  ->  F : ( M ... N ) --> B )   =>    |-  ( ph  ->  ( H  gsumg  ( K  o.  F ) )  =  ( K `  ( G  gsumg  F ) ) )
 
Theoremgsumfzmhm2 13622* Apply a group homomorphism to a group sum, mapping version with implicit substitution. (Contributed by Mario Carneiro, 5-May-2015.) (Revised by AV, 6-Jun-2019.) (Revised by Jim Kingdon, 9-Sep-2025.)
 |-  B  =  ( Base `  G )   &    |-  .0.  =  ( 0g `  G )   &    |-  ( ph  ->  G  e. CMnd )   &    |-  ( ph  ->  H  e.  Mnd )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  N  e.  ZZ )   &    |-  ( ph  ->  ( x  e.  B  |->  C )  e.  ( G MndHom  H ) )   &    |-  ( ( ph  /\  k  e.  ( M
 ... N ) ) 
 ->  X  e.  B )   &    |-  ( x  =  X  ->  C  =  D )   &    |-  ( x  =  ( G  gsumg  ( k  e.  ( M ... N )  |->  X ) )  ->  C  =  E )   =>    |-  ( ph  ->  ( H  gsumg  ( k  e.  ( M ... N )  |->  D ) )  =  E )
 
Theoremgsumfzsnfd 13623* Group sum of a singleton, deduction form, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Mario Carneiro, 19-Dec-2014.) (Revised by Thierry Arnoux, 28-Mar-2018.) (Revised by AV, 11-Dec-2019.)
 |-  B  =  ( Base `  G )   &    |-  ( ph  ->  G  e.  Mnd )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  C  e.  B )   &    |-  ( ( ph  /\  k  =  M ) 
 ->  A  =  C )   &    |-  F/ k ph   &    |-  F/_ k C   =>    |-  ( ph  ->  ( G  gsumg  ( k  e.  { M }  |->  A ) )  =  C )
 
7.3  Rings
 
7.3.1  Multiplicative Group
 
Syntaxcmgp 13624 Multiplicative group.
 class mulGrp
 
Definitiondf-mgp 13625 Define a structure that puts the multiplication operation of a ring in the addition slot. Note that this will not actually be a group for the average ring, or even for a field, but it will be a monoid, and we get a group if we restrict to the elements that have inverses. This allows us to formalize such notions as "the multiplication operation of a ring is a monoid" or "the multiplicative identity" in terms of the identity of a monoid (df-ur 13664). (Contributed by Mario Carneiro, 21-Dec-2014.)
 |- mulGrp  =  ( w  e.  _V  |->  ( w sSet  <. ( +g  ` 
 ndx ) ,  ( .r `  w ) >. ) )
 
Theoremfnmgp 13626 The multiplicative group operator is a function. (Contributed by Mario Carneiro, 11-Mar-2015.)
 |- mulGrp  Fn  _V
 
Theoremmgpvalg 13627 Value of the multiplication group operation. (Contributed by Mario Carneiro, 21-Dec-2014.)
 |-  M  =  (mulGrp `  R )   &    |- 
 .x.  =  ( .r `  R )   =>    |-  ( R  e.  V  ->  M  =  ( R sSet  <. ( +g  `  ndx ) ,  .x.  >. ) )
 
Theoremmgpplusgg 13628 Value of the group operation of the multiplication group. (Contributed by Mario Carneiro, 21-Dec-2014.)
 |-  M  =  (mulGrp `  R )   &    |- 
 .x.  =  ( .r `  R )   =>    |-  ( R  e.  V  ->  .x.  =  ( +g  `  M ) )
 
Theoremmgpex 13629 Existence of the multiplication group. If  R is known to be a semiring, see srgmgp 13672. (Contributed by Jim Kingdon, 10-Jan-2025.)
 |-  M  =  (mulGrp `  R )   =>    |-  ( R  e.  V  ->  M  e.  _V )
 
Theoremmgpbasg 13630 Base set of the multiplication group. (Contributed by Mario Carneiro, 21-Dec-2014.) (Revised by Mario Carneiro, 5-Oct-2015.)
 |-  M  =  (mulGrp `  R )   &    |-  B  =  ( Base `  R )   =>    |-  ( R  e.  V  ->  B  =  ( Base `  M ) )
 
Theoremmgpscag 13631 The multiplication monoid has the same (if any) scalars as the original ring. (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by Mario Carneiro, 5-May-2015.)
 |-  M  =  (mulGrp `  R )   &    |-  S  =  (Scalar `  R )   =>    |-  ( R  e.  V  ->  S  =  (Scalar `  M ) )
 
Theoremmgptsetg 13632 Topology component of the multiplication group. (Contributed by Mario Carneiro, 5-Oct-2015.)
 |-  M  =  (mulGrp `  R )   =>    |-  ( R  e.  V  ->  (TopSet `  R )  =  (TopSet `  M )
 )
 
Theoremmgptopng 13633 Topology of the multiplication group. (Contributed by Mario Carneiro, 5-Oct-2015.)
 |-  M  =  (mulGrp `  R )   &    |-  J  =  ( TopOpen `  R )   =>    |-  ( R  e.  V  ->  J  =  ( TopOpen `  M ) )
 
Theoremmgpdsg 13634 Distance function of the multiplication group. (Contributed by Mario Carneiro, 5-Oct-2015.)
 |-  M  =  (mulGrp `  R )   &    |-  B  =  ( dist `  R )   =>    |-  ( R  e.  V  ->  B  =  ( dist `  M ) )
 
Theoremmgpress 13635 Subgroup commutes with the multiplicative group operator. (Contributed by Mario Carneiro, 10-Jan-2015.) (Proof shortened by AV, 18-Oct-2024.)
 |-  S  =  ( Rs  A )   &    |-  M  =  (mulGrp `  R )   =>    |-  ( ( R  e.  V  /\  A  e.  W )  ->  ( Ms  A )  =  (mulGrp `  S ) )
 
7.3.2  Non-unital rings ("rngs")

According to Wikipedia, "... in abstract algebra, a rng (or non-unital ring or pseudo-ring) is an algebraic structure satisfying the same properties as a [unital] ring, without assuming the existence of a multiplicative identity. The term "rng" (pronounced rung) is meant to suggest that it is a "ring" without "i", i.e. without the requirement for an "identity element"." (see https://en.wikipedia.org/wiki/Rng_(algebra), 28-Mar-2025).

 
Syntaxcrng 13636 Extend class notation with class of all non-unital rings.
 class Rng
 
Definitiondf-rng 13637* Define the class of all non-unital rings. A non-unital ring (or rng, or pseudoring) is a set equipped with two everywhere-defined internal operations, whose first one is an additive abelian group operation and the second one is a multiplicative semigroup operation, and where the addition is left- and right-distributive for the multiplication. Definition of a pseudo-ring in section I.8.1 of [BourbakiAlg1] p. 93 or the definition of a ring in part Preliminaries of [Roman] p. 18. As almost always in mathematics, "non-unital" means "not necessarily unital". Therefore, by talking about a ring (in general) or a non-unital ring the "unital" case is always included. In contrast to a unital ring, the commutativity of addition must be postulated and cannot be proven from the other conditions. (Contributed by AV, 6-Jan-2020.)
 |- Rng 
 =  { f  e. 
 Abel  |  ( (mulGrp `  f )  e. Smgrp  /\  [. ( Base `  f )  /  b ]. [. ( +g  `  f )  /  p ].
 [. ( .r `  f )  /  t ]. A. x  e.  b  A. y  e.  b  A. z  e.  b  ( ( x t ( y p z ) )  =  ( ( x t y ) p ( x t z ) ) 
 /\  ( ( x p y ) t z )  =  ( ( x t z ) p ( y t z ) ) ) ) }
 
Theoremisrng 13638* The predicate "is a non-unital ring." (Contributed by AV, 6-Jan-2020.)
 |-  B  =  ( Base `  R )   &    |-  G  =  (mulGrp `  R )   &    |-  .+  =  ( +g  `  R )   &    |-  .x.  =  ( .r `  R )   =>    |-  ( R  e. Rng  <->  ( R  e.  Abel  /\  G  e. Smgrp  /\  A. x  e.  B  A. y  e.  B  A. z  e.  B  ( ( x 
 .x.  ( y  .+  z ) )  =  ( ( x  .x.  y )  .+  ( x 
 .x.  z ) ) 
 /\  ( ( x 
 .+  y )  .x.  z )  =  (
 ( x  .x.  z
 )  .+  ( y  .x.  z ) ) ) ) )
 
Theoremrngabl 13639 A non-unital ring is an (additive) abelian group. (Contributed by AV, 17-Feb-2020.)
 |-  ( R  e. Rng  ->  R  e.  Abel )
 
Theoremrngmgp 13640 A non-unital ring is a semigroup under multiplication. (Contributed by AV, 17-Feb-2020.)
 |-  G  =  (mulGrp `  R )   =>    |-  ( R  e. Rng  ->  G  e. Smgrp )
 
Theoremrngmgpf 13641 Restricted functionality of the multiplicative group on non-unital rings (mgpf 13715 analog). (Contributed by AV, 22-Feb-2025.)
 |-  (mulGrp  |` Rng ) :Rng -->Smgrp
 
Theoremrnggrp 13642 A non-unital ring is a (additive) group. (Contributed by AV, 16-Feb-2025.)
 |-  ( R  e. Rng  ->  R  e.  Grp )
 
Theoremrngass 13643 Associative law for the multiplication operation of a non-unital ring. (Contributed by NM, 27-Aug-2011.) (Revised by AV, 13-Feb-2025.)
 |-  B  =  ( Base `  R )   &    |-  .x.  =  ( .r `  R )   =>    |-  ( ( R  e. Rng  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B ) )  ->  ( ( X  .x.  Y )  .x.  Z )  =  ( X  .x.  ( Y  .x.  Z ) ) )
 
Theoremrngdi 13644 Distributive law for the multiplication operation of a non-unital ring (left-distributivity). (Contributed by AV, 14-Feb-2025.)
 |-  B  =  ( Base `  R )   &    |-  .+  =  ( +g  `  R )   &    |-  .x.  =  ( .r `  R )   =>    |-  ( ( R  e. Rng  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )
 )  ->  ( X  .x.  ( Y  .+  Z ) )  =  (
 ( X  .x.  Y )  .+  ( X  .x.  Z ) ) )
 
Theoremrngdir 13645 Distributive law for the multiplication operation of a non-unital ring (right-distributivity). (Contributed by AV, 17-Apr-2020.)
 |-  B  =  ( Base `  R )   &    |-  .+  =  ( +g  `  R )   &    |-  .x.  =  ( .r `  R )   =>    |-  ( ( R  e. Rng  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )
 )  ->  ( ( X  .+  Y )  .x.  Z )  =  ( ( X  .x.  Z )  .+  ( Y  .x.  Z ) ) )
 
Theoremrngacl 13646 Closure of the addition operation of a non-unital ring. (Contributed by AV, 16-Feb-2025.)
 |-  B  =  ( Base `  R )   &    |-  .+  =  ( +g  `  R )   =>    |-  ( ( R  e. Rng  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .+  Y )  e.  B )
 
Theoremrng0cl 13647 The zero element of a non-unital ring belongs to its base set. (Contributed by AV, 16-Feb-2025.)
 |-  B  =  ( Base `  R )   &    |-  .0.  =  ( 0g `  R )   =>    |-  ( R  e. Rng  ->  .0.  e.  B )
 
Theoremrngcl 13648 Closure of the multiplication operation of a non-unital ring. (Contributed by AV, 17-Apr-2020.)
 |-  B  =  ( Base `  R )   &    |-  .x.  =  ( .r `  R )   =>    |-  ( ( R  e. Rng  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .x.  Y )  e.  B )
 
Theoremrnglz 13649 The zero of a non-unital ring is a left-absorbing element. (Contributed by FL, 31-Aug-2009.) Generalization of ringlz 13747. (Revised by AV, 17-Apr-2020.)
 |-  B  =  ( Base `  R )   &    |-  .x.  =  ( .r `  R )   &    |-  .0.  =  ( 0g `  R )   =>    |-  ( ( R  e. Rng  /\  X  e.  B ) 
 ->  (  .0.  .x.  X )  =  .0.  )
 
Theoremrngrz 13650 The zero of a non-unital ring is a right-absorbing element. (Contributed by FL, 31-Aug-2009.) Generalization of ringrz 13748. (Revised by AV, 16-Feb-2025.)
 |-  B  =  ( Base `  R )   &    |-  .x.  =  ( .r `  R )   &    |-  .0.  =  ( 0g `  R )   =>    |-  ( ( R  e. Rng  /\  X  e.  B ) 
 ->  ( X  .x.  .0.  )  =  .0.  )
 
Theoremrngmneg1 13651 Negation of a product in a non-unital ring (mulneg1 8466 analog). In contrast to ringmneg1 13757, the proof does not (and cannot) make use of the existence of a ring unity. (Contributed by AV, 17-Feb-2025.)
 |-  B  =  ( Base `  R )   &    |-  .x.  =  ( .r `  R )   &    |-  N  =  ( invg `  R )   &    |-  ( ph  ->  R  e. Rng )   &    |-  ( ph  ->  X  e.  B )   &    |-  ( ph  ->  Y  e.  B )   =>    |-  ( ph  ->  (
 ( N `  X )  .x.  Y )  =  ( N `  ( X  .x.  Y ) ) )
 
Theoremrngmneg2 13652 Negation of a product in a non-unital ring (mulneg2 8467 analog). In contrast to ringmneg2 13758, the proof does not (and cannot) make use of the existence of a ring unity. (Contributed by AV, 17-Feb-2025.)
 |-  B  =  ( Base `  R )   &    |-  .x.  =  ( .r `  R )   &    |-  N  =  ( invg `  R )   &    |-  ( ph  ->  R  e. Rng )   &    |-  ( ph  ->  X  e.  B )   &    |-  ( ph  ->  Y  e.  B )   =>    |-  ( ph  ->  ( X  .x.  ( N `  Y ) )  =  ( N `  ( X  .x.  Y ) ) )
 
Theoremrngm2neg 13653 Double negation of a product in a non-unital ring (mul2neg 8469 analog). (Contributed by Mario Carneiro, 4-Dec-2014.) Generalization of ringm2neg 13759. (Revised by AV, 17-Feb-2025.)
 |-  B  =  ( Base `  R )   &    |-  .x.  =  ( .r `  R )   &    |-  N  =  ( invg `  R )   &    |-  ( ph  ->  R  e. Rng )   &    |-  ( ph  ->  X  e.  B )   &    |-  ( ph  ->  Y  e.  B )   =>    |-  ( ph  ->  (
 ( N `  X )  .x.  ( N `  Y ) )  =  ( X  .x.  Y ) )
 
Theoremrngansg 13654 Every additive subgroup of a non-unital ring is normal. (Contributed by AV, 25-Feb-2025.)
 |-  ( R  e. Rng  ->  (NrmSGrp `  R )  =  (SubGrp `  R ) )
 
Theoremrngsubdi 13655 Ring multiplication distributes over subtraction. (subdi 8456 analog.) (Contributed by Jeff Madsen, 19-Jun-2010.) (Revised by Mario Carneiro, 2-Jul-2014.) Generalization of ringsubdi 13760. (Revised by AV, 23-Feb-2025.)
 |-  B  =  ( Base `  R )   &    |-  .x.  =  ( .r `  R )   &    |-  .-  =  ( -g `  R )   &    |-  ( ph  ->  R  e. Rng )   &    |-  ( ph  ->  X  e.  B )   &    |-  ( ph  ->  Y  e.  B )   &    |-  ( ph  ->  Z  e.  B )   =>    |-  ( ph  ->  ( X  .x.  ( Y  .-  Z ) )  =  ( ( X  .x.  Y )  .-  ( X  .x.  Z ) ) )
 
Theoremrngsubdir 13656 Ring multiplication distributes over subtraction. (subdir 8457 analog.) (Contributed by Jeff Madsen, 19-Jun-2010.) (Revised by Mario Carneiro, 2-Jul-2014.) Generalization of ringsubdir 13761. (Revised by AV, 23-Feb-2025.)
 |-  B  =  ( Base `  R )   &    |-  .x.  =  ( .r `  R )   &    |-  .-  =  ( -g `  R )   &    |-  ( ph  ->  R  e. Rng )   &    |-  ( ph  ->  X  e.  B )   &    |-  ( ph  ->  Y  e.  B )   &    |-  ( ph  ->  Z  e.  B )   =>    |-  ( ph  ->  (
 ( X  .-  Y )  .x.  Z )  =  ( ( X  .x.  Z )  .-  ( Y  .x.  Z ) ) )
 
Theoremisrngd 13657* Properties that determine a non-unital ring. (Contributed by AV, 14-Feb-2025.)
 |-  ( ph  ->  B  =  ( Base `  R )
 )   &    |-  ( ph  ->  .+  =  ( +g  `  R )
 )   &    |-  ( ph  ->  .x.  =  ( .r `  R ) )   &    |-  ( ph  ->  R  e.  Abel )   &    |-  ( ( ph  /\  x  e.  B  /\  y  e.  B )  ->  ( x  .x.  y
 )  e.  B )   &    |-  ( ( ph  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B )
 )  ->  ( ( x  .x.  y )  .x.  z )  =  ( x  .x.  ( y  .x.  z ) ) )   &    |-  ( ( ph  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B )
 )  ->  ( x  .x.  ( y  .+  z
 ) )  =  ( ( x  .x.  y
 )  .+  ( x  .x.  z ) ) )   &    |-  ( ( ph  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B )
 )  ->  ( ( x  .+  y )  .x.  z )  =  (
 ( x  .x.  z
 )  .+  ( y  .x.  z ) ) )   =>    |-  ( ph  ->  R  e. Rng )
 
Theoremrngressid 13658 A non-unital ring restricted to its base set is a non-unital ring. It will usually be the original non-unital ring exactly, of course, but to show that needs additional conditions such as those in strressid 12845. (Contributed by Jim Kingdon, 5-May-2025.)
 |-  B  =  ( Base `  G )   =>    |-  ( G  e. Rng  ->  ( Gs  B )  e. Rng )
 
Theoremrngpropd 13659* If two structures have the same base set, and the values of their group (addition) and ring (multiplication) operations are equal for all pairs of elements of the base set, one is a non-unital ring iff the other one is. (Contributed by AV, 15-Feb-2025.)
 |-  ( ph  ->  B  =  ( Base `  K )
 )   &    |-  ( ph  ->  B  =  ( Base `  L )
 )   &    |-  ( ( ph  /\  ( x  e.  B  /\  y  e.  B )
 )  ->  ( x ( +g  `  K )
 y )  =  ( x ( +g  `  L ) y ) )   &    |-  ( ( ph  /\  ( x  e.  B  /\  y  e.  B )
 )  ->  ( x ( .r `  K ) y )  =  ( x ( .r `  L ) y ) )   =>    |-  ( ph  ->  ( K  e. Rng  <->  L  e. Rng ) )
 
Theoremimasrng 13660* The image structure of a non-unital ring is a non-unital ring (imasring 13768 analog). (Contributed by AV, 22-Feb-2025.)
 |-  ( ph  ->  U  =  ( F  "s  R )
 )   &    |-  ( ph  ->  V  =  ( Base `  R )
 )   &    |- 
 .+  =  ( +g  `  R )   &    |-  .x.  =  ( .r `  R )   &    |-  ( ph  ->  F : V -onto-> B )   &    |-  ( ( ph  /\  ( a  e.  V  /\  b  e.  V )  /\  ( p  e.  V  /\  q  e.  V ) )  ->  ( ( ( F `
  a )  =  ( F `  p )  /\  ( F `  b )  =  ( F `  q ) ) 
 ->  ( F `  (
 a  .+  b )
 )  =  ( F `
  ( p  .+  q ) ) ) )   &    |-  ( ( ph  /\  ( a  e.  V  /\  b  e.  V )  /\  ( p  e.  V  /\  q  e.  V ) )  ->  ( ( ( F `
  a )  =  ( F `  p )  /\  ( F `  b )  =  ( F `  q ) ) 
 ->  ( F `  (
 a  .x.  b )
 )  =  ( F `
  ( p  .x.  q ) ) ) )   &    |-  ( ph  ->  R  e. Rng )   =>    |-  ( ph  ->  U  e. Rng )
 
Theoremimasrngf1 13661 The image of a non-unital ring under an injection is a non-unital ring. (Contributed by AV, 22-Feb-2025.)
 |-  U  =  ( F 
 "s 
 R )   &    |-  V  =  (
 Base `  R )   =>    |-  ( ( F : V -1-1-> B  /\  R  e. Rng )  ->  U  e. Rng )
 
Theoremqusrng 13662* The quotient structure of a non-unital ring is a non-unital ring (qusring2 13770 analog). (Contributed by AV, 23-Feb-2025.)
 |-  ( ph  ->  U  =  ( R  /.s  .~  ) )   &    |-  ( ph  ->  V  =  ( Base `  R )
 )   &    |- 
 .+  =  ( +g  `  R )   &    |-  .x.  =  ( .r `  R )   &    |-  ( ph  ->  .~  Er  V )   &    |-  ( ph  ->  (
 ( a  .~  p  /\  b  .~  q ) 
 ->  ( a  .+  b
 )  .~  ( p  .+  q ) ) )   &    |-  ( ph  ->  ( (
 a  .~  p  /\  b  .~  q )  ->  ( a  .x.  b ) 
 .~  ( p  .x.  q ) ) )   &    |-  ( ph  ->  R  e. Rng )   =>    |-  ( ph  ->  U  e. Rng )
 
7.3.3  Ring unity (multiplicative identity)

In Wikipedia "Identity element", see https://en.wikipedia.org/wiki/Identity_element (18-Jan-2025): "... an identity with respect to multiplication is called a multiplicative identity (often denoted as 1). ... The distinction between additive and multiplicative identity is used most often for sets that support both binary operations, such as rings, integral domains, and fields. The multiplicative identity is often called unity in the latter context (a ring with unity). This should not be confused with a unit in ring theory, which is any element having a multiplicative inverse. By its own definition, unity itself is necessarily a unit."

Calling the multiplicative identity of a ring a unity is taken from the definition of a ring with unity in section 17.3 of [BeauregardFraleigh] p. 135, "A ring ( R , + , . ) is a ring with unity if R is not the zero ring and ( R , . ) is a monoid. In this case, the identity element of ( R , . ) is denoted by 1 and is called the unity of R." This definition of a "ring with unity" corresponds to our definition of a unital ring (see df-ring 13702).

Some authors call the multiplicative identity "unit" or "unit element" (for example in section I, 2.2 of [BourbakiAlg1] p. 14, definition in section 1.3 of [Hall] p. 4, or in section I, 1 of [Lang] p. 3), whereas other authors use the term "unit" for an element having a multiplicative inverse (for example in section 17.3 of [BeauregardFraleigh] p. 135, in definition in [Roman] p. 26, or even in section II, 1 of [Lang] p. 84). Sometimes, the multiplicative identity is simply called "one" (see, for example, chapter 8 in [Schechter] p. 180).

To avoid this ambiguity of the term "unit", also mentioned in Wikipedia, we call the multiplicative identity of a structure with a multiplication (usually a ring) a "ring unity", or straightly "multiplicative identity".

The term "unit" will be used for an element having a multiplicative inverse (see https://us.metamath.org/mpeuni/df-unit.html 13702 in set.mm), and we have "the ring unity is a unit", see https://us.metamath.org/mpeuni/1unit.html 13702.

 
Syntaxcur 13663 Extend class notation with ring unity.
 class  1r
 
Definitiondf-ur 13664 Define the multiplicative identity, i.e., the monoid identity (df-0g 13032) of the multiplicative monoid (df-mgp 13625) of a ring-like structure. This multiplicative identity is also called "ring unity" or "unity element".

This definition works by transferring the multiplicative operation from the  .r slot to the  +g slot and then looking at the element which is then the  0g element, that is an identity with respect to the operation which started out in the  .r slot.

See also dfur2g 13666, which derives the "traditional" definition as the unique element of a ring which is left- and right-neutral under multiplication. (Contributed by NM, 27-Aug-2011.) (Revised by Mario Carneiro, 27-Dec-2014.)

 |- 
 1r  =  ( 0g 
 o. mulGrp )
 
Theoremringidvalg 13665 The value of the unity element of a ring. (Contributed by NM, 27-Aug-2011.) (Revised by Mario Carneiro, 27-Dec-2014.)
 |-  G  =  (mulGrp `  R )   &    |- 
 .1.  =  ( 1r `  R )   =>    |-  ( R  e.  V  ->  .1.  =  ( 0g
 `  G ) )
 
Theoremdfur2g 13666* The multiplicative identity is the unique element of the ring that is left- and right-neutral on all elements under multiplication. (Contributed by Mario Carneiro, 10-Jan-2015.)
 |-  B  =  ( Base `  R )   &    |-  .x.  =  ( .r `  R )   &    |-  .1.  =  ( 1r `  R )   =>    |-  ( R  e.  V  ->  .1.  =  ( iota
 e ( e  e.  B  /\  A. x  e.  B  ( ( e 
 .x.  x )  =  x  /\  ( x 
 .x.  e )  =  x ) ) ) )
 
7.3.4  Semirings
 
Syntaxcsrg 13667 Extend class notation with the class of all semirings.
 class SRing
 
Definitiondf-srg 13668* Define class of all semirings. A semiring is a set equipped with two everywhere-defined internal operations, whose first one is an additive commutative monoid structure and the second one is a multiplicative monoid structure, and where multiplication is (left- and right-) distributive over addition. Like with rings, the additive identity is an absorbing element of the multiplicative law, but in the case of semirings, this has to be part of the definition, as it cannot be deduced from distributivity alone. Definition of [Golan] p. 1. Note that our semirings are unital. Such semirings are sometimes called "rigs", being "rings without negatives". (Contributed by Thierry Arnoux, 21-Mar-2018.)
 |- SRing  =  { f  e. CMnd  |  ( (mulGrp `  f )  e.  Mnd  /\  [. ( Base `  f )  /  r ]. [. ( +g  `  f
 )  /  p ]. [. ( .r `  f )  /  t ]. [. ( 0g
 `  f )  /  n ]. A. x  e.  r  ( A. y  e.  r  A. z  e.  r  ( ( x t ( y p z ) )  =  ( ( x t y ) p ( x t z ) )  /\  ( ( x p y ) t z )  =  ( ( x t z ) p ( y t z ) ) )  /\  (
 ( n t x )  =  n  /\  ( x t n )  =  n ) ) ) }
 
Theoremissrg 13669* The predicate "is a semiring". (Contributed by Thierry Arnoux, 21-Mar-2018.)
 |-  B  =  ( Base `  R )   &    |-  G  =  (mulGrp `  R )   &    |-  .+  =  ( +g  `  R )   &    |-  .x.  =  ( .r `  R )   &    |-  .0.  =  ( 0g `  R )   =>    |-  ( R  e. SRing  <->  ( R  e. CMnd  /\  G  e.  Mnd  /\  A. x  e.  B  (
 A. y  e.  B  A. z  e.  B  ( ( x  .x.  (
 y  .+  z )
 )  =  ( ( x  .x.  y )  .+  ( x  .x.  z
 ) )  /\  (
 ( x  .+  y
 )  .x.  z )  =  ( ( x  .x.  z )  .+  ( y 
 .x.  z ) ) )  /\  ( (  .0.  .x.  x )  =  .0.  /\  ( x  .x.  .0.  )  =  .0.  ) ) ) )
 
Theoremsrgcmn 13670 A semiring is a commutative monoid. (Contributed by Thierry Arnoux, 21-Mar-2018.)
 |-  ( R  e. SRing  ->  R  e. CMnd )
 
Theoremsrgmnd 13671 A semiring is a monoid. (Contributed by Thierry Arnoux, 21-Mar-2018.)
 |-  ( R  e. SRing  ->  R  e.  Mnd )
 
Theoremsrgmgp 13672 A semiring is a monoid under multiplication. (Contributed by Thierry Arnoux, 21-Mar-2018.)
 |-  G  =  (mulGrp `  R )   =>    |-  ( R  e. SRing  ->  G  e.  Mnd )
 
Theoremsrgdilem 13673 Lemma for srgdi 13678 and srgdir 13679. (Contributed by NM, 26-Aug-2011.) (Revised by Mario Carneiro, 6-Jan-2015.) (Revised by Thierry Arnoux, 1-Apr-2018.)
 |-  B  =  ( Base `  R )   &    |-  .+  =  ( +g  `  R )   &    |-  .x.  =  ( .r `  R )   =>    |-  ( ( R  e. SRing  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )
 )  ->  ( ( X  .x.  ( Y  .+  Z ) )  =  ( ( X  .x.  Y )  .+  ( X 
 .x.  Z ) )  /\  ( ( X  .+  Y )  .x.  Z )  =  ( ( X 
 .x.  Z )  .+  ( Y  .x.  Z ) ) ) )
 
Theoremsrgcl 13674 Closure of the multiplication operation of a semiring. (Contributed by NM, 26-Aug-2011.) (Revised by Mario Carneiro, 6-Jan-2015.) (Revised by Thierry Arnoux, 1-Apr-2018.)
 |-  B  =  ( Base `  R )   &    |-  .x.  =  ( .r `  R )   =>    |-  ( ( R  e. SRing  /\  X  e.  B  /\  Y  e.  B ) 
 ->  ( X  .x.  Y )  e.  B )
 
Theoremsrgass 13675 Associative law for the multiplication operation of a semiring. (Contributed by NM, 27-Aug-2011.) (Revised by Mario Carneiro, 6-Jan-2015.) (Revised by Thierry Arnoux, 1-Apr-2018.)
 |-  B  =  ( Base `  R )   &    |-  .x.  =  ( .r `  R )   =>    |-  ( ( R  e. SRing  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B ) )  ->  ( ( X  .x.  Y )  .x.  Z )  =  ( X 
 .x.  ( Y  .x.  Z ) ) )
 
Theoremsrgideu 13676* The unity element of a semiring is unique. (Contributed by NM, 27-Aug-2011.) (Revised by Mario Carneiro, 6-Jan-2015.) (Revised by Thierry Arnoux, 1-Apr-2018.)
 |-  B  =  ( Base `  R )   &    |-  .x.  =  ( .r `  R )   =>    |-  ( R  e. SRing  ->  E! u  e.  B  A. x  e.  B  ( ( u  .x.  x )  =  x  /\  ( x  .x.  u )  =  x ) )
 
Theoremsrgfcl 13677 Functionality of the multiplication operation of a ring. (Contributed by Steve Rodriguez, 9-Sep-2007.) (Revised by AV, 24-Aug-2021.)
 |-  B  =  ( Base `  R )   &    |-  .x.  =  ( .r `  R )   =>    |-  ( ( R  e. SRing  /\  .x.  Fn  ( B  X.  B ) ) 
 ->  .x.  : ( B  X.  B ) --> B )
 
Theoremsrgdi 13678 Distributive law for the multiplication operation of a semiring. (Contributed by Steve Rodriguez, 9-Sep-2007.) (Revised by Thierry Arnoux, 1-Apr-2018.)
 |-  B  =  ( Base `  R )   &    |-  .+  =  ( +g  `  R )   &    |-  .x.  =  ( .r `  R )   =>    |-  ( ( R  e. SRing  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )
 )  ->  ( X  .x.  ( Y  .+  Z ) )  =  (
 ( X  .x.  Y )  .+  ( X  .x.  Z ) ) )
 
Theoremsrgdir 13679 Distributive law for the multiplication operation of a semiring. (Contributed by Steve Rodriguez, 9-Sep-2007.) (Revised by Thierry Arnoux, 1-Apr-2018.)
 |-  B  =  ( Base `  R )   &    |-  .+  =  ( +g  `  R )   &    |-  .x.  =  ( .r `  R )   =>    |-  ( ( R  e. SRing  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )
 )  ->  ( ( X  .+  Y )  .x.  Z )  =  ( ( X  .x.  Z )  .+  ( Y  .x.  Z ) ) )
 
Theoremsrgidcl 13680 The unity element of a semiring belongs to the base set of the semiring. (Contributed by NM, 27-Aug-2011.) (Revised by Mario Carneiro, 27-Dec-2014.) (Revised by Thierry Arnoux, 1-Apr-2018.)
 |-  B  =  ( Base `  R )   &    |-  .1.  =  ( 1r `  R )   =>    |-  ( R  e. SRing  ->  .1.  e.  B )
 
Theoremsrg0cl 13681 The zero element of a semiring belongs to its base set. (Contributed by Mario Carneiro, 12-Jan-2014.) (Revised by Thierry Arnoux, 1-Apr-2018.)
 |-  B  =  ( Base `  R )   &    |-  .0.  =  ( 0g `  R )   =>    |-  ( R  e. SRing  ->  .0.  e.  B )
 
Theoremsrgidmlem 13682 Lemma for srglidm 13683 and srgridm 13684. (Contributed by NM, 15-Sep-2011.) (Revised by Mario Carneiro, 27-Dec-2014.) (Revised by Thierry Arnoux, 1-Apr-2018.)
 |-  B  =  ( Base `  R )   &    |-  .x.  =  ( .r `  R )   &    |-  .1.  =  ( 1r `  R )   =>    |-  ( ( R  e. SRing  /\  X  e.  B ) 
 ->  ( (  .1.  .x.  X )  =  X  /\  ( X  .x.  .1.  )  =  X ) )
 
Theoremsrglidm 13683 The unity element of a semiring is a left multiplicative identity. (Contributed by NM, 15-Sep-2011.) (Revised by Thierry Arnoux, 1-Apr-2018.)
 |-  B  =  ( Base `  R )   &    |-  .x.  =  ( .r `  R )   &    |-  .1.  =  ( 1r `  R )   =>    |-  ( ( R  e. SRing  /\  X  e.  B ) 
 ->  (  .1.  .x.  X )  =  X )
 
Theoremsrgridm 13684 The unity element of a semiring is a right multiplicative identity. (Contributed by NM, 15-Sep-2011.) (Revised by Thierry Arnoux, 1-Apr-2018.)
 |-  B  =  ( Base `  R )   &    |-  .x.  =  ( .r `  R )   &    |-  .1.  =  ( 1r `  R )   =>    |-  ( ( R  e. SRing  /\  X  e.  B ) 
 ->  ( X  .x.  .1.  )  =  X )
 
Theoremissrgid 13685* Properties showing that an element 
I is the unity element of a semiring. (Contributed by NM, 7-Aug-2013.) (Revised by Thierry Arnoux, 1-Apr-2018.)
 |-  B  =  ( Base `  R )   &    |-  .x.  =  ( .r `  R )   &    |-  .1.  =  ( 1r `  R )   =>    |-  ( R  e. SRing  ->  ( ( I  e.  B  /\  A. x  e.  B  ( ( I  .x.  x )  =  x  /\  ( x  .x.  I
 )  =  x ) )  <->  .1.  =  I ) )
 
Theoremsrgacl 13686 Closure of the addition operation of a semiring. (Contributed by Mario Carneiro, 14-Jan-2014.) (Revised by Thierry Arnoux, 1-Apr-2018.)
 |-  B  =  ( Base `  R )   &    |-  .+  =  ( +g  `  R )   =>    |-  ( ( R  e. SRing  /\  X  e.  B  /\  Y  e.  B ) 
 ->  ( X  .+  Y )  e.  B )
 
Theoremsrgcom 13687 Commutativity of the additive group of a semiring. (Contributed by Thierry Arnoux, 1-Apr-2018.)
 |-  B  =  ( Base `  R )   &    |-  .+  =  ( +g  `  R )   =>    |-  ( ( R  e. SRing  /\  X  e.  B  /\  Y  e.  B ) 
 ->  ( X  .+  Y )  =  ( Y  .+  X ) )
 
Theoremsrgrz 13688 The zero of a semiring is a right-absorbing element. (Contributed by Thierry Arnoux, 1-Apr-2018.)
 |-  B  =  ( Base `  R )   &    |-  .x.  =  ( .r `  R )   &    |-  .0.  =  ( 0g `  R )   =>    |-  ( ( R  e. SRing  /\  X  e.  B ) 
 ->  ( X  .x.  .0.  )  =  .0.  )
 
Theoremsrglz 13689 The zero of a semiring is a left-absorbing element. (Contributed by AV, 23-Aug-2019.)
 |-  B  =  ( Base `  R )   &    |-  .x.  =  ( .r `  R )   &    |-  .0.  =  ( 0g `  R )   =>    |-  ( ( R  e. SRing  /\  X  e.  B ) 
 ->  (  .0.  .x.  X )  =  .0.  )
 
Theoremsrgisid 13690* In a semiring, the only left-absorbing element is the additive identity. Remark in [Golan] p. 1. (Contributed by Thierry Arnoux, 1-May-2018.)
 |-  B  =  ( Base `  R )   &    |-  .x.  =  ( .r `  R )   &    |-  .0.  =  ( 0g `  R )   &    |-  ( ph  ->  R  e. SRing )   &    |-  ( ph  ->  Z  e.  B )   &    |-  (
 ( ph  /\  x  e.  B )  ->  ( Z  .x.  x )  =  Z )   =>    |-  ( ph  ->  Z  =  .0.  )
 
Theoremsrg1zr 13691 The only semiring with a base set consisting of one element is the zero ring (at least if its operations are internal binary operations). (Contributed by FL, 13-Feb-2010.) (Revised by AV, 25-Jan-2020.)
 |-  B  =  ( Base `  R )   &    |-  .+  =  ( +g  `  R )   &    |-  .*  =  ( .r `  R )   =>    |-  ( ( ( R  e. SRing  /\  .+  Fn  ( B  X.  B )  /\  .* 
 Fn  ( B  X.  B ) )  /\  Z  e.  B )  ->  ( B  =  { Z }  <->  (  .+  =  { <.
 <. Z ,  Z >. ,  Z >. }  /\  .*  =  { <. <. Z ,  Z >. ,  Z >. } )
 ) )
 
Theoremsrgen1zr 13692 The only semiring with one element is the zero ring (at least if its operations are internal binary operations). (Contributed by FL, 14-Feb-2010.) (Revised by AV, 25-Jan-2020.)
 |-  B  =  ( Base `  R )   &    |-  .+  =  ( +g  `  R )   &    |-  .*  =  ( .r `  R )   &    |-  Z  =  ( 0g
 `  R )   =>    |-  ( ( R  e. SRing  /\  .+  Fn  ( B  X.  B )  /\  .* 
 Fn  ( B  X.  B ) )  ->  ( B  ~~  1o  <->  (  .+  =  { <.
 <. Z ,  Z >. ,  Z >. }  /\  .*  =  { <. <. Z ,  Z >. ,  Z >. } )
 ) )
 
Theoremsrgmulgass 13693 An associative property between group multiple and ring multiplication for semirings. (Contributed by AV, 23-Aug-2019.)
 |-  B  =  ( Base `  R )   &    |-  .x.  =  (.g `  R )   &    |-  .X.  =  ( .r `  R )   =>    |-  ( ( R  e. SRing  /\  ( N  e.  NN0  /\  X  e.  B  /\  Y  e.  B )
 )  ->  ( ( N  .x.  X )  .X.  Y )  =  ( N 
 .x.  ( X  .X.  Y ) ) )
 
Theoremsrgpcomp 13694 If two elements of a semiring commute, they also commute if one of the elements is raised to a higher power. (Contributed by AV, 23-Aug-2019.)
 |-  S  =  ( Base `  R )   &    |-  .X.  =  ( .r `  R )   &    |-  G  =  (mulGrp `  R )   &    |-  .^  =  (.g `  G )   &    |-  ( ph  ->  R  e. SRing )   &    |-  ( ph  ->  A  e.  S )   &    |-  ( ph  ->  B  e.  S )   &    |-  ( ph  ->  K  e.  NN0 )   &    |-  ( ph  ->  ( A  .X.  B )  =  ( B  .X.  A ) )   =>    |-  ( ph  ->  (
 ( K  .^  B )  .X.  A )  =  ( A  .X.  ( K  .^  B ) ) )
 
Theoremsrgpcompp 13695 If two elements of a semiring commute, they also commute if the elements are raised to a higher power. (Contributed by AV, 23-Aug-2019.)
 |-  S  =  ( Base `  R )   &    |-  .X.  =  ( .r `  R )   &    |-  G  =  (mulGrp `  R )   &    |-  .^  =  (.g `  G )   &    |-  ( ph  ->  R  e. SRing )   &    |-  ( ph  ->  A  e.  S )   &    |-  ( ph  ->  B  e.  S )   &    |-  ( ph  ->  K  e.  NN0 )   &    |-  ( ph  ->  ( A  .X.  B )  =  ( B  .X.  A ) )   &    |-  ( ph  ->  N  e.  NN0 )   =>    |-  ( ph  ->  (
 ( ( N  .^  A )  .X.  ( K 
 .^  B ) ) 
 .X.  A )  =  ( ( ( N  +  1 )  .^  A ) 
 .X.  ( K  .^  B ) ) )
 
Theoremsrgpcomppsc 13696 If two elements of a semiring commute, they also commute if the elements are raised to a higher power and a scalar multiplication is involved. (Contributed by AV, 23-Aug-2019.)
 |-  S  =  ( Base `  R )   &    |-  .X.  =  ( .r `  R )   &    |-  G  =  (mulGrp `  R )   &    |-  .^  =  (.g `  G )   &    |-  ( ph  ->  R  e. SRing )   &    |-  ( ph  ->  A  e.  S )   &    |-  ( ph  ->  B  e.  S )   &    |-  ( ph  ->  K  e.  NN0 )   &    |-  ( ph  ->  ( A  .X.  B )  =  ( B  .X.  A ) )   &    |-  ( ph  ->  N  e.  NN0 )   &    |-  .x.  =  (.g `  R )   &    |-  ( ph  ->  C  e.  NN0 )   =>    |-  ( ph  ->  (
 ( C  .x.  (
 ( N  .^  A )  .X.  ( K  .^  B ) ) ) 
 .X.  A )  =  ( C  .x.  ( (
 ( N  +  1 )  .^  A )  .X.  ( K  .^  B ) ) ) )
 
Theoremsrglmhm 13697* Left-multiplication in a semiring by a fixed element of the ring is a monoid homomorphism. (Contributed by AV, 23-Aug-2019.)
 |-  B  =  ( Base `  R )   &    |-  .x.  =  ( .r `  R )   =>    |-  ( ( R  e. SRing  /\  X  e.  B )  ->  ( x  e.  B  |->  ( X  .x.  x ) )  e.  ( R MndHom  R )
 )
 
Theoremsrgrmhm 13698* Right-multiplication in a semiring by a fixed element of the ring is a monoid homomorphism. (Contributed by AV, 23-Aug-2019.)
 |-  B  =  ( Base `  R )   &    |-  .x.  =  ( .r `  R )   =>    |-  ( ( R  e. SRing  /\  X  e.  B )  ->  ( x  e.  B  |->  ( x  .x.  X ) )  e.  ( R MndHom  R ) )
 
Theoremsrg1expzeq1 13699 The exponentiation (by a nonnegative integer) of the multiplicative identity of a semiring, analogous to mulgnn0z 13427. (Contributed by AV, 25-Nov-2019.)
 |-  G  =  (mulGrp `  R )   &    |- 
 .x.  =  (.g `  G )   &    |- 
 .1.  =  ( 1r `  R )   =>    |-  ( ( R  e. SRing  /\  N  e.  NN0 )  ->  ( N  .x.  .1.  )  =  .1.  )
 
7.3.5  Definition and basic properties of unital rings
 
Syntaxcrg 13700 Extend class notation with class of all (unital) rings.
 class  Ring
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-15956
  Copyright terms: Public domain < Previous  Next >