ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-fl Unicode version

Definition df-fl 10415
Description: Define the floor (greatest integer less than or equal to) function. See flval 10417 for its value, flqlelt 10421 for its basic property, and flqcl 10418 for its closure. For example,  ( |_ `  (
3  /  2 ) )  =  1 while  ( |_ `  -u ( 3  /  2
) )  =  -u
2 (ex-fl 15698).

Although we define this on real numbers so that notations are similar to the Metamath Proof Explorer, in the absence of excluded middle few theorems will be possible for all real numbers. Imagine a real number which is around 2.99995 or 3.00001 . In order to determine whether its floor is 2 or 3, it would be necessary to compute the number to arbitrary precision.

The term "floor" was coined by Ken Iverson. He also invented a mathematical notation for floor, consisting of an L-shaped left bracket and its reflection as a right bracket. In APL, the left-bracket alone is used, and we borrow this idea. (Thanks to Paul Chapman for this information.) (Contributed by NM, 14-Nov-2004.)

Assertion
Ref Expression
df-fl  |-  |_  =  ( x  e.  RR  |->  ( iota_ y  e.  ZZ  ( y  <_  x  /\  x  <  ( y  +  1 ) ) ) )
Distinct variable group:    x, y

Detailed syntax breakdown of Definition df-fl
StepHypRef Expression
1 cfl 10413 . 2  class  |_
2 vx . . 3  setvar  x
3 cr 7926 . . 3  class  RR
4 vy . . . . . . 7  setvar  y
54cv 1372 . . . . . 6  class  y
62cv 1372 . . . . . 6  class  x
7 cle 8110 . . . . . 6  class  <_
85, 6, 7wbr 4045 . . . . 5  wff  y  <_  x
9 c1 7928 . . . . . . 7  class  1
10 caddc 7930 . . . . . . 7  class  +
115, 9, 10co 5946 . . . . . 6  class  ( y  +  1 )
12 clt 8109 . . . . . 6  class  <
136, 11, 12wbr 4045 . . . . 5  wff  x  < 
( y  +  1 )
148, 13wa 104 . . . 4  wff  ( y  <_  x  /\  x  <  ( y  +  1 ) )
15 cz 9374 . . . 4  class  ZZ
1614, 4, 15crio 5900 . . 3  class  ( iota_ y  e.  ZZ  ( y  <_  x  /\  x  <  ( y  +  1 ) ) )
172, 3, 16cmpt 4106 . 2  class  ( x  e.  RR  |->  ( iota_ y  e.  ZZ  ( y  <_  x  /\  x  <  ( y  +  1 ) ) ) )
181, 17wceq 1373 1  wff  |_  =  ( x  e.  RR  |->  ( iota_ y  e.  ZZ  ( y  <_  x  /\  x  <  ( y  +  1 ) ) ) )
Colors of variables: wff set class
This definition is referenced by:  flval  10417
  Copyright terms: Public domain W3C validator