HomeHome Intuitionistic Logic Explorer
Theorem List (p. 104 of 150)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 10301-10400   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremflqmulnn0 10301 Move a nonnegative integer in and out of a floor. (Contributed by Jim Kingdon, 10-Oct-2021.)
 |-  ( ( N  e.  NN0  /\  A  e.  QQ )  ->  ( N  x.  ( |_ `  A ) ) 
 <_  ( |_ `  ( N  x.  A ) ) )
 
Theorembtwnzge0 10302 A real bounded between an integer and its successor is nonnegative iff the integer is nonnegative. Second half of Lemma 13-4.1 of [Gleason] p. 217. (Contributed by NM, 12-Mar-2005.)
 |-  ( ( ( A  e.  RR  /\  N  e.  ZZ )  /\  ( N  <_  A  /\  A  <  ( N  +  1 ) ) )  ->  ( 0  <_  A  <->  0 
 <_  N ) )
 
Theorem2tnp1ge0ge0 10303 Two times an integer plus one is not negative iff the integer is not negative. (Contributed by AV, 19-Jun-2021.)
 |-  ( N  e.  ZZ  ->  ( 0  <_  (
 ( 2  x.  N )  +  1 )  <->  0 
 <_  N ) )
 
Theoremflhalf 10304 Ordering relation for the floor of half of an integer. (Contributed by NM, 1-Jan-2006.) (Proof shortened by Mario Carneiro, 7-Jun-2016.)
 |-  ( N  e.  ZZ  ->  N  <_  ( 2  x.  ( |_ `  (
 ( N  +  1 )  /  2 ) ) ) )
 
Theoremfldivnn0le 10305 The floor function of a division of a nonnegative integer by a positive integer is less than or equal to the division. (Contributed by Alexander van der Vekens, 14-Apr-2018.)
 |-  ( ( K  e.  NN0  /\  L  e.  NN )  ->  ( |_ `  ( K  /  L ) ) 
 <_  ( K  /  L ) )
 
Theoremflltdivnn0lt 10306 The floor function of a division of a nonnegative integer by a positive integer is less than the division of a greater dividend by the same positive integer. (Contributed by Alexander van der Vekens, 14-Apr-2018.)
 |-  ( ( K  e.  NN0  /\  N  e.  NN0  /\  L  e.  NN )  ->  ( K  <  N  ->  ( |_ `  ( K  /  L ) )  < 
 ( N  /  L ) ) )
 
Theoremfldiv4p1lem1div2 10307 The floor of an integer equal to 3 or greater than 4, increased by 1, is less than or equal to the half of the integer minus 1. (Contributed by AV, 8-Jul-2021.)
 |-  ( ( N  =  3  \/  N  e.  ( ZZ>=
 `  5 ) ) 
 ->  ( ( |_ `  ( N  /  4 ) )  +  1 )  <_  ( ( N  -  1 )  /  2
 ) )
 
Theoremceilqval 10308 The value of the ceiling function. (Contributed by Jim Kingdon, 10-Oct-2021.)
 |-  ( A  e.  QQ  ->  ( `  A )  =  -u ( |_ `  -u A ) )
 
Theoremceiqcl 10309 The ceiling function returns an integer (closure law). (Contributed by Jim Kingdon, 11-Oct-2021.)
 |-  ( A  e.  QQ  -> 
 -u ( |_ `  -u A )  e.  ZZ )
 
Theoremceilqcl 10310 Closure of the ceiling function. (Contributed by Jim Kingdon, 11-Oct-2021.)
 |-  ( A  e.  QQ  ->  ( `  A )  e.  ZZ )
 
Theoremceiqge 10311 The ceiling of a real number is greater than or equal to that number. (Contributed by Jim Kingdon, 11-Oct-2021.)
 |-  ( A  e.  QQ  ->  A  <_  -u ( |_ `  -u A ) )
 
Theoremceilqge 10312 The ceiling of a real number is greater than or equal to that number. (Contributed by Jim Kingdon, 11-Oct-2021.)
 |-  ( A  e.  QQ  ->  A  <_  ( `  A ) )
 
Theoremceiqm1l 10313 One less than the ceiling of a real number is strictly less than that number. (Contributed by Jim Kingdon, 11-Oct-2021.)
 |-  ( A  e.  QQ  ->  ( -u ( |_ `  -u A )  -  1 )  <  A )
 
Theoremceilqm1lt 10314 One less than the ceiling of a real number is strictly less than that number. (Contributed by Jim Kingdon, 11-Oct-2021.)
 |-  ( A  e.  QQ  ->  ( ( `  A )  -  1 )  <  A )
 
Theoremceiqle 10315 The ceiling of a real number is the smallest integer greater than or equal to it. (Contributed by Jim Kingdon, 11-Oct-2021.)
 |-  ( ( A  e.  QQ  /\  B  e.  ZZ  /\  A  <_  B )  -> 
 -u ( |_ `  -u A )  <_  B )
 
Theoremceilqle 10316 The ceiling of a real number is the smallest integer greater than or equal to it. (Contributed by Jim Kingdon, 11-Oct-2021.)
 |-  ( ( A  e.  QQ  /\  B  e.  ZZ  /\  A  <_  B )  ->  ( `  A )  <_  B )
 
Theoremceilid 10317 An integer is its own ceiling. (Contributed by AV, 30-Nov-2018.)
 |-  ( A  e.  ZZ  ->  ( `  A )  =  A )
 
Theoremceilqidz 10318 A rational number equals its ceiling iff it is an integer. (Contributed by Jim Kingdon, 11-Oct-2021.)
 |-  ( A  e.  QQ  ->  ( A  e.  ZZ  <->  ( `  A )  =  A ) )
 
Theoremflqleceil 10319 The floor of a rational number is less than or equal to its ceiling. (Contributed by Jim Kingdon, 11-Oct-2021.)
 |-  ( A  e.  QQ  ->  ( |_ `  A )  <_  ( `  A )
 )
 
Theoremflqeqceilz 10320 A rational number is an integer iff its floor equals its ceiling. (Contributed by Jim Kingdon, 11-Oct-2021.)
 |-  ( A  e.  QQ  ->  ( A  e.  ZZ  <->  ( |_ `  A )  =  ( `  A )
 ) )
 
Theoremintqfrac2 10321 Decompose a real into integer and fractional parts. (Contributed by Jim Kingdon, 18-Oct-2021.)
 |-  Z  =  ( |_ `  A )   &    |-  F  =  ( A  -  Z )   =>    |-  ( A  e.  QQ  ->  ( 0  <_  F  /\  F  <  1  /\  A  =  ( Z  +  F ) ) )
 
Theoremintfracq 10322 Decompose a rational number, expressed as a ratio, into integer and fractional parts. The fractional part has a tighter bound than that of intqfrac2 10321. (Contributed by NM, 16-Aug-2008.)
 |-  Z  =  ( |_ `  ( M  /  N ) )   &    |-  F  =  ( ( M  /  N )  -  Z )   =>    |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  (
 0  <_  F  /\  F  <_  ( ( N  -  1 )  /  N )  /\  ( M 
 /  N )  =  ( Z  +  F ) ) )
 
Theoremflqdiv 10323 Cancellation of the embedded floor of a real divided by an integer. (Contributed by Jim Kingdon, 18-Oct-2021.)
 |-  ( ( A  e.  QQ  /\  N  e.  NN )  ->  ( |_ `  (
 ( |_ `  A )  /  N ) )  =  ( |_ `  ( A  /  N ) ) )
 
4.6.2  The modulo (remainder) operation
 
Syntaxcmo 10324 Extend class notation with the modulo operation.
 class  mod
 
Definitiondf-mod 10325* Define the modulo (remainder) operation. See modqval 10326 for its value. For example,  ( 5  mod  3 )  =  2 and  ( -u 7  mod  2 )  =  1. As with df-fl 10272 we define this for first and second arguments which are real and positive real, respectively, even though many theorems will need to be more restricted (for example, specify rational arguments). (Contributed by NM, 10-Nov-2008.)
 |- 
 mod  =  ( x  e.  RR ,  y  e.  RR+  |->  ( x  -  ( y  x.  ( |_ `  ( x  /  y ) ) ) ) )
 
Theoremmodqval 10326 The value of the modulo operation. The modulo congruence notation of number theory,  J  ==  K (modulo  N), can be expressed in our notation as  ( J  mod  N )  =  ( K  mod  N ). Definition 1 in Knuth, The Art of Computer Programming, Vol. I (1972), p. 38. Knuth uses "mod" for the operation and "modulo" for the congruence. Unlike Knuth, we restrict the second argument to positive numbers to simplify certain theorems. (This also gives us future flexibility to extend it to any one of several different conventions for a zero or negative second argument, should there be an advantage in doing so.) As with flqcl 10275 we only prove this for rationals although other particular kinds of real numbers may be possible. (Contributed by Jim Kingdon, 16-Oct-2021.)
 |-  ( ( A  e.  QQ  /\  B  e.  QQ  /\  0  <  B ) 
 ->  ( A  mod  B )  =  ( A  -  ( B  x.  ( |_ `  ( A  /  B ) ) ) ) )
 
Theoremmodqvalr 10327 The value of the modulo operation (multiplication in reversed order). (Contributed by Jim Kingdon, 16-Oct-2021.)
 |-  ( ( A  e.  QQ  /\  B  e.  QQ  /\  0  <  B ) 
 ->  ( A  mod  B )  =  ( A  -  ( ( |_ `  ( A  /  B ) )  x.  B ) ) )
 
Theoremmodqcl 10328 Closure law for the modulo operation. (Contributed by Jim Kingdon, 16-Oct-2021.)
 |-  ( ( A  e.  QQ  /\  B  e.  QQ  /\  0  <  B ) 
 ->  ( A  mod  B )  e.  QQ )
 
Theoremflqpmodeq 10329 Partition of a division into its integer part and the remainder. (Contributed by Jim Kingdon, 16-Oct-2021.)
 |-  ( ( A  e.  QQ  /\  B  e.  QQ  /\  0  <  B ) 
 ->  ( ( ( |_ `  ( A  /  B ) )  x.  B )  +  ( A  mod  B ) )  =  A )
 
Theoremmodqcld 10330 Closure law for the modulo operation. (Contributed by Jim Kingdon, 16-Oct-2021.)
 |-  ( ph  ->  A  e.  QQ )   &    |-  ( ph  ->  B  e.  QQ )   &    |-  ( ph  ->  0  <  B )   =>    |-  ( ph  ->  ( A  mod  B )  e. 
 QQ )
 
Theoremmodq0 10331  A  mod  B is zero iff  A is evenly divisible by  B. (Contributed by Jim Kingdon, 17-Oct-2021.)
 |-  ( ( A  e.  QQ  /\  B  e.  QQ  /\  0  <  B ) 
 ->  ( ( A  mod  B )  =  0  <->  ( A  /  B )  e.  ZZ ) )
 
Theoremmulqmod0 10332 The product of an integer and a positive rational number is 0 modulo the positive real number. (Contributed by Jim Kingdon, 18-Oct-2021.)
 |-  ( ( A  e.  ZZ  /\  M  e.  QQ  /\  0  <  M ) 
 ->  ( ( A  x.  M )  mod  M )  =  0 )
 
Theoremnegqmod0 10333  A is divisible by  B iff its negative is. (Contributed by Jim Kingdon, 18-Oct-2021.)
 |-  ( ( A  e.  QQ  /\  B  e.  QQ  /\  0  <  B ) 
 ->  ( ( A  mod  B )  =  0  <->  ( -u A  mod  B )  =  0 ) )
 
Theoremmodqge0 10334 The modulo operation is nonnegative. (Contributed by Jim Kingdon, 18-Oct-2021.)
 |-  ( ( A  e.  QQ  /\  B  e.  QQ  /\  0  <  B ) 
 ->  0  <_  ( A 
 mod  B ) )
 
Theoremmodqlt 10335 The modulo operation is less than its second argument. (Contributed by Jim Kingdon, 18-Oct-2021.)
 |-  ( ( A  e.  QQ  /\  B  e.  QQ  /\  0  <  B ) 
 ->  ( A  mod  B )  <  B )
 
Theoremmodqelico 10336 Modular reduction produces a half-open interval. (Contributed by Jim Kingdon, 18-Oct-2021.)
 |-  ( ( A  e.  QQ  /\  B  e.  QQ  /\  0  <  B ) 
 ->  ( A  mod  B )  e.  ( 0 [,) B ) )
 
Theoremmodqdiffl 10337 The modulo operation differs from 
A by an integer multiple of  B. (Contributed by Jim Kingdon, 18-Oct-2021.)
 |-  ( ( A  e.  QQ  /\  B  e.  QQ  /\  0  <  B ) 
 ->  ( ( A  -  ( A  mod  B ) )  /  B )  =  ( |_ `  ( A  /  B ) ) )
 
Theoremmodqdifz 10338 The modulo operation differs from 
A by an integer multiple of  B. (Contributed by Jim Kingdon, 18-Oct-2021.)
 |-  ( ( A  e.  QQ  /\  B  e.  QQ  /\  0  <  B ) 
 ->  ( ( A  -  ( A  mod  B ) )  /  B )  e.  ZZ )
 
Theoremmodqfrac 10339 The fractional part of a number is the number modulo 1. (Contributed by Jim Kingdon, 18-Oct-2021.)
 |-  ( A  e.  QQ  ->  ( A  mod  1
 )  =  ( A  -  ( |_ `  A ) ) )
 
Theoremflqmod 10340 The floor function expressed in terms of the modulo operation. (Contributed by Jim Kingdon, 18-Oct-2021.)
 |-  ( A  e.  QQ  ->  ( |_ `  A )  =  ( A  -  ( A  mod  1
 ) ) )
 
Theoremintqfrac 10341 Break a number into its integer part and its fractional part. (Contributed by Jim Kingdon, 18-Oct-2021.)
 |-  ( A  e.  QQ  ->  A  =  ( ( |_ `  A )  +  ( A  mod  1 ) ) )
 
Theoremzmod10 10342 An integer modulo 1 is 0. (Contributed by Paul Chapman, 22-Jun-2011.)
 |-  ( N  e.  ZZ  ->  ( N  mod  1
 )  =  0 )
 
Theoremzmod1congr 10343 Two arbitrary integers are congruent modulo 1, see example 4 in [ApostolNT] p. 107. (Contributed by AV, 21-Jul-2021.)
 |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A  mod  1 )  =  ( B  mod  1 ) )
 
Theoremmodqmulnn 10344 Move a positive integer in and out of a floor in the first argument of a modulo operation. (Contributed by Jim Kingdon, 18-Oct-2021.)
 |-  ( ( N  e.  NN  /\  A  e.  QQ  /\  M  e.  NN )  ->  ( ( N  x.  ( |_ `  A ) )  mod  ( N  x.  M ) ) 
 <_  ( ( |_ `  ( N  x.  A ) ) 
 mod  ( N  x.  M ) ) )
 
Theoremmodqvalp1 10345 The value of the modulo operation (expressed with sum of denominator and nominator). (Contributed by Jim Kingdon, 20-Oct-2021.)
 |-  ( ( A  e.  QQ  /\  B  e.  QQ  /\  0  <  B ) 
 ->  ( ( A  +  B )  -  (
 ( ( |_ `  ( A  /  B ) )  +  1 )  x.  B ) )  =  ( A  mod  B ) )
 
Theoremzmodcl 10346 Closure law for the modulo operation restricted to integers. (Contributed by NM, 27-Nov-2008.)
 |-  ( ( A  e.  ZZ  /\  B  e.  NN )  ->  ( A  mod  B )  e.  NN0 )
 
Theoremzmodcld 10347 Closure law for the modulo operation restricted to integers. (Contributed by Mario Carneiro, 28-May-2016.)
 |-  ( ph  ->  A  e.  ZZ )   &    |-  ( ph  ->  B  e.  NN )   =>    |-  ( ph  ->  ( A  mod  B )  e.  NN0 )
 
Theoremzmodfz 10348 An integer mod  B lies in the first  B nonnegative integers. (Contributed by Jeff Madsen, 17-Jun-2010.)
 |-  ( ( A  e.  ZZ  /\  B  e.  NN )  ->  ( A  mod  B )  e.  ( 0
 ... ( B  -  1 ) ) )
 
Theoremzmodfzo 10349 An integer mod  B lies in the first  B nonnegative integers. (Contributed by Stefan O'Rear, 6-Sep-2015.)
 |-  ( ( A  e.  ZZ  /\  B  e.  NN )  ->  ( A  mod  B )  e.  ( 0..^ B ) )
 
Theoremzmodfzp1 10350 An integer mod  B lies in the first  B  +  1 nonnegative integers. (Contributed by AV, 27-Oct-2018.)
 |-  ( ( A  e.  ZZ  /\  B  e.  NN )  ->  ( A  mod  B )  e.  ( 0
 ... B ) )
 
Theoremmodqid 10351 Identity law for modulo. (Contributed by Jim Kingdon, 21-Oct-2021.)
 |-  ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  (
 0  <_  A  /\  A  <  B ) ) 
 ->  ( A  mod  B )  =  A )
 
Theoremmodqid0 10352 A positive real number modulo itself is 0. (Contributed by Jim Kingdon, 21-Oct-2021.)
 |-  ( ( N  e.  QQ  /\  0  <  N )  ->  ( N  mod  N )  =  0 )
 
Theoremmodqid2 10353 Identity law for modulo. (Contributed by Jim Kingdon, 21-Oct-2021.)
 |-  ( ( A  e.  QQ  /\  B  e.  QQ  /\  0  <  B ) 
 ->  ( ( A  mod  B )  =  A  <->  ( 0  <_  A  /\  A  <  B ) ) )
 
Theoremzmodid2 10354 Identity law for modulo restricted to integers. (Contributed by Paul Chapman, 22-Jun-2011.)
 |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( ( M 
 mod  N )  =  M  <->  M  e.  ( 0 ... ( N  -  1
 ) ) ) )
 
Theoremzmodidfzo 10355 Identity law for modulo restricted to integers. (Contributed by AV, 27-Oct-2018.)
 |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( ( M 
 mod  N )  =  M  <->  M  e.  ( 0..^ N ) ) )
 
Theoremzmodidfzoimp 10356 Identity law for modulo restricted to integers. (Contributed by AV, 27-Oct-2018.)
 |-  ( M  e.  (
 0..^ N )  ->  ( M  mod  N )  =  M )
 
Theoremq0mod 10357 Special case: 0 modulo a positive real number is 0. (Contributed by Jim Kingdon, 21-Oct-2021.)
 |-  ( ( N  e.  QQ  /\  0  <  N )  ->  ( 0  mod 
 N )  =  0 )
 
Theoremq1mod 10358 Special case: 1 modulo a real number greater than 1 is 1. (Contributed by Jim Kingdon, 21-Oct-2021.)
 |-  ( ( N  e.  QQ  /\  1  <  N )  ->  ( 1  mod 
 N )  =  1 )
 
Theoremmodqabs 10359 Absorption law for modulo. (Contributed by Jim Kingdon, 21-Oct-2021.)
 |-  ( ph  ->  A  e.  QQ )   &    |-  ( ph  ->  B  e.  QQ )   &    |-  ( ph  ->  0  <  B )   &    |-  ( ph  ->  C  e.  QQ )   &    |-  ( ph  ->  B 
 <_  C )   =>    |-  ( ph  ->  (
 ( A  mod  B )  mod  C )  =  ( A  mod  B ) )
 
Theoremmodqabs2 10360 Absorption law for modulo. (Contributed by Jim Kingdon, 21-Oct-2021.)
 |-  ( ( A  e.  QQ  /\  B  e.  QQ  /\  0  <  B ) 
 ->  ( ( A  mod  B )  mod  B )  =  ( A  mod  B ) )
 
Theoremmodqcyc 10361 The modulo operation is periodic. (Contributed by Jim Kingdon, 21-Oct-2021.)
 |-  ( ( ( A  e.  QQ  /\  N  e.  ZZ )  /\  ( B  e.  QQ  /\  0  <  B ) )  ->  ( ( A  +  ( N  x.  B ) )  mod  B )  =  ( A  mod  B ) )
 
Theoremmodqcyc2 10362 The modulo operation is periodic. (Contributed by Jim Kingdon, 21-Oct-2021.)
 |-  ( ( ( A  e.  QQ  /\  N  e.  ZZ )  /\  ( B  e.  QQ  /\  0  <  B ) )  ->  ( ( A  -  ( B  x.  N ) )  mod  B )  =  ( A  mod  B ) )
 
Theoremmodqadd1 10363 Addition property of the modulo operation. (Contributed by Jim Kingdon, 22-Oct-2021.)
 |-  ( ph  ->  A  e.  QQ )   &    |-  ( ph  ->  B  e.  QQ )   &    |-  ( ph  ->  C  e.  QQ )   &    |-  ( ph  ->  D  e.  QQ )   &    |-  ( ph  ->  0  <  D )   &    |-  ( ph  ->  ( A  mod  D )  =  ( B 
 mod  D ) )   =>    |-  ( ph  ->  ( ( A  +  C )  mod  D )  =  ( ( B  +  C )  mod  D ) )
 
Theoremmodqaddabs 10364 Absorption law for modulo. (Contributed by Jim Kingdon, 22-Oct-2021.)
 |-  ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( C  e.  QQ  /\  0  <  C ) )  ->  ( ( ( A 
 mod  C )  +  ( B  mod  C ) ) 
 mod  C )  =  ( ( A  +  B )  mod  C ) )
 
Theoremmodqaddmod 10365 The sum of a number modulo a modulus and another number equals the sum of the two numbers modulo the same modulus. (Contributed by Jim Kingdon, 23-Oct-2021.)
 |-  ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( M  e.  QQ  /\  0  <  M ) )  ->  ( ( ( A 
 mod  M )  +  B )  mod  M )  =  ( ( A  +  B )  mod  M ) )
 
Theoremmulqaddmodid 10366 The sum of a positive rational number less than an upper bound and the product of an integer and the upper bound is the positive rational number modulo the upper bound. (Contributed by Jim Kingdon, 23-Oct-2021.)
 |-  ( ( ( N  e.  ZZ  /\  M  e.  QQ )  /\  ( A  e.  QQ  /\  A  e.  ( 0 [,) M ) ) )  ->  ( ( ( N  x.  M )  +  A )  mod  M )  =  A )
 
Theoremmulp1mod1 10367 The product of an integer and an integer greater than 1 increased by 1 is 1 modulo the integer greater than 1. (Contributed by AV, 15-Jul-2021.)
 |-  ( ( A  e.  ZZ  /\  N  e.  ( ZZ>=
 `  2 ) ) 
 ->  ( ( ( N  x.  A )  +  1 )  mod  N )  =  1 )
 
Theoremmodqmuladd 10368* Decomposition of an integer into a multiple of a modulus and a remainder. (Contributed by Jim Kingdon, 23-Oct-2021.)
 |-  ( ph  ->  A  e.  ZZ )   &    |-  ( ph  ->  B  e.  QQ )   &    |-  ( ph  ->  B  e.  (
 0 [,) M ) )   &    |-  ( ph  ->  M  e.  QQ )   &    |-  ( ph  ->  0  <  M )   =>    |-  ( ph  ->  ( ( A  mod  M )  =  B  <->  E. k  e.  ZZ  A  =  ( (
 k  x.  M )  +  B ) ) )
 
Theoremmodqmuladdim 10369* Implication of a decomposition of an integer into a multiple of a modulus and a remainder. (Contributed by Jim Kingdon, 23-Oct-2021.)
 |-  ( ( A  e.  ZZ  /\  M  e.  QQ  /\  0  <  M ) 
 ->  ( ( A  mod  M )  =  B  ->  E. k  e.  ZZ  A  =  ( ( k  x.  M )  +  B ) ) )
 
Theoremmodqmuladdnn0 10370* Implication of a decomposition of a nonnegative integer into a multiple of a modulus and a remainder. (Contributed by Jim Kingdon, 23-Oct-2021.)
 |-  ( ( A  e.  NN0  /\  M  e.  QQ  /\  0  <  M )  ->  ( ( A  mod  M )  =  B  ->  E. k  e.  NN0  A  =  ( ( k  x.  M )  +  B ) ) )
 
Theoremqnegmod 10371 The negation of a number modulo a positive number is equal to the difference of the modulus and the number modulo the modulus. (Contributed by Jim Kingdon, 24-Oct-2021.)
 |-  ( ( A  e.  QQ  /\  N  e.  QQ  /\  0  <  N ) 
 ->  ( -u A  mod  N )  =  ( ( N  -  A )  mod  N ) )
 
Theoremm1modnnsub1 10372 Minus one modulo a positive integer is equal to the integer minus one. (Contributed by AV, 14-Jul-2021.)
 |-  ( M  e.  NN  ->  ( -u 1  mod  M )  =  ( M  -  1 ) )
 
Theoremm1modge3gt1 10373 Minus one modulo an integer greater than two is greater than one. (Contributed by AV, 14-Jul-2021.)
 |-  ( M  e.  ( ZZ>=
 `  3 )  -> 
 1  <  ( -u 1  mod  M ) )
 
Theoremaddmodid 10374 The sum of a positive integer and a nonnegative integer less than the positive integer is equal to the nonnegative integer modulo the positive integer. (Contributed by Alexander van der Vekens, 30-Oct-2018.) (Proof shortened by AV, 5-Jul-2020.)
 |-  ( ( A  e.  NN0  /\  M  e.  NN  /\  A  <  M )  ->  ( ( M  +  A )  mod  M )  =  A )
 
Theoremaddmodidr 10375 The sum of a positive integer and a nonnegative integer less than the positive integer is equal to the nonnegative integer modulo the positive integer. (Contributed by AV, 19-Mar-2021.)
 |-  ( ( A  e.  NN0  /\  M  e.  NN  /\  A  <  M )  ->  ( ( A  +  M )  mod  M )  =  A )
 
Theoremmodqadd2mod 10376 The sum of a number modulo a modulus and another number equals the sum of the two numbers modulo the modulus. (Contributed by Jim Kingdon, 24-Oct-2021.)
 |-  ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( M  e.  QQ  /\  0  <  M ) )  ->  ( ( B  +  ( A  mod  M ) )  mod  M )  =  ( ( B  +  A )  mod  M ) )
 
Theoremmodqm1p1mod0 10377 If a number modulo a modulus equals the modulus decreased by 1, the first number increased by 1 modulo the modulus equals 0. (Contributed by Jim Kingdon, 24-Oct-2021.)
 |-  ( ( A  e.  QQ  /\  M  e.  QQ  /\  0  <  M ) 
 ->  ( ( A  mod  M )  =  ( M  -  1 )  ->  ( ( A  +  1 )  mod  M )  =  0 ) )
 
Theoremmodqltm1p1mod 10378 If a number modulo a modulus is less than the modulus decreased by 1, the first number increased by 1 modulo the modulus equals the first number modulo the modulus, increased by 1. (Contributed by Jim Kingdon, 24-Oct-2021.)
 |-  ( ( ( A  e.  QQ  /\  ( A  mod  M )  < 
 ( M  -  1
 ) )  /\  ( M  e.  QQ  /\  0  <  M ) )  ->  ( ( A  +  1 )  mod  M )  =  ( ( A 
 mod  M )  +  1 ) )
 
Theoremmodqmul1 10379 Multiplication property of the modulo operation. Note that the multiplier  C must be an integer. (Contributed by Jim Kingdon, 24-Oct-2021.)
 |-  ( ph  ->  A  e.  QQ )   &    |-  ( ph  ->  B  e.  QQ )   &    |-  ( ph  ->  C  e.  ZZ )   &    |-  ( ph  ->  D  e.  QQ )   &    |-  ( ph  ->  0  <  D )   &    |-  ( ph  ->  ( A  mod  D )  =  ( B 
 mod  D ) )   =>    |-  ( ph  ->  ( ( A  x.  C )  mod  D )  =  ( ( B  x.  C )  mod  D ) )
 
Theoremmodqmul12d 10380 Multiplication property of the modulo operation, see theorem 5.2(b) in [ApostolNT] p. 107. (Contributed by Jim Kingdon, 24-Oct-2021.)
 |-  ( ph  ->  A  e.  ZZ )   &    |-  ( ph  ->  B  e.  ZZ )   &    |-  ( ph  ->  C  e.  ZZ )   &    |-  ( ph  ->  D  e.  ZZ )   &    |-  ( ph  ->  E  e.  QQ )   &    |-  ( ph  ->  0  <  E )   &    |-  ( ph  ->  ( A  mod  E )  =  ( B  mod  E ) )   &    |-  ( ph  ->  ( C  mod  E )  =  ( D  mod  E ) )   =>    |-  ( ph  ->  (
 ( A  x.  C )  mod  E )  =  ( ( B  x.  D )  mod  E ) )
 
Theoremmodqnegd 10381 Negation property of the modulo operation. (Contributed by Jim Kingdon, 24-Oct-2021.)
 |-  ( ph  ->  A  e.  QQ )   &    |-  ( ph  ->  B  e.  QQ )   &    |-  ( ph  ->  C  e.  QQ )   &    |-  ( ph  ->  0  <  C )   &    |-  ( ph  ->  ( A  mod  C )  =  ( B  mod  C ) )   =>    |-  ( ph  ->  ( -u A  mod  C )  =  ( -u B  mod  C ) )
 
Theoremmodqadd12d 10382 Additive property of the modulo operation. (Contributed by Jim Kingdon, 25-Oct-2021.)
 |-  ( ph  ->  A  e.  QQ )   &    |-  ( ph  ->  B  e.  QQ )   &    |-  ( ph  ->  C  e.  QQ )   &    |-  ( ph  ->  D  e.  QQ )   &    |-  ( ph  ->  E  e.  QQ )   &    |-  ( ph  ->  0  <  E )   &    |-  ( ph  ->  ( A  mod  E )  =  ( B  mod  E ) )   &    |-  ( ph  ->  ( C  mod  E )  =  ( D  mod  E ) )   =>    |-  ( ph  ->  (
 ( A  +  C )  mod  E )  =  ( ( B  +  D )  mod  E ) )
 
Theoremmodqsub12d 10383 Subtraction property of the modulo operation. (Contributed by Jim Kingdon, 25-Oct-2021.)
 |-  ( ph  ->  A  e.  QQ )   &    |-  ( ph  ->  B  e.  QQ )   &    |-  ( ph  ->  C  e.  QQ )   &    |-  ( ph  ->  D  e.  QQ )   &    |-  ( ph  ->  E  e.  QQ )   &    |-  ( ph  ->  0  <  E )   &    |-  ( ph  ->  ( A  mod  E )  =  ( B  mod  E ) )   &    |-  ( ph  ->  ( C  mod  E )  =  ( D  mod  E ) )   =>    |-  ( ph  ->  (
 ( A  -  C )  mod  E )  =  ( ( B  -  D )  mod  E ) )
 
Theoremmodqsubmod 10384 The difference of a number modulo a modulus and another number equals the difference of the two numbers modulo the modulus. (Contributed by Jim Kingdon, 25-Oct-2021.)
 |-  ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( M  e.  QQ  /\  0  <  M ) )  ->  ( ( ( A 
 mod  M )  -  B )  mod  M )  =  ( ( A  -  B )  mod  M ) )
 
Theoremmodqsubmodmod 10385 The difference of a number modulo a modulus and another number modulo the same modulus equals the difference of the two numbers modulo the modulus. (Contributed by Jim Kingdon, 25-Oct-2021.)
 |-  ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( M  e.  QQ  /\  0  <  M ) )  ->  ( ( ( A 
 mod  M )  -  ( B  mod  M ) ) 
 mod  M )  =  ( ( A  -  B )  mod  M ) )
 
Theoremq2txmodxeq0 10386 Two times a positive number modulo the number is zero. (Contributed by Jim Kingdon, 25-Oct-2021.)
 |-  ( ( X  e.  QQ  /\  0  <  X )  ->  ( ( 2  x.  X )  mod  X )  =  0 )
 
Theoremq2submod 10387 If a number is between a modulus and twice the modulus, the first number modulo the modulus equals the first number minus the modulus. (Contributed by Jim Kingdon, 25-Oct-2021.)
 |-  ( ( ( A  e.  QQ  /\  B  e.  QQ  /\  0  <  B )  /\  ( B 
 <_  A  /\  A  <  ( 2  x.  B ) ) )  ->  ( A  mod  B )  =  ( A  -  B ) )
 
Theoremmodifeq2int 10388 If a nonnegative integer is less than twice a positive integer, the nonnegative integer modulo the positive integer equals the nonnegative integer or the nonnegative integer minus the positive integer. (Contributed by Alexander van der Vekens, 21-May-2018.)
 |-  ( ( A  e.  NN0  /\  B  e.  NN  /\  A  <  ( 2  x.  B ) )  ->  ( A  mod  B )  =  if ( A  <  B ,  A ,  ( A  -  B ) ) )
 
Theoremmodaddmodup 10389 The sum of an integer modulo a positive integer and another integer minus the positive integer equals the sum of the two integers modulo the positive integer if the other integer is in the upper part of the range between 0 and the positive integer. (Contributed by AV, 30-Oct-2018.)
 |-  ( ( A  e.  ZZ  /\  M  e.  NN )  ->  ( B  e.  ( ( M  -  ( A  mod  M ) )..^ M )  ->  ( ( B  +  ( A  mod  M ) )  -  M )  =  ( ( B  +  A )  mod  M ) ) )
 
Theoremmodaddmodlo 10390 The sum of an integer modulo a positive integer and another integer equals the sum of the two integers modulo the positive integer if the other integer is in the lower part of the range between 0 and the positive integer. (Contributed by AV, 30-Oct-2018.)
 |-  ( ( A  e.  ZZ  /\  M  e.  NN )  ->  ( B  e.  ( 0..^ ( M  -  ( A  mod  M ) ) )  ->  ( B  +  ( A  mod  M ) )  =  ( ( B  +  A )  mod  M ) ) )
 
Theoremmodqmulmod 10391 The product of a rational number modulo a modulus and an integer equals the product of the rational number and the integer modulo the modulus. (Contributed by Jim Kingdon, 25-Oct-2021.)
 |-  ( ( ( A  e.  QQ  /\  B  e.  ZZ )  /\  ( M  e.  QQ  /\  0  <  M ) )  ->  ( ( ( A 
 mod  M )  x.  B )  mod  M )  =  ( ( A  x.  B )  mod  M ) )
 
Theoremmodqmulmodr 10392 The product of an integer and a rational number modulo a modulus equals the product of the integer and the rational number modulo the modulus. (Contributed by Jim Kingdon, 26-Oct-2021.)
 |-  ( ( ( A  e.  ZZ  /\  B  e.  QQ )  /\  ( M  e.  QQ  /\  0  <  M ) )  ->  ( ( A  x.  ( B  mod  M ) )  mod  M )  =  ( ( A  x.  B )  mod  M ) )
 
Theoremmodqaddmulmod 10393 The sum of a rational number and the product of a second rational number modulo a modulus and an integer equals the sum of the rational number and the product of the other rational number and the integer modulo the modulus. (Contributed by Jim Kingdon, 26-Oct-2021.)
 |-  ( ( ( A  e.  QQ  /\  B  e.  QQ  /\  C  e.  ZZ )  /\  ( M  e.  QQ  /\  0  <  M ) )  ->  ( ( A  +  ( ( B  mod  M )  x.  C ) )  mod  M )  =  ( ( A  +  ( B  x.  C ) )  mod  M ) )
 
Theoremmodqdi 10394 Distribute multiplication over a modulo operation. (Contributed by Jim Kingdon, 26-Oct-2021.)
 |-  ( ( ( A  e.  QQ  /\  0  <  A )  /\  B  e.  QQ  /\  ( C  e.  QQ  /\  0  <  C ) )  ->  ( A  x.  ( B  mod  C ) )  =  ( ( A  x.  B )  mod  ( A  x.  C ) ) )
 
Theoremmodqsubdir 10395 Distribute the modulo operation over a subtraction. (Contributed by Jim Kingdon, 26-Oct-2021.)
 |-  ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( C  e.  QQ  /\  0  <  C ) )  ->  ( ( B  mod  C )  <_  ( A  mod  C )  <->  ( ( A  -  B )  mod  C )  =  ( ( A  mod  C )  -  ( B  mod  C ) ) ) )
 
Theoremmodqeqmodmin 10396 A rational number equals the difference of the rational number and a modulus modulo the modulus. (Contributed by Jim Kingdon, 26-Oct-2021.)
 |-  ( ( A  e.  QQ  /\  M  e.  QQ  /\  0  <  M ) 
 ->  ( A  mod  M )  =  ( ( A  -  M )  mod  M ) )
 
Theoremmodfzo0difsn 10397* For a number within a half-open range of nonnegative integers with one excluded integer there is a positive integer so that the number is equal to the sum of the positive integer and the excluded integer modulo the upper bound of the range. (Contributed by AV, 19-Mar-2021.)
 |-  ( ( J  e.  ( 0..^ N )  /\  K  e.  ( (
 0..^ N )  \  { J } ) ) 
 ->  E. i  e.  (
 1..^ N ) K  =  ( ( i  +  J )  mod  N ) )
 
Theoremmodsumfzodifsn 10398 The sum of a number within a half-open range of positive integers is an element of the corresponding open range of nonnegative integers with one excluded integer modulo the excluded integer. (Contributed by AV, 19-Mar-2021.)
 |-  ( ( J  e.  ( 0..^ N )  /\  K  e.  ( 1..^ N ) )  ->  ( ( K  +  J )  mod  N )  e.  ( ( 0..^ N )  \  { J } ) )
 
Theoremmodlteq 10399 Two nonnegative integers less than the modulus are equal iff they are equal modulo the modulus. (Contributed by AV, 14-Mar-2021.)
 |-  ( ( I  e.  ( 0..^ N ) 
 /\  J  e.  (
 0..^ N ) ) 
 ->  ( ( I  mod  N )  =  ( J 
 mod  N )  <->  I  =  J ) )
 
Theoremaddmodlteq 10400 Two nonnegative integers less than the modulus are equal iff the sums of these integer with another integer are equal modulo the modulus. (Contributed by AV, 20-Mar-2021.)
 |-  ( ( I  e.  ( 0..^ N ) 
 /\  J  e.  (
 0..^ N )  /\  S  e.  ZZ )  ->  ( ( ( I  +  S )  mod  N )  =  ( ( J  +  S ) 
 mod  N )  <->  I  =  J ) )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-14917
  Copyright terms: Public domain < Previous  Next >