ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  modqval Unicode version

Theorem modqval 10310
Description: The value of the modulo operation. The modulo congruence notation of number theory,  J  ==  K (modulo  N), can be expressed in our notation as  ( J  mod  N )  =  ( K  mod  N ). Definition 1 in Knuth, The Art of Computer Programming, Vol. I (1972), p. 38. Knuth uses "mod" for the operation and "modulo" for the congruence. Unlike Knuth, we restrict the second argument to positive numbers to simplify certain theorems. (This also gives us future flexibility to extend it to any one of several different conventions for a zero or negative second argument, should there be an advantage in doing so.) As with flqcl 10259 we only prove this for rationals although other particular kinds of real numbers may be possible. (Contributed by Jim Kingdon, 16-Oct-2021.)
Assertion
Ref Expression
modqval  |-  ( ( A  e.  QQ  /\  B  e.  QQ  /\  0  <  B )  ->  ( A  mod  B )  =  ( A  -  ( B  x.  ( |_ `  ( A  /  B
) ) ) ) )

Proof of Theorem modqval
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 qre 9614 . . 3  |-  ( A  e.  QQ  ->  A  e.  RR )
213ad2ant1 1018 . 2  |-  ( ( A  e.  QQ  /\  B  e.  QQ  /\  0  <  B )  ->  A  e.  RR )
3 qre 9614 . . . 4  |-  ( B  e.  QQ  ->  B  e.  RR )
433ad2ant2 1019 . . 3  |-  ( ( A  e.  QQ  /\  B  e.  QQ  /\  0  <  B )  ->  B  e.  RR )
5 simp3 999 . . 3  |-  ( ( A  e.  QQ  /\  B  e.  QQ  /\  0  <  B )  ->  0  <  B )
64, 5elrpd 9680 . 2  |-  ( ( A  e.  QQ  /\  B  e.  QQ  /\  0  <  B )  ->  B  e.  RR+ )
75gt0ne0d 8459 . . . . . . 7  |-  ( ( A  e.  QQ  /\  B  e.  QQ  /\  0  <  B )  ->  B  =/=  0 )
8 qdivcl 9632 . . . . . . 7  |-  ( ( A  e.  QQ  /\  B  e.  QQ  /\  B  =/=  0 )  ->  ( A  /  B )  e.  QQ )
97, 8syld3an3 1283 . . . . . 6  |-  ( ( A  e.  QQ  /\  B  e.  QQ  /\  0  <  B )  ->  ( A  /  B )  e.  QQ )
109flqcld 10263 . . . . 5  |-  ( ( A  e.  QQ  /\  B  e.  QQ  /\  0  <  B )  ->  ( |_ `  ( A  /  B ) )  e.  ZZ )
1110zred 9364 . . . 4  |-  ( ( A  e.  QQ  /\  B  e.  QQ  /\  0  <  B )  ->  ( |_ `  ( A  /  B ) )  e.  RR )
124, 11remulcld 7978 . . 3  |-  ( ( A  e.  QQ  /\  B  e.  QQ  /\  0  <  B )  ->  ( B  x.  ( |_ `  ( A  /  B
) ) )  e.  RR )
132, 12resubcld 8328 . 2  |-  ( ( A  e.  QQ  /\  B  e.  QQ  /\  0  <  B )  ->  ( A  -  ( B  x.  ( |_ `  ( A  /  B ) ) ) )  e.  RR )
14 oveq1 5876 . . . . . 6  |-  ( x  =  A  ->  (
x  /  y )  =  ( A  / 
y ) )
1514fveq2d 5515 . . . . 5  |-  ( x  =  A  ->  ( |_ `  ( x  / 
y ) )  =  ( |_ `  ( A  /  y ) ) )
1615oveq2d 5885 . . . 4  |-  ( x  =  A  ->  (
y  x.  ( |_
`  ( x  / 
y ) ) )  =  ( y  x.  ( |_ `  ( A  /  y ) ) ) )
17 oveq12 5878 . . . 4  |-  ( ( x  =  A  /\  ( y  x.  ( |_ `  ( x  / 
y ) ) )  =  ( y  x.  ( |_ `  ( A  /  y ) ) ) )  ->  (
x  -  ( y  x.  ( |_ `  ( x  /  y
) ) ) )  =  ( A  -  ( y  x.  ( |_ `  ( A  / 
y ) ) ) ) )
1816, 17mpdan 421 . . 3  |-  ( x  =  A  ->  (
x  -  ( y  x.  ( |_ `  ( x  /  y
) ) ) )  =  ( A  -  ( y  x.  ( |_ `  ( A  / 
y ) ) ) ) )
19 oveq2 5877 . . . . . 6  |-  ( y  =  B  ->  ( A  /  y )  =  ( A  /  B
) )
2019fveq2d 5515 . . . . 5  |-  ( y  =  B  ->  ( |_ `  ( A  / 
y ) )  =  ( |_ `  ( A  /  B ) ) )
21 oveq12 5878 . . . . 5  |-  ( ( y  =  B  /\  ( |_ `  ( A  /  y ) )  =  ( |_ `  ( A  /  B
) ) )  -> 
( y  x.  ( |_ `  ( A  / 
y ) ) )  =  ( B  x.  ( |_ `  ( A  /  B ) ) ) )
2220, 21mpdan 421 . . . 4  |-  ( y  =  B  ->  (
y  x.  ( |_
`  ( A  / 
y ) ) )  =  ( B  x.  ( |_ `  ( A  /  B ) ) ) )
2322oveq2d 5885 . . 3  |-  ( y  =  B  ->  ( A  -  ( y  x.  ( |_ `  ( A  /  y ) ) ) )  =  ( A  -  ( B  x.  ( |_ `  ( A  /  B
) ) ) ) )
24 df-mod 10309 . . 3  |-  mod  =  ( x  e.  RR ,  y  e.  RR+  |->  ( x  -  ( y  x.  ( |_ `  (
x  /  y ) ) ) ) )
2518, 23, 24ovmpog 6003 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR+  /\  ( A  -  ( B  x.  ( |_ `  ( A  /  B ) ) ) )  e.  RR )  ->  ( A  mod  B )  =  ( A  -  ( B  x.  ( |_ `  ( A  /  B ) ) ) ) )
262, 6, 13, 25syl3anc 1238 1  |-  ( ( A  e.  QQ  /\  B  e.  QQ  /\  0  <  B )  ->  ( A  mod  B )  =  ( A  -  ( B  x.  ( |_ `  ( A  /  B
) ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 978    = wceq 1353    e. wcel 2148    =/= wne 2347   class class class wbr 4000   ` cfv 5212  (class class class)co 5869   RRcr 7801   0cc0 7802    x. cmul 7807    < clt 7982    - cmin 8118    / cdiv 8618   QQcq 9608   RR+crp 9640   |_cfl 10254    mod cmo 10308
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4118  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-cnex 7893  ax-resscn 7894  ax-1cn 7895  ax-1re 7896  ax-icn 7897  ax-addcl 7898  ax-addrcl 7899  ax-mulcl 7900  ax-mulrcl 7901  ax-addcom 7902  ax-mulcom 7903  ax-addass 7904  ax-mulass 7905  ax-distr 7906  ax-i2m1 7907  ax-0lt1 7908  ax-1rid 7909  ax-0id 7910  ax-rnegex 7911  ax-precex 7912  ax-cnre 7913  ax-pre-ltirr 7914  ax-pre-ltwlin 7915  ax-pre-lttrn 7916  ax-pre-apti 7917  ax-pre-ltadd 7918  ax-pre-mulgt0 7919  ax-pre-mulext 7920  ax-arch 7921
This theorem depends on definitions:  df-bi 117  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-iun 3886  df-br 4001  df-opab 4062  df-mpt 4063  df-id 4290  df-po 4293  df-iso 4294  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-fv 5220  df-riota 5825  df-ov 5872  df-oprab 5873  df-mpo 5874  df-1st 6135  df-2nd 6136  df-pnf 7984  df-mnf 7985  df-xr 7986  df-ltxr 7987  df-le 7988  df-sub 8120  df-neg 8121  df-reap 8522  df-ap 8529  df-div 8619  df-inn 8909  df-n0 9166  df-z 9243  df-q 9609  df-rp 9641  df-fl 10256  df-mod 10309
This theorem is referenced by:  modqvalr  10311  modqcl  10312  modq0  10315  modqge0  10318  modqlt  10319  modqdiffl  10321  modqfrac  10323  modqmulnn  10328  zmodcl  10330  modqid  10335  modqcyc  10345  modqadd1  10347  modqmul1  10363  modqdi  10378  modqsubdir  10379  iexpcyc  10610  dvdsmod  11851  divalgmod  11915  modgcd  11975  prmdiv  12218  odzdvds  12228  fldivp1  12329  mulgmodid  12910
  Copyright terms: Public domain W3C validator