HomeHome Intuitionistic Logic Explorer
Theorem List (p. 104 of 162)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 10301-10400   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremelfzolt2b 10301 A member in a half-open integer interval is less than the upper bound. (Contributed by Mario Carneiro, 29-Sep-2015.)
 |-  ( K  e.  ( M..^ N )  ->  K  e.  ( K..^ N ) )
 
Theoremelfzolt3b 10302 Membership in a half-open integer interval implies that the bounds are unequal. (Contributed by Mario Carneiro, 29-Sep-2015.)
 |-  ( K  e.  ( M..^ N )  ->  M  e.  ( M..^ N ) )
 
Theoremfzonel 10303 A half-open range does not contain its right endpoint. (Contributed by Stefan O'Rear, 25-Aug-2015.)
 |- 
 -.  B  e.  ( A..^ B )
 
Theoremelfzouz2 10304 The upper bound of a half-open range is greater or equal to an element of the range. (Contributed by Mario Carneiro, 29-Sep-2015.)
 |-  ( K  e.  ( M..^ N )  ->  N  e.  ( ZZ>= `  K )
 )
 
Theoremelfzofz 10305 A half-open range is contained in the corresponding closed range. (Contributed by Stefan O'Rear, 23-Aug-2015.)
 |-  ( K  e.  ( M..^ N )  ->  K  e.  ( M ... N ) )
 
Theoremelfzo3 10306 Express membership in a half-open integer interval in terms of the "less than or equal" and "less than" predicates on integers, resp.  K  e.  (
ZZ>= `  M )  <->  M  <_  K,  K  e.  ( K..^ N )  <->  K  <  N. (Contributed by Mario Carneiro, 29-Sep-2015.)
 |-  ( K  e.  ( M..^ N )  <->  ( K  e.  ( ZZ>= `  M )  /\  K  e.  ( K..^ N ) ) )
 
Theoremfzom 10307* A half-open integer interval is inhabited iff it contains its left endpoint. (Contributed by Jim Kingdon, 20-Apr-2020.)
 |-  ( E. x  x  e.  ( M..^ N ) 
 <->  M  e.  ( M..^ N ) )
 
Theoremfzossfz 10308 A half-open range is contained in the corresponding closed range. (Contributed by Stefan O'Rear, 23-Aug-2015.) (Revised by Mario Carneiro, 29-Sep-2015.)
 |-  ( A..^ B ) 
 C_  ( A ... B )
 
Theoremfzon 10309 A half-open set of sequential integers is empty if the bounds are equal or reversed. (Contributed by Alexander van der Vekens, 30-Oct-2017.)
 |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( N  <_  M  <-> 
 ( M..^ N )  =  (/) ) )
 
Theoremfzo0n 10310 A half-open range of nonnegative integers is empty iff the upper bound is not positive. (Contributed by AV, 2-May-2020.)
 |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( N  <_  M  <-> 
 ( 0..^ ( N  -  M ) )  =  (/) ) )
 
Theoremfzonlt0 10311 A half-open integer range is empty if the bounds are equal or reversed. (Contributed by AV, 20-Oct-2018.)
 |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( -.  M  <  N  <->  ( M..^ N )  =  (/) ) )
 
Theoremfzo0 10312 Half-open sets with equal endpoints are empty. (Contributed by Stefan O'Rear, 15-Aug-2015.) (Revised by Mario Carneiro, 29-Sep-2015.)
 |-  ( A..^ A )  =  (/)
 
Theoremfzonnsub 10313 If  K  <  N then 
N  -  K is a positive integer. (Contributed by Mario Carneiro, 29-Sep-2015.) (Revised by Mario Carneiro, 1-Jan-2017.)
 |-  ( K  e.  ( M..^ N )  ->  ( N  -  K )  e. 
 NN )
 
Theoremfzonnsub2 10314 If  M  <  N then 
N  -  M is a positive integer. (Contributed by Mario Carneiro, 1-Jan-2017.)
 |-  ( K  e.  ( M..^ N )  ->  ( N  -  M )  e. 
 NN )
 
Theoremfzoss1 10315 Subset relationship for half-open sequences of integers. (Contributed by Stefan O'Rear, 15-Aug-2015.) (Revised by Mario Carneiro, 29-Sep-2015.)
 |-  ( K  e.  ( ZZ>=
 `  M )  ->  ( K..^ N )  C_  ( M..^ N ) )
 
Theoremfzoss2 10316 Subset relationship for half-open sequences of integers. (Contributed by Stefan O'Rear, 15-Aug-2015.) (Revised by Mario Carneiro, 29-Sep-2015.)
 |-  ( N  e.  ( ZZ>=
 `  K )  ->  ( M..^ K )  C_  ( M..^ N ) )
 
Theoremfzossrbm1 10317 Subset of a half open range. (Contributed by Alexander van der Vekens, 1-Nov-2017.)
 |-  ( N  e.  ZZ  ->  ( 0..^ ( N  -  1 ) ) 
 C_  ( 0..^ N ) )
 
Theoremfzo0ss1 10318 Subset relationship for half-open integer ranges with lower bounds 0 and 1. (Contributed by Alexander van der Vekens, 18-Mar-2018.)
 |-  ( 1..^ N ) 
 C_  ( 0..^ N )
 
Theoremfzossnn0 10319 A half-open integer range starting at a nonnegative integer is a subset of the nonnegative integers. (Contributed by Alexander van der Vekens, 13-May-2018.)
 |-  ( M  e.  NN0  ->  ( M..^ N )  C_  NN0 )
 
Theoremfzospliti 10320 One direction of splitting a half-open integer range in half. (Contributed by Stefan O'Rear, 14-Aug-2015.)
 |-  ( ( A  e.  ( B..^ C )  /\  D  e.  ZZ )  ->  ( A  e.  ( B..^ D )  \/  A  e.  ( D..^ C ) ) )
 
Theoremfzosplit 10321 Split a half-open integer range in half. (Contributed by Stefan O'Rear, 14-Aug-2015.)
 |-  ( D  e.  ( B ... C )  ->  ( B..^ C )  =  ( ( B..^ D )  u.  ( D..^ C ) ) )
 
Theoremfzodisj 10322 Abutting half-open integer ranges are disjoint. (Contributed by Stefan O'Rear, 14-Aug-2015.)
 |-  ( ( A..^ B )  i^i  ( B..^ C ) )  =  (/)
 
Theoremfzouzsplit 10323 Split an upper integer set into a half-open integer range and another upper integer set. (Contributed by Mario Carneiro, 21-Sep-2016.)
 |-  ( B  e.  ( ZZ>=
 `  A )  ->  ( ZZ>= `  A )  =  ( ( A..^ B )  u.  ( ZZ>= `  B ) ) )
 
Theoremfzouzdisj 10324 A half-open integer range does not overlap the upper integer range starting at the endpoint of the first range. (Contributed by Mario Carneiro, 21-Sep-2016.)
 |-  ( ( A..^ B )  i^i  ( ZZ>= `  B ) )  =  (/)
 
Theoremfzoun 10325 A half-open integer range as union of two half-open integer ranges. (Contributed by AV, 23-Apr-2022.)
 |-  ( ( B  e.  ( ZZ>= `  A )  /\  C  e.  NN0 )  ->  ( A..^ ( B  +  C ) )  =  ( ( A..^ B )  u.  ( B..^ ( B  +  C ) ) ) )
 
Theoremfzodisjsn 10326 A half-open integer range and the singleton of its upper bound are disjoint. (Contributed by AV, 7-Mar-2021.)
 |-  ( ( A..^ B )  i^i  { B }
 )  =  (/)
 
Theoremlbfzo0 10327 An integer is strictly greater than zero iff it is a member of  NN. (Contributed by Mario Carneiro, 29-Sep-2015.)
 |-  ( 0  e.  (
 0..^ A )  <->  A  e.  NN )
 
Theoremelfzo0 10328 Membership in a half-open integer range based at 0. (Contributed by Stefan O'Rear, 15-Aug-2015.) (Revised by Mario Carneiro, 29-Sep-2015.)
 |-  ( A  e.  (
 0..^ B )  <->  ( A  e.  NN0  /\  B  e.  NN  /\  A  <  B ) )
 
Theoremfzo1fzo0n0 10329 An integer between 1 and an upper bound of a half-open integer range is not 0 and between 0 and the upper bound of the half-open integer range. (Contributed by Alexander van der Vekens, 21-Mar-2018.)
 |-  ( K  e.  (
 1..^ N )  <->  ( K  e.  ( 0..^ N )  /\  K  =/=  0 ) )
 
Theoremelfzo0z 10330 Membership in a half-open range of nonnegative integers, generalization of elfzo0 10328 requiring the upper bound to be an integer only. (Contributed by Alexander van der Vekens, 23-Sep-2018.)
 |-  ( A  e.  (
 0..^ B )  <->  ( A  e.  NN0  /\  B  e.  ZZ  /\  A  <  B ) )
 
Theoremelfzo0le 10331 A member in a half-open range of nonnegative integers is less than or equal to the upper bound of the range. (Contributed by Alexander van der Vekens, 23-Sep-2018.)
 |-  ( A  e.  (
 0..^ B )  ->  A  <_  B )
 
Theoremelfzonn0 10332 A member of a half-open range of nonnegative integers is a nonnegative integer. (Contributed by Alexander van der Vekens, 21-May-2018.)
 |-  ( K  e.  (
 0..^ N )  ->  K  e.  NN0 )
 
Theoremfzonmapblen 10333 The result of subtracting a nonnegative integer from a positive integer and adding another nonnegative integer which is less than the first one is less then the positive integer. (Contributed by Alexander van der Vekens, 19-May-2018.)
 |-  ( ( A  e.  ( 0..^ N )  /\  B  e.  ( 0..^ N )  /\  B  <  A )  ->  ( B  +  ( N  -  A ) )  <  N )
 
Theoremfzofzim 10334 If a nonnegative integer in a finite interval of integers is not the upper bound of the interval, it is contained in the corresponding half-open integer range. (Contributed by Alexander van der Vekens, 15-Jun-2018.)
 |-  ( ( K  =/=  M 
 /\  K  e.  (
 0 ... M ) ) 
 ->  K  e.  ( 0..^ M ) )
 
Theoremfzossnn 10335 Half-open integer ranges starting with 1 are subsets of  NN. (Contributed by Thierry Arnoux, 28-Dec-2016.)
 |-  ( 1..^ N ) 
 C_  NN
 
Theoremelfzo1 10336 Membership in a half-open integer range based at 1. (Contributed by Thierry Arnoux, 14-Feb-2017.)
 |-  ( N  e.  (
 1..^ M )  <->  ( N  e.  NN  /\  M  e.  NN  /\  N  <  M ) )
 
Theoremfzo0m 10337* A half-open integer range based at 0 is inhabited precisely if the upper bound is a positive integer. (Contributed by Jim Kingdon, 20-Apr-2020.)
 |-  ( E. x  x  e.  ( 0..^ A ) 
 <->  A  e.  NN )
 
Theoremfzoaddel 10338 Translate membership in a half-open integer range. (Contributed by Stefan O'Rear, 15-Aug-2015.)
 |-  ( ( A  e.  ( B..^ C )  /\  D  e.  ZZ )  ->  ( A  +  D )  e.  ( ( B  +  D )..^ ( C  +  D ) ) )
 
Theoremfzo0addel 10339 Translate membership in a 0-based half-open integer range. (Contributed by AV, 30-Apr-2020.)
 |-  ( ( A  e.  ( 0..^ C )  /\  D  e.  ZZ )  ->  ( A  +  D )  e.  ( D..^ ( C  +  D ) ) )
 
Theoremfzo0addelr 10340 Translate membership in a 0-based half-open integer range. (Contributed by AV, 30-Apr-2020.)
 |-  ( ( A  e.  ( 0..^ C )  /\  D  e.  ZZ )  ->  ( A  +  D )  e.  ( D..^ ( D  +  C ) ) )
 
Theoremfzoaddel2 10341 Translate membership in a shifted-down half-open integer range. (Contributed by Stefan O'Rear, 15-Aug-2015.)
 |-  ( ( A  e.  ( 0..^ ( B  -  C ) )  /\  B  e.  ZZ  /\  C  e.  ZZ )  ->  ( A  +  C )  e.  ( C..^ B ) )
 
Theoremelfzoextl 10342 Membership of an integer in an extended open range of integers, extension added to the left. (Contributed by AV, 31-Aug-2025.) Generalized by replacing the left border of the ranges. (Revised by SN, 18-Sep-2025.)
 |-  ( ( Z  e.  ( M..^ N )  /\  I  e.  NN0 )  ->  Z  e.  ( M..^ ( I  +  N ) ) )
 
Theoremelfzoext 10343 Membership of an integer in an extended open range of integers, extension added to the right. (Contributed by AV, 30-Apr-2020.) (Proof shortened by AV, 23-Sep-2025.)
 |-  ( ( Z  e.  ( M..^ N )  /\  I  e.  NN0 )  ->  Z  e.  ( M..^ ( N  +  I
 ) ) )
 
Theoremelincfzoext 10344 Membership of an increased integer in a correspondingly extended half-open range of integers. (Contributed by AV, 30-Apr-2020.)
 |-  ( ( Z  e.  ( M..^ N )  /\  I  e.  NN0 )  ->  ( Z  +  I
 )  e.  ( M..^ ( N  +  I
 ) ) )
 
Theoremfzosubel 10345 Translate membership in a half-open integer range. (Contributed by Stefan O'Rear, 15-Aug-2015.)
 |-  ( ( A  e.  ( B..^ C )  /\  D  e.  ZZ )  ->  ( A  -  D )  e.  ( ( B  -  D )..^ ( C  -  D ) ) )
 
Theoremfzosubel2 10346 Membership in a translated half-open integer range implies translated membership in the original range. (Contributed by Stefan O'Rear, 15-Aug-2015.)
 |-  ( ( A  e.  ( ( B  +  C )..^ ( B  +  D ) )  /\  ( B  e.  ZZ  /\  C  e.  ZZ  /\  D  e.  ZZ )
 )  ->  ( A  -  B )  e.  ( C..^ D ) )
 
Theoremfzosubel3 10347 Membership in a translated half-open integer range when the original range is zero-based. (Contributed by Stefan O'Rear, 15-Aug-2015.)
 |-  ( ( A  e.  ( B..^ ( B  +  D ) )  /\  D  e.  ZZ )  ->  ( A  -  B )  e.  ( 0..^ D ) )
 
Theoremeluzgtdifelfzo 10348 Membership of the difference of integers in a half-open range of nonnegative integers. (Contributed by Alexander van der Vekens, 17-Sep-2018.)
 |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( ( N  e.  ( ZZ>= `  A )  /\  B  <  A )  ->  ( N  -  A )  e.  (
 0..^ ( N  -  B ) ) ) )
 
Theoremige2m2fzo 10349 Membership of an integer greater than 1 decreased by 2 in a half-open range of nonnegative integers. (Contributed by Alexander van der Vekens, 3-Oct-2018.)
 |-  ( N  e.  ( ZZ>=
 `  2 )  ->  ( N  -  2
 )  e.  ( 0..^ ( N  -  1
 ) ) )
 
Theoremfzocatel 10350 Translate membership in a half-open integer range. (Contributed by Thierry Arnoux, 28-Sep-2018.)
 |-  ( ( ( A  e.  ( 0..^ ( B  +  C ) )  /\  -.  A  e.  ( 0..^ B ) )  /\  ( B  e.  ZZ  /\  C  e.  ZZ ) )  ->  ( A  -  B )  e.  ( 0..^ C ) )
 
Theoremubmelfzo 10351 If an integer in a 1 based finite set of sequential integers is subtracted from the upper bound of this finite set of sequential integers, the result is contained in a half-open range of nonnegative integers with the same upper bound. (Contributed by AV, 18-Mar-2018.) (Revised by AV, 30-Oct-2018.)
 |-  ( K  e.  (
 1 ... N )  ->  ( N  -  K )  e.  ( 0..^ N ) )
 
Theoremelfzodifsumelfzo 10352 If an integer is in a half-open range of nonnegative integers with a difference as upper bound, the sum of the integer with the subtrahend of the difference is in the a half-open range of nonnegative integers containing the minuend of the difference. (Contributed by AV, 13-Nov-2018.)
 |-  ( ( M  e.  ( 0 ... N )  /\  N  e.  (
 0 ... P ) ) 
 ->  ( I  e.  (
 0..^ ( N  -  M ) )  ->  ( I  +  M )  e.  ( 0..^ P ) ) )
 
Theoremelfzom1elp1fzo 10353 Membership of an integer incremented by one in a half-open range of nonnegative integers. (Contributed by Alexander van der Vekens, 24-Jun-2018.) (Proof shortened by AV, 5-Jan-2020.)
 |-  ( ( N  e.  ZZ  /\  I  e.  (
 0..^ ( N  -  1 ) ) ) 
 ->  ( I  +  1 )  e.  ( 0..^ N ) )
 
Theoremelfzom1elfzo 10354 Membership in a half-open range of nonnegative integers. (Contributed by Alexander van der Vekens, 18-Jun-2018.)
 |-  ( ( N  e.  ZZ  /\  I  e.  (
 0..^ ( N  -  1 ) ) ) 
 ->  I  e.  (
 0..^ N ) )
 
Theoremfzval3 10355 Expressing a closed integer range as a half-open integer range. (Contributed by Stefan O'Rear, 15-Aug-2015.)
 |-  ( N  e.  ZZ  ->  ( M ... N )  =  ( M..^ ( N  +  1
 ) ) )
 
Theoremfzosn 10356 Expressing a singleton as a half-open range. (Contributed by Stefan O'Rear, 23-Aug-2015.)
 |-  ( A  e.  ZZ  ->  ( A..^ ( A  +  1 ) )  =  { A }
 )
 
Theoremelfzomin 10357 Membership of an integer in the smallest open range of integers. (Contributed by Alexander van der Vekens, 22-Sep-2018.)
 |-  ( Z  e.  ZZ  ->  Z  e.  ( Z..^ ( Z  +  1 ) ) )
 
Theoremzpnn0elfzo 10358 Membership of an integer increased by a nonnegative integer in a half- open integer range. (Contributed by Alexander van der Vekens, 22-Sep-2018.)
 |-  ( ( Z  e.  ZZ  /\  N  e.  NN0 )  ->  ( Z  +  N )  e.  ( Z..^ ( ( Z  +  N )  +  1
 ) ) )
 
Theoremzpnn0elfzo1 10359 Membership of an integer increased by a nonnegative integer in a half- open integer range. (Contributed by Alexander van der Vekens, 22-Sep-2018.)
 |-  ( ( Z  e.  ZZ  /\  N  e.  NN0 )  ->  ( Z  +  N )  e.  ( Z..^ ( Z  +  ( N  +  1 )
 ) ) )
 
Theoremfzosplitsnm1 10360 Removing a singleton from a half-open integer range at the end. (Contributed by Alexander van der Vekens, 23-Mar-2018.)
 |-  ( ( A  e.  ZZ  /\  B  e.  ( ZZ>=
 `  ( A  +  1 ) ) ) 
 ->  ( A..^ B )  =  ( ( A..^ ( B  -  1
 ) )  u.  {
 ( B  -  1
 ) } ) )
 
Theoremelfzonlteqm1 10361 If an element of a half-open integer range is not less than the upper bound of the range decreased by 1, it must be equal to the upper bound of the range decreased by 1. (Contributed by AV, 3-Nov-2018.)
 |-  ( ( A  e.  ( 0..^ B )  /\  -.  A  <  ( B  -  1 ) ) 
 ->  A  =  ( B  -  1 ) )
 
Theoremfzonn0p1 10362 A nonnegative integer is element of the half-open range of nonnegative integers with the element increased by one as an upper bound. (Contributed by Alexander van der Vekens, 5-Aug-2018.)
 |-  ( N  e.  NN0  ->  N  e.  ( 0..^ ( N  +  1
 ) ) )
 
Theoremfzossfzop1 10363 A half-open range of nonnegative integers is a subset of a half-open range of nonnegative integers with the upper bound increased by one. (Contributed by Alexander van der Vekens, 5-Aug-2018.)
 |-  ( N  e.  NN0  ->  ( 0..^ N )  C_  ( 0..^ ( N  +  1 ) ) )
 
Theoremfzonn0p1p1 10364 If a nonnegative integer is element of a half-open range of nonnegative integers, increasing this integer by one results in an element of a half- open range of nonnegative integers with the upper bound increased by one. (Contributed by Alexander van der Vekens, 5-Aug-2018.)
 |-  ( I  e.  (
 0..^ N )  ->  ( I  +  1
 )  e.  ( 0..^ ( N  +  1 ) ) )
 
Theoremelfzom1p1elfzo 10365 Increasing an element of a half-open range of nonnegative integers by 1 results in an element of the half-open range of nonnegative integers with an upper bound increased by 1. (Contributed by Alexander van der Vekens, 1-Aug-2018.)
 |-  ( ( N  e.  NN  /\  X  e.  (
 0..^ ( N  -  1 ) ) ) 
 ->  ( X  +  1 )  e.  ( 0..^ N ) )
 
Theoremfzo0ssnn0 10366 Half-open integer ranges starting with 0 are subsets of NN0. (Contributed by Thierry Arnoux, 8-Oct-2018.)
 |-  ( 0..^ N ) 
 C_  NN0
 
Theoremfzo01 10367 Expressing the singleton of  0 as a half-open integer range. (Contributed by Stefan O'Rear, 15-Aug-2015.)
 |-  ( 0..^ 1 )  =  { 0 }
 
Theoremfzo12sn 10368 A 1-based half-open integer interval up to, but not including, 2 is a singleton. (Contributed by Alexander van der Vekens, 31-Jan-2018.)
 |-  ( 1..^ 2 )  =  { 1 }
 
Theoremfzo0to2pr 10369 A half-open integer range from 0 to 2 is an unordered pair. (Contributed by Alexander van der Vekens, 4-Dec-2017.)
 |-  ( 0..^ 2 )  =  { 0 ,  1 }
 
Theoremfzo0to3tp 10370 A half-open integer range from 0 to 3 is an unordered triple. (Contributed by Alexander van der Vekens, 9-Nov-2017.)
 |-  ( 0..^ 3 )  =  { 0 ,  1 ,  2 }
 
Theoremfzo0to42pr 10371 A half-open integer range from 0 to 4 is a union of two unordered pairs. (Contributed by Alexander van der Vekens, 17-Nov-2017.)
 |-  ( 0..^ 4 )  =  ( { 0 ,  1 }  u.  { 2 ,  3 } )
 
Theoremfzo0sn0fzo1 10372 A half-open range of nonnegative integers is the union of the singleton set containing 0 and a half-open range of positive integers. (Contributed by Alexander van der Vekens, 18-May-2018.)
 |-  ( N  e.  NN  ->  ( 0..^ N )  =  ( { 0 }  u.  ( 1..^ N ) ) )
 
Theoremfzoend 10373 The endpoint of a half-open integer range. (Contributed by Mario Carneiro, 29-Sep-2015.)
 |-  ( A  e.  ( A..^ B )  ->  ( B  -  1 )  e.  ( A..^ B ) )
 
Theoremfzo0end 10374 The endpoint of a zero-based half-open range. (Contributed by Stefan O'Rear, 27-Aug-2015.) (Revised by Mario Carneiro, 29-Sep-2015.)
 |-  ( B  e.  NN  ->  ( B  -  1
 )  e.  ( 0..^ B ) )
 
Theoremssfzo12 10375 Subset relationship for half-open integer ranges. (Contributed by Alexander van der Vekens, 16-Mar-2018.)
 |-  ( ( K  e.  ZZ  /\  L  e.  ZZ  /\  K  <  L ) 
 ->  ( ( K..^ L )  C_  ( M..^ N )  ->  ( M  <_  K 
 /\  L  <_  N ) ) )
 
Theoremssfzo12bi 10376 Subset relationship for half-open integer ranges. (Contributed by Alexander van der Vekens, 5-Nov-2018.)
 |-  ( ( ( K  e.  ZZ  /\  L  e.  ZZ )  /\  ( M  e.  ZZ  /\  N  e.  ZZ )  /\  K  <  L )  ->  (
 ( K..^ L ) 
 C_  ( M..^ N ) 
 <->  ( M  <_  K  /\  L  <_  N )
 ) )
 
Theoremubmelm1fzo 10377 The result of subtracting 1 and an integer of a half-open range of nonnegative integers from the upper bound of this range is contained in this range. (Contributed by AV, 23-Mar-2018.) (Revised by AV, 30-Oct-2018.)
 |-  ( K  e.  (
 0..^ N )  ->  ( ( N  -  K )  -  1
 )  e.  ( 0..^ N ) )
 
Theoremfzofzp1 10378 If a point is in a half-open range, the next point is in the closed range. (Contributed by Stefan O'Rear, 23-Aug-2015.)
 |-  ( C  e.  ( A..^ B )  ->  ( C  +  1 )  e.  ( A ... B ) )
 
Theoremfzofzp1b 10379 If a point is in a half-open range, the next point is in the closed range. (Contributed by Mario Carneiro, 27-Sep-2015.)
 |-  ( C  e.  ( ZZ>=
 `  A )  ->  ( C  e.  ( A..^ B )  <->  ( C  +  1 )  e.  ( A ... B ) ) )
 
Theoremelfzom1b 10380 An integer is a member of a 1-based finite set of sequential integers iff its predecessor is a member of the corresponding 0-based set. (Contributed by Mario Carneiro, 27-Sep-2015.)
 |-  ( ( K  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  e.  ( 1..^ N )  <->  ( K  -  1 )  e.  (
 0..^ ( N  -  1 ) ) ) )
 
Theoremelfzonelfzo 10381 If an element of a half-open integer range is not contained in the lower subrange, it must be in the upper subrange. (Contributed by Alexander van der Vekens, 30-Mar-2018.)
 |-  ( N  e.  ZZ  ->  ( ( K  e.  ( M..^ R )  /\  -.  K  e.  ( M..^ N ) )  ->  K  e.  ( N..^ R ) ) )
 
Theoremelfzomelpfzo 10382 An integer increased by another integer is an element of a half-open integer range if and only if the integer is contained in the half-open integer range with bounds decreased by the other integer. (Contributed by Alexander van der Vekens, 30-Mar-2018.)
 |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  e.  ZZ  /\  L  e.  ZZ ) )  ->  ( K  e.  (
 ( M  -  L )..^ ( N  -  L ) )  <->  ( K  +  L )  e.  ( M..^ N ) ) )
 
Theorempeano2fzor 10383 A Peano-postulate-like theorem for downward closure of a half-open integer range. (Contributed by Mario Carneiro, 1-Oct-2015.)
 |-  ( ( K  e.  ( ZZ>= `  M )  /\  ( K  +  1 )  e.  ( M..^ N ) )  ->  K  e.  ( M..^ N ) )
 
Theoremfzosplitsn 10384 Extending a half-open range by a singleton on the end. (Contributed by Stefan O'Rear, 23-Aug-2015.)
 |-  ( B  e.  ( ZZ>=
 `  A )  ->  ( A..^ ( B  +  1 ) )  =  ( ( A..^ B )  u.  { B }
 ) )
 
Theoremfzosplitprm1 10385 Extending a half-open integer range by an unordered pair at the end. (Contributed by Alexander van der Vekens, 22-Sep-2018.)
 |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  <  B ) 
 ->  ( A..^ ( B  +  1 ) )  =  ( ( A..^ ( B  -  1
 ) )  u.  {
 ( B  -  1
 ) ,  B }
 ) )
 
Theoremfzosplitsni 10386 Membership in a half-open range extended by a singleton. (Contributed by Stefan O'Rear, 23-Aug-2015.)
 |-  ( B  e.  ( ZZ>=
 `  A )  ->  ( C  e.  ( A..^ ( B  +  1 ) )  <->  ( C  e.  ( A..^ B )  \/  C  =  B ) ) )
 
Theoremfzisfzounsn 10387 A finite interval of integers as union of a half-open integer range and a singleton. (Contributed by Alexander van der Vekens, 15-Jun-2018.)
 |-  ( B  e.  ( ZZ>=
 `  A )  ->  ( A ... B )  =  ( ( A..^ B )  u.  { B } ) )
 
Theoremfzostep1 10388 Two possibilities for a number one greater than a number in a half-open range. (Contributed by Stefan O'Rear, 23-Aug-2015.)
 |-  ( A  e.  ( B..^ C )  ->  (
 ( A  +  1 )  e.  ( B..^ C )  \/  ( A  +  1 )  =  C ) )
 
Theoremfzoshftral 10389* Shift the scanning order inside of a quantification over a half-open integer range, analogous to fzshftral 10250. (Contributed by Alexander van der Vekens, 23-Sep-2018.)
 |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  ->  ( A. j  e.  ( M..^ N )
 ph 
 <-> 
 A. k  e.  (
 ( M  +  K )..^ ( N  +  K ) ) [. (
 k  -  K ) 
 /  j ]. ph )
 )
 
Theoremfzind2 10390* Induction on the integers from  M to  N inclusive. The first four hypotheses give us the substitution instances we need; the last two are the basis and the induction step. Version of fzind 9508 using integer range definitions. (Contributed by Mario Carneiro, 6-Feb-2016.)
 |-  ( x  =  M  ->  ( ph  <->  ps ) )   &    |-  ( x  =  y  ->  (
 ph 
 <->  ch ) )   &    |-  ( x  =  ( y  +  1 )  ->  ( ph  <->  th ) )   &    |-  ( x  =  K  ->  (
 ph 
 <->  ta ) )   &    |-  ( N  e.  ( ZZ>= `  M )  ->  ps )   &    |-  (
 y  e.  ( M..^ N )  ->  ( ch  ->  th ) )   =>    |-  ( K  e.  ( M ... N ) 
 ->  ta )
 
Theoremexfzdc 10391* Decidability of the existence of an integer defined by a decidable proposition. (Contributed by Jim Kingdon, 28-Jan-2022.)
 |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  N  e.  ZZ )   &    |-  (
 ( ph  /\  n  e.  ( M ... N ) )  -> DECID  ps )   =>    |-  ( ph  -> DECID  E. n  e.  ( M ... N ) ps )
 
Theoremfvinim0ffz 10392 The function values for the borders of a finite interval of integers, which is the domain of the function, are not in the image of the interior of the interval iff the intersection of the images of the interior and the borders is empty. (Contributed by Alexander van der Vekens, 31-Oct-2017.) (Revised by AV, 5-Feb-2021.)
 |-  ( ( F :
 ( 0 ... K )
 --> V  /\  K  e.  NN0 )  ->  ( (
 ( F " {
 0 ,  K }
 )  i^i  ( F " ( 1..^ K ) ) )  =  (/)  <->  (
 ( F `  0
 )  e/  ( F " ( 1..^ K ) )  /\  ( F `
  K )  e/  ( F " ( 1..^ K ) ) ) ) )
 
Theoremsubfzo0 10393 The difference between two elements in a half-open range of nonnegative integers is greater than the negation of the upper bound and less than the upper bound of the range. (Contributed by AV, 20-Mar-2021.)
 |-  ( ( I  e.  ( 0..^ N ) 
 /\  J  e.  (
 0..^ N ) ) 
 ->  ( -u N  <  ( I  -  J )  /\  ( I  -  J )  <  N ) )
 
Theoremzsupcllemstep 10394* Lemma for zsupcl 10396. Induction step. (Contributed by Jim Kingdon, 7-Dec-2021.)
 |-  ( ( ph  /\  n  e.  ( ZZ>= `  M )
 )  -> DECID  ps )   =>    |-  ( K  e.  ( ZZ>=
 `  M )  ->  ( ( ( ph  /\ 
 A. n  e.  ( ZZ>=
 `  K )  -.  ps )  ->  E. x  e.  ZZ  ( A. y  e.  { n  e.  ZZ  |  ps }  -.  x  <  y  /\  A. y  e.  RR  ( y  < 
 x  ->  E. z  e.  { n  e.  ZZ  |  ps } y  < 
 z ) ) ) 
 ->  ( ( ph  /\  A. n  e.  ( ZZ>= `  ( K  +  1
 ) )  -.  ps )  ->  E. x  e.  ZZ  ( A. y  e.  { n  e.  ZZ  |  ps }  -.  x  <  y  /\  A. y  e.  RR  ( y  <  x  ->  E. z  e.  { n  e.  ZZ  |  ps }
 y  <  z )
 ) ) ) )
 
Theoremzsupcllemex 10395* Lemma for zsupcl 10396. Existence of the supremum. (Contributed by Jim Kingdon, 7-Dec-2021.)
 |-  ( ph  ->  M  e.  ZZ )   &    |-  ( n  =  M  ->  ( ps  <->  ch ) )   &    |-  ( ph  ->  ch )   &    |-  ( ( ph  /\  n  e.  ( ZZ>= `  M ) )  -> DECID  ps )   &    |-  ( ph  ->  E. j  e.  ( ZZ>= `  M ) A. n  e.  ( ZZ>=
 `  j )  -.  ps )   =>    |-  ( ph  ->  E. x  e.  ZZ  ( A. y  e.  { n  e.  ZZ  |  ps }  -.  x  <  y  /\  A. y  e.  RR  ( y  < 
 x  ->  E. z  e.  { n  e.  ZZ  |  ps } y  < 
 z ) ) )
 
Theoremzsupcl 10396* Closure of supremum for decidable integer properties. The property which defines the set we are taking the supremum of must (a) be true at  M (which corresponds to the nonempty condition of classical supremum theorems), (b) decidable at each value after  M, and (c) be false after  j (which corresponds to the upper bound condition found in classical supremum theorems). (Contributed by Jim Kingdon, 7-Dec-2021.)
 |-  ( ph  ->  M  e.  ZZ )   &    |-  ( n  =  M  ->  ( ps  <->  ch ) )   &    |-  ( ph  ->  ch )   &    |-  ( ( ph  /\  n  e.  ( ZZ>= `  M ) )  -> DECID  ps )   &    |-  ( ph  ->  E. j  e.  ( ZZ>= `  M ) A. n  e.  ( ZZ>=
 `  j )  -.  ps )   =>    |-  ( ph  ->  sup ( { n  e.  ZZ  |  ps } ,  RR ,  <  )  e.  ( ZZ>=
 `  M ) )
 
Theoremzssinfcl 10397* The infimum of a set of integers is an element of the set. (Contributed by Jim Kingdon, 16-Jan-2022.)
 |-  ( ph  ->  E. x  e.  RR  ( A. y  e.  B  -.  y  < 
 x  /\  A. y  e. 
 RR  ( x  < 
 y  ->  E. z  e.  B  z  <  y
 ) ) )   &    |-  ( ph  ->  B  C_  ZZ )   &    |-  ( ph  -> inf ( B ,  RR ,  <  )  e.  ZZ )   =>    |-  ( ph  -> inf ( B ,  RR ,  <  )  e.  B )
 
Theoreminfssuzex 10398* Existence of the infimum of a subset of an upper set of integers. (Contributed by Jim Kingdon, 13-Jan-2022.)
 |-  ( ph  ->  M  e.  ZZ )   &    |-  S  =  { n  e.  ( ZZ>= `  M )  |  ps }   &    |-  ( ph  ->  A  e.  S )   &    |-  ( ( ph  /\  n  e.  ( M
 ... A ) ) 
 -> DECID  ps )   =>    |-  ( ph  ->  E. x  e.  RR  ( A. y  e.  S  -.  y  < 
 x  /\  A. y  e. 
 RR  ( x  < 
 y  ->  E. z  e.  S  z  <  y
 ) ) )
 
Theoreminfssuzledc 10399* The infimum of a subset of an upper set of integers is less than or equal to all members of the subset. (Contributed by Jim Kingdon, 13-Jan-2022.)
 |-  ( ph  ->  M  e.  ZZ )   &    |-  S  =  { n  e.  ( ZZ>= `  M )  |  ps }   &    |-  ( ph  ->  A  e.  S )   &    |-  ( ( ph  /\  n  e.  ( M
 ... A ) ) 
 -> DECID  ps )   =>    |-  ( ph  -> inf ( S ,  RR ,  <  ) 
 <_  A )
 
Theoreminfssuzcldc 10400* The infimum of a subset of an upper set of integers belongs to the subset. (Contributed by Jim Kingdon, 20-Jan-2022.)
 |-  ( ph  ->  M  e.  ZZ )   &    |-  S  =  { n  e.  ( ZZ>= `  M )  |  ps }   &    |-  ( ph  ->  A  e.  S )   &    |-  ( ( ph  /\  n  e.  ( M
 ... A ) ) 
 -> DECID  ps )   =>    |-  ( ph  -> inf ( S ,  RR ,  <  )  e.  S )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16164
  Copyright terms: Public domain < Previous  Next >