ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-fl Unicode version

Definition df-fl 9884
Description: Define the floor (greatest integer less than or equal to) function. See flval 9886 for its value, flqlelt 9890 for its basic property, and flqcl 9887 for its closure. For example,  ( |_ `  (
3  /  2 ) )  =  1 while  ( |_ `  -u ( 3  /  2
) )  =  -u
2 (ex-fl 12540).

Although we define this on real numbers so that notations are similar to the Metamath Proof Explorer, in the absence of excluded middle few theorems will be possible for all real numbers. Imagine a real number which is around 2.99995 or 3.00001 . In order to determine whether its floor is 2 or 3, it would be necessary to compute the number to arbitrary precision.

The term "floor" was coined by Ken Iverson. He also invented a mathematical notation for floor, consisting of an L-shaped left bracket and its reflection as a right bracket. In APL, the left-bracket alone is used, and we borrow this idea. (Thanks to Paul Chapman for this information.) (Contributed by NM, 14-Nov-2004.)

Assertion
Ref Expression
df-fl  |-  |_  =  ( x  e.  RR  |->  ( iota_ y  e.  ZZ  ( y  <_  x  /\  x  <  ( y  +  1 ) ) ) )
Distinct variable group:    x, y

Detailed syntax breakdown of Definition df-fl
StepHypRef Expression
1 cfl 9882 . 2  class  |_
2 vx . . 3  setvar  x
3 cr 7499 . . 3  class  RR
4 vy . . . . . . 7  setvar  y
54cv 1298 . . . . . 6  class  y
62cv 1298 . . . . . 6  class  x
7 cle 7673 . . . . . 6  class  <_
85, 6, 7wbr 3875 . . . . 5  wff  y  <_  x
9 c1 7501 . . . . . . 7  class  1
10 caddc 7503 . . . . . . 7  class  +
115, 9, 10co 5706 . . . . . 6  class  ( y  +  1 )
12 clt 7672 . . . . . 6  class  <
136, 11, 12wbr 3875 . . . . 5  wff  x  < 
( y  +  1 )
148, 13wa 103 . . . 4  wff  ( y  <_  x  /\  x  <  ( y  +  1 ) )
15 cz 8906 . . . 4  class  ZZ
1614, 4, 15crio 5661 . . 3  class  ( iota_ y  e.  ZZ  ( y  <_  x  /\  x  <  ( y  +  1 ) ) )
172, 3, 16cmpt 3929 . 2  class  ( x  e.  RR  |->  ( iota_ y  e.  ZZ  ( y  <_  x  /\  x  <  ( y  +  1 ) ) ) )
181, 17wceq 1299 1  wff  |_  =  ( x  e.  RR  |->  ( iota_ y  e.  ZZ  ( y  <_  x  /\  x  <  ( y  +  1 ) ) ) )
Colors of variables: wff set class
This definition is referenced by:  flval  9886
  Copyright terms: Public domain W3C validator