ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-fl Unicode version

Definition df-fl 10199
Description: Define the floor (greatest integer less than or equal to) function. See flval 10201 for its value, flqlelt 10205 for its basic property, and flqcl 10202 for its closure. For example,  ( |_ `  (
3  /  2 ) )  =  1 while  ( |_ `  -u ( 3  /  2
) )  =  -u
2 (ex-fl 13500).

Although we define this on real numbers so that notations are similar to the Metamath Proof Explorer, in the absence of excluded middle few theorems will be possible for all real numbers. Imagine a real number which is around 2.99995 or 3.00001 . In order to determine whether its floor is 2 or 3, it would be necessary to compute the number to arbitrary precision.

The term "floor" was coined by Ken Iverson. He also invented a mathematical notation for floor, consisting of an L-shaped left bracket and its reflection as a right bracket. In APL, the left-bracket alone is used, and we borrow this idea. (Thanks to Paul Chapman for this information.) (Contributed by NM, 14-Nov-2004.)

Assertion
Ref Expression
df-fl  |-  |_  =  ( x  e.  RR  |->  ( iota_ y  e.  ZZ  ( y  <_  x  /\  x  <  ( y  +  1 ) ) ) )
Distinct variable group:    x, y

Detailed syntax breakdown of Definition df-fl
StepHypRef Expression
1 cfl 10197 . 2  class  |_
2 vx . . 3  setvar  x
3 cr 7746 . . 3  class  RR
4 vy . . . . . . 7  setvar  y
54cv 1341 . . . . . 6  class  y
62cv 1341 . . . . . 6  class  x
7 cle 7928 . . . . . 6  class  <_
85, 6, 7wbr 3979 . . . . 5  wff  y  <_  x
9 c1 7748 . . . . . . 7  class  1
10 caddc 7750 . . . . . . 7  class  +
115, 9, 10co 5839 . . . . . 6  class  ( y  +  1 )
12 clt 7927 . . . . . 6  class  <
136, 11, 12wbr 3979 . . . . 5  wff  x  < 
( y  +  1 )
148, 13wa 103 . . . 4  wff  ( y  <_  x  /\  x  <  ( y  +  1 ) )
15 cz 9185 . . . 4  class  ZZ
1614, 4, 15crio 5794 . . 3  class  ( iota_ y  e.  ZZ  ( y  <_  x  /\  x  <  ( y  +  1 ) ) )
172, 3, 16cmpt 4040 . 2  class  ( x  e.  RR  |->  ( iota_ y  e.  ZZ  ( y  <_  x  /\  x  <  ( y  +  1 ) ) ) )
181, 17wceq 1342 1  wff  |_  =  ( x  e.  RR  |->  ( iota_ y  e.  ZZ  ( y  <_  x  /\  x  <  ( y  +  1 ) ) ) )
Colors of variables: wff set class
This definition is referenced by:  flval  10201
  Copyright terms: Public domain W3C validator