HomeHome Intuitionistic Logic Explorer
Theorem List (p. 104 of 135)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 10301-10400   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremiseqf1olemfvp 10301* Lemma for seq3f1o 10308. (Contributed by Jim Kingdon, 30-Aug-2022.)
 |-  ( ph  ->  K  e.  ( M ... N ) )   &    |-  ( ph  ->  T : ( M ... N ) -1-1-onto-> ( M ... N ) )   &    |-  ( ph  ->  A  e.  ( M ... N ) )   &    |-  ( ( ph  /\  x  e.  ( ZZ>= `  M ) )  ->  ( G `  x )  e.  S )   &    |-  P  =  ( x  e.  ( ZZ>=
 `  M )  |->  if ( x  <_  N ,  ( G `  (
 f `  x )
 ) ,  ( G `
  M ) ) )   =>    |-  ( ph  ->  ( [_ T  /  f ]_ P `  A )  =  ( G `  ( T `  A ) ) )
 
Theoremseq3f1olemqsumkj 10302* Lemma for seq3f1o 10308. 
Q gives the same sum as 
J in the range  ( K ... ( `' J `  K ) ). (Contributed by Jim Kingdon, 29-Aug-2022.)
 |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S )
 )  ->  ( x  .+  y )  e.  S )   &    |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S )
 )  ->  ( x  .+  y )  =  ( y  .+  x ) )   &    |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S  /\  z  e.  S ) )  ->  ( ( x  .+  y ) 
 .+  z )  =  ( x  .+  (
 y  .+  z )
 ) )   &    |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )   &    |-  ( ph  ->  F : ( M ... N ) -1-1-onto-> ( M ... N ) )   &    |-  ( ( ph  /\  x  e.  ( ZZ>= `  M ) )  ->  ( G `  x )  e.  S )   &    |-  ( ph  ->  K  e.  ( M ... N ) )   &    |-  ( ph  ->  J :
 ( M ... N )
 -1-1-onto-> ( M ... N ) )   &    |-  ( ph  ->  A. x  e.  ( M..^ K ) ( J `
  x )  =  x )   &    |-  ( ph  ->  K  =/=  ( `' J `  K ) )   &    |-  Q  =  ( u  e.  ( M ... N )  |->  if ( u  e.  ( K ... ( `' J `  K ) ) ,  if ( u  =  K ,  K ,  ( J `  ( u  -  1 ) ) ) ,  ( J `
  u ) ) )   &    |-  P  =  ( x  e.  ( ZZ>= `  M )  |->  if ( x  <_  N ,  ( G `  ( f `  x ) ) ,  ( G `  M ) ) )   =>    |-  ( ph  ->  ( 
 seq K (  .+  , 
 [_ J  /  f ]_ P ) `  ( `' J `  K ) )  =  (  seq K (  .+  ,  [_ Q  /  f ]_ P ) `  ( `' J `  K ) ) )
 
Theoremseq3f1olemqsumk 10303* Lemma for seq3f1o 10308. 
Q gives the same sum as 
J in the range  ( K ... N ). (Contributed by Jim Kingdon, 22-Aug-2022.)
 |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S )
 )  ->  ( x  .+  y )  e.  S )   &    |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S )
 )  ->  ( x  .+  y )  =  ( y  .+  x ) )   &    |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S  /\  z  e.  S ) )  ->  ( ( x  .+  y ) 
 .+  z )  =  ( x  .+  (
 y  .+  z )
 ) )   &    |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )   &    |-  ( ph  ->  F : ( M ... N ) -1-1-onto-> ( M ... N ) )   &    |-  ( ( ph  /\  x  e.  ( ZZ>= `  M ) )  ->  ( G `  x )  e.  S )   &    |-  ( ph  ->  K  e.  ( M ... N ) )   &    |-  ( ph  ->  J :
 ( M ... N )
 -1-1-onto-> ( M ... N ) )   &    |-  ( ph  ->  A. x  e.  ( M..^ K ) ( J `
  x )  =  x )   &    |-  ( ph  ->  K  =/=  ( `' J `  K ) )   &    |-  Q  =  ( u  e.  ( M ... N )  |->  if ( u  e.  ( K ... ( `' J `  K ) ) ,  if ( u  =  K ,  K ,  ( J `  ( u  -  1 ) ) ) ,  ( J `
  u ) ) )   &    |-  P  =  ( x  e.  ( ZZ>= `  M )  |->  if ( x  <_  N ,  ( G `  ( f `  x ) ) ,  ( G `  M ) ) )   =>    |-  ( ph  ->  ( 
 seq K (  .+  , 
 [_ J  /  f ]_ P ) `  N )  =  (  seq K (  .+  ,  [_ Q  /  f ]_ P ) `  N ) )
 
Theoremseq3f1olemqsum 10304* Lemma for seq3f1o 10308. 
Q gives the same sum as 
J. (Contributed by Jim Kingdon, 21-Aug-2022.)
 |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S )
 )  ->  ( x  .+  y )  e.  S )   &    |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S )
 )  ->  ( x  .+  y )  =  ( y  .+  x ) )   &    |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S  /\  z  e.  S ) )  ->  ( ( x  .+  y ) 
 .+  z )  =  ( x  .+  (
 y  .+  z )
 ) )   &    |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )   &    |-  ( ph  ->  F : ( M ... N ) -1-1-onto-> ( M ... N ) )   &    |-  ( ( ph  /\  x  e.  ( ZZ>= `  M ) )  ->  ( G `  x )  e.  S )   &    |-  ( ph  ->  K  e.  ( M ... N ) )   &    |-  ( ph  ->  J :
 ( M ... N )
 -1-1-onto-> ( M ... N ) )   &    |-  ( ph  ->  A. x  e.  ( M..^ K ) ( J `
  x )  =  x )   &    |-  ( ph  ->  K  =/=  ( `' J `  K ) )   &    |-  Q  =  ( u  e.  ( M ... N )  |->  if ( u  e.  ( K ... ( `' J `  K ) ) ,  if ( u  =  K ,  K ,  ( J `  ( u  -  1 ) ) ) ,  ( J `
  u ) ) )   &    |-  P  =  ( x  e.  ( ZZ>= `  M )  |->  if ( x  <_  N ,  ( G `  ( f `  x ) ) ,  ( G `  M ) ) )   =>    |-  ( ph  ->  ( 
 seq M (  .+  , 
 [_ J  /  f ]_ P ) `  N )  =  (  seq M (  .+  ,  [_ Q  /  f ]_ P ) `  N ) )
 
Theoremseq3f1olemstep 10305* Lemma for seq3f1o 10308. Given a permutation which is constant up to a point, supply a new one which is constant for one more position. (Contributed by Jim Kingdon, 19-Aug-2022.)
 |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S )
 )  ->  ( x  .+  y )  e.  S )   &    |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S )
 )  ->  ( x  .+  y )  =  ( y  .+  x ) )   &    |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S  /\  z  e.  S ) )  ->  ( ( x  .+  y ) 
 .+  z )  =  ( x  .+  (
 y  .+  z )
 ) )   &    |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )   &    |-  ( ph  ->  F : ( M ... N ) -1-1-onto-> ( M ... N ) )   &    |-  ( ( ph  /\  x  e.  ( ZZ>= `  M ) )  ->  ( G `  x )  e.  S )   &    |-  ( ph  ->  K  e.  ( M ... N ) )   &    |-  ( ph  ->  J :
 ( M ... N )
 -1-1-onto-> ( M ... N ) )   &    |-  ( ph  ->  A. x  e.  ( M..^ K ) ( J `
  x )  =  x )   &    |-  ( ph  ->  ( 
 seq M (  .+  , 
 [_ J  /  f ]_ P ) `  N )  =  (  seq M (  .+  ,  L ) `  N ) )   &    |-  P  =  ( x  e.  ( ZZ>= `  M )  |->  if ( x  <_  N ,  ( G `  ( f `  x ) ) ,  ( G `  M ) ) )   =>    |-  ( ph  ->  E. f
 ( f : ( M ... N ) -1-1-onto-> ( M ... N ) 
 /\  A. x  e.  ( M ... K ) ( f `  x )  =  x  /\  (  seq M (  .+  ,  P ) `  N )  =  (  seq M (  .+  ,  L ) `  N ) ) )
 
Theoremseq3f1olemp 10306* Lemma for seq3f1o 10308. Existence of a constant permutation of  ( M ... N ) which leads to the same sum as the permutation  F itself. (Contributed by Jim Kingdon, 18-Aug-2022.)
 |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S )
 )  ->  ( x  .+  y )  e.  S )   &    |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S )
 )  ->  ( x  .+  y )  =  ( y  .+  x ) )   &    |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S  /\  z  e.  S ) )  ->  ( ( x  .+  y ) 
 .+  z )  =  ( x  .+  (
 y  .+  z )
 ) )   &    |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )   &    |-  ( ph  ->  F : ( M ... N ) -1-1-onto-> ( M ... N ) )   &    |-  ( ( ph  /\  x  e.  ( ZZ>= `  M ) )  ->  ( G `  x )  e.  S )   &    |-  L  =  ( x  e.  ( ZZ>=
 `  M )  |->  if ( x  <_  N ,  ( G `  ( F `  x ) ) ,  ( G `  M ) ) )   &    |-  P  =  ( x  e.  ( ZZ>= `  M )  |->  if ( x  <_  N ,  ( G `  ( f `  x ) ) ,  ( G `  M ) ) )   =>    |-  ( ph  ->  E. f
 ( f : ( M ... N ) -1-1-onto-> ( M ... N ) 
 /\  A. x  e.  ( M ... N ) ( f `  x )  =  x  /\  (  seq M (  .+  ,  P ) `  N )  =  (  seq M (  .+  ,  L ) `  N ) ) )
 
Theoremseq3f1oleml 10307* Lemma for seq3f1o 10308. This is more or less the result, but stated in terms of  F and  G without  H.  L and  H may differ in terms of what happens to terms after  N. The terms after  N don't matter for the value at  N but we need some definition given the way our theorems concerning  seq work. (Contributed by Jim Kingdon, 17-Aug-2022.)
 |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S )
 )  ->  ( x  .+  y )  e.  S )   &    |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S )
 )  ->  ( x  .+  y )  =  ( y  .+  x ) )   &    |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S  /\  z  e.  S ) )  ->  ( ( x  .+  y ) 
 .+  z )  =  ( x  .+  (
 y  .+  z )
 ) )   &    |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )   &    |-  ( ph  ->  F : ( M ... N ) -1-1-onto-> ( M ... N ) )   &    |-  ( ( ph  /\  x  e.  ( ZZ>= `  M ) )  ->  ( G `  x )  e.  S )   &    |-  L  =  ( x  e.  ( ZZ>=
 `  M )  |->  if ( x  <_  N ,  ( G `  ( F `  x ) ) ,  ( G `  M ) ) )   =>    |-  ( ph  ->  (  seq M (  .+  ,  L ) `  N )  =  (  seq M ( 
 .+  ,  G ) `  N ) )
 
Theoremseq3f1o 10308* Rearrange a sum via an arbitrary bijection on  ( M ... N ). (Contributed by Mario Carneiro, 27-Feb-2014.) (Revised by Jim Kingdon, 3-Nov-2022.)
 |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S )
 )  ->  ( x  .+  y )  e.  S )   &    |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S )
 )  ->  ( x  .+  y )  =  ( y  .+  x ) )   &    |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S  /\  z  e.  S ) )  ->  ( ( x  .+  y ) 
 .+  z )  =  ( x  .+  (
 y  .+  z )
 ) )   &    |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )   &    |-  ( ph  ->  F : ( M ... N ) -1-1-onto-> ( M ... N ) )   &    |-  ( ( ph  /\  x  e.  ( ZZ>= `  M ) )  ->  ( G `  x )  e.  S )   &    |-  (
 ( ph  /\  x  e.  ( ZZ>= `  M )
 )  ->  ( H `  x )  e.  S )   &    |-  ( ( ph  /\  k  e.  ( M ... N ) )  ->  ( H `
  k )  =  ( G `  ( F `  k ) ) )   =>    |-  ( ph  ->  (  seq M (  .+  ,  H ) `  N )  =  (  seq M (  .+  ,  G ) `  N ) )
 
Theoremser3add 10309* The sum of two infinite series. (Contributed by NM, 17-Mar-2005.) (Revised by Jim Kingdon, 4-Oct-2022.)
 |-  ( ph  ->  N  e.  ( ZZ>= `  M )
 )   &    |-  ( ( ph  /\  k  e.  ( ZZ>= `  M )
 )  ->  ( F `  k )  e.  CC )   &    |-  ( ( ph  /\  k  e.  ( ZZ>= `  M )
 )  ->  ( G `  k )  e.  CC )   &    |-  ( ( ph  /\  k  e.  ( ZZ>= `  M )
 )  ->  ( H `  k )  =  ( ( F `  k
 )  +  ( G `
  k ) ) )   =>    |-  ( ph  ->  (  seq M (  +  ,  H ) `  N )  =  ( (  seq M (  +  ,  F ) `  N )  +  (  seq M (  +  ,  G ) `  N ) ) )
 
Theoremser3sub 10310* The difference of two infinite series. (Contributed by NM, 17-Mar-2005.) (Revised by Jim Kingdon, 22-Apr-2023.)
 |-  ( ph  ->  N  e.  ( ZZ>= `  M )
 )   &    |-  ( ( ph  /\  k  e.  ( ZZ>= `  M )
 )  ->  ( F `  k )  e.  CC )   &    |-  ( ( ph  /\  k  e.  ( ZZ>= `  M )
 )  ->  ( G `  k )  e.  CC )   &    |-  ( ( ph  /\  k  e.  ( ZZ>= `  M )
 )  ->  ( H `  k )  =  ( ( F `  k
 )  -  ( G `
  k ) ) )   =>    |-  ( ph  ->  (  seq M (  +  ,  H ) `  N )  =  ( (  seq M (  +  ,  F ) `  N )  -  (  seq M (  +  ,  G ) `  N ) ) )
 
Theoremseq3id3 10311* A sequence that consists entirely of "zeroes" sums to "zero". More precisely, a constant sequence with value an element which is a  .+ -idempotent sums (or " .+'s") to that element. (Contributed by Mario Carneiro, 15-Dec-2014.) (Revised by Jim Kingdon, 8-Apr-2023.)
 |-  ( ph  ->  ( Z  .+  Z )  =  Z )   &    |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )   &    |-  ( ( ph  /\  x  e.  ( M
 ... N ) ) 
 ->  ( F `  x )  =  Z )   &    |-  ( ph  ->  Z  e.  S )   &    |-  ( ( ph  /\  x  e.  ( ZZ>= `  M )
 )  ->  ( F `  x )  e.  S )   &    |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S )
 )  ->  ( x  .+  y )  e.  S )   =>    |-  ( ph  ->  (  seq M (  .+  ,  F ) `  N )  =  Z )
 
Theoremseq3id 10312* Discarding the first few terms of a sequence that starts with all zeroes (or any element which is a left-identity for  .+) has no effect on its sum. (Contributed by Mario Carneiro, 13-Jul-2013.) (Revised by Jim Kingdon, 8-Apr-2023.)
 |-  ( ( ph  /\  x  e.  S )  ->  ( Z  .+  x )  =  x )   &    |-  ( ph  ->  Z  e.  S )   &    |-  ( ph  ->  N  e.  ( ZZ>=
 `  M ) )   &    |-  ( ph  ->  ( F `  N )  e.  S )   &    |-  ( ( ph  /\  x  e.  ( M ... ( N  -  1 ) ) )  ->  ( F `  x )  =  Z )   &    |-  ( ( ph  /\  x  e.  ( ZZ>= `  M )
 )  ->  ( F `  x )  e.  S )   &    |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S )
 )  ->  ( x  .+  y )  e.  S )   =>    |-  ( ph  ->  (  seq M (  .+  ,  F )  |`  ( ZZ>= `  N ) )  = 
 seq N (  .+  ,  F ) )
 
Theoremseq3id2 10313* The last few partial sums of a sequence that ends with all zeroes (or any element which is a right-identity for  .+) are all the same. (Contributed by Mario Carneiro, 13-Jul-2013.) (Revised by Jim Kingdon, 12-Nov-2022.)
 |-  ( ( ph  /\  x  e.  S )  ->  ( x  .+  Z )  =  x )   &    |-  ( ph  ->  K  e.  ( ZZ>= `  M ) )   &    |-  ( ph  ->  N  e.  ( ZZ>= `  K ) )   &    |-  ( ph  ->  ( 
 seq M (  .+  ,  F ) `  K )  e.  S )   &    |-  (
 ( ph  /\  x  e.  ( ( K  +  1 ) ... N ) )  ->  ( F `
  x )  =  Z )   &    |-  ( ( ph  /\  x  e.  ( ZZ>= `  M ) )  ->  ( F `  x )  e.  S )   &    |-  (
 ( ph  /\  ( x  e.  S  /\  y  e.  S ) )  ->  ( x  .+  y )  e.  S )   =>    |-  ( ph  ->  ( 
 seq M (  .+  ,  F ) `  K )  =  (  seq M (  .+  ,  F ) `  N ) )
 
Theoremseq3homo 10314* Apply a homomorphism to a sequence. (Contributed by Jim Kingdon, 10-Oct-2022.)
 |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S )
 )  ->  ( x  .+  y )  e.  S )   &    |-  ( ( ph  /\  x  e.  ( ZZ>= `  M )
 )  ->  ( F `  x )  e.  S )   &    |-  ( ph  ->  N  e.  ( ZZ>= `  M )
 )   &    |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S )
 )  ->  ( H `  ( x  .+  y
 ) )  =  ( ( H `  x ) Q ( H `  y ) ) )   &    |-  ( ( ph  /\  x  e.  ( ZZ>= `  M )
 )  ->  ( H `  ( F `  x ) )  =  ( G `  x ) )   &    |-  ( ( ph  /\  x  e.  ( ZZ>= `  M )
 )  ->  ( G `  x )  e.  S )   &    |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S )
 )  ->  ( x Q y )  e.  S )   =>    |-  ( ph  ->  ( H `  (  seq M (  .+  ,  F ) `
  N ) )  =  (  seq M ( Q ,  G ) `
  N ) )
 
Theoremseq3z 10315* If the operation  .+ has an absorbing element  Z (a.k.a. zero element), then any sequence containing a  Z evaluates to  Z. (Contributed by Mario Carneiro, 27-May-2014.) (Revised by Jim Kingdon, 23-Apr-2023.)
 |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S )
 )  ->  ( x  .+  y )  e.  S )   &    |-  ( ( ph  /\  x  e.  ( ZZ>= `  M )
 )  ->  ( F `  x )  e.  S )   &    |-  ( ( ph  /\  x  e.  S )  ->  ( Z  .+  x )  =  Z )   &    |-  ( ( ph  /\  x  e.  S ) 
 ->  ( x  .+  Z )  =  Z )   &    |-  ( ph  ->  K  e.  ( M ... N ) )   &    |-  ( ph  ->  ( F `  K )  =  Z )   =>    |-  ( ph  ->  (  seq M (  .+  ,  F ) `  N )  =  Z )
 
Theoremseqfeq3 10316* Equality of series under different addition operations which agree on an additively closed subset. (Contributed by Stefan O'Rear, 21-Mar-2015.) (Revised by Mario Carneiro, 25-Apr-2016.)
 |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ( ph  /\  x  e.  ( ZZ>= `  M ) )  ->  ( F `  x )  e.  S )   &    |-  (
 ( ph  /\  ( x  e.  S  /\  y  e.  S ) )  ->  ( x  .+  y )  e.  S )   &    |-  (
 ( ph  /\  ( x  e.  S  /\  y  e.  S ) )  ->  ( x  .+  y )  =  ( x Q y ) )   =>    |-  ( ph  ->  seq
 M (  .+  ,  F )  =  seq M ( Q ,  F ) )
 
Theoremseq3distr 10317* The distributive property for series. (Contributed by Jim Kingdon, 10-Oct-2022.)
 |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S )
 )  ->  ( x  .+  y )  e.  S )   &    |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S )
 )  ->  ( C T ( x  .+  y ) )  =  ( ( C T x )  .+  ( C T y ) ) )   &    |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )   &    |-  ( ( ph  /\  x  e.  ( ZZ>= `  M ) )  ->  ( G `  x )  e.  S )   &    |-  (
 ( ph  /\  x  e.  ( ZZ>= `  M )
 )  ->  ( F `  x )  =  ( C T ( G `
  x ) ) )   &    |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S ) )  ->  ( x T y )  e.  S )   &    |-  ( ph  ->  C  e.  S )   =>    |-  ( ph  ->  ( 
 seq M (  .+  ,  F ) `  N )  =  ( C T (  seq M ( 
 .+  ,  G ) `  N ) ) )
 
Theoremser0 10318 The value of the partial sums in a zero-valued infinite series. (Contributed by Mario Carneiro, 31-Aug-2013.) (Revised by Mario Carneiro, 15-Dec-2014.)
 |-  Z  =  ( ZZ>= `  M )   =>    |-  ( N  e.  Z  ->  (  seq M (  +  ,  ( Z  X.  { 0 } ) ) `  N )  =  0 )
 
Theoremser0f 10319 A zero-valued infinite series is equal to the constant zero function. (Contributed by Mario Carneiro, 8-Feb-2014.)
 |-  Z  =  ( ZZ>= `  M )   =>    |-  ( M  e.  ZZ  ->  seq M (  +  ,  ( Z  X.  {
 0 } ) )  =  ( Z  X.  { 0 } ) )
 
Theoremfser0const 10320* Simplifying an expression which turns out just to be a constant zero sequence. (Contributed by Jim Kingdon, 16-Sep-2022.)
 |-  Z  =  ( ZZ>= `  M )   =>    |-  ( N  e.  Z  ->  ( n  e.  Z  |->  if ( n  <_  N ,  ( ( Z  X.  { 0 } ) `  n ) ,  0 ) )  =  ( Z  X.  { 0 } ) )
 
Theoremser3ge0 10321* A finite sum of nonnegative terms is nonnegative. (Contributed by Mario Carneiro, 8-Feb-2014.) (Revised by Mario Carneiro, 27-May-2014.)
 |-  ( ph  ->  N  e.  ( ZZ>= `  M )
 )   &    |-  ( ( ph  /\  k  e.  ( ZZ>= `  M )
 )  ->  ( F `  k )  e.  RR )   &    |-  ( ( ph  /\  k  e.  ( M ... N ) )  ->  0  <_  ( F `  k ) )   =>    |-  ( ph  ->  0  <_  (  seq M (  +  ,  F ) `
  N ) )
 
Theoremser3le 10322* Comparison of partial sums of two infinite series of reals. (Contributed by NM, 27-Dec-2005.) (Revised by Jim Kingdon, 23-Apr-2023.)
 |-  ( ph  ->  N  e.  ( ZZ>= `  M )
 )   &    |-  ( ( ph  /\  k  e.  ( ZZ>= `  M )
 )  ->  ( F `  k )  e.  RR )   &    |-  ( ( ph  /\  k  e.  ( ZZ>= `  M )
 )  ->  ( G `  k )  e.  RR )   &    |-  ( ( ph  /\  k  e.  ( ZZ>= `  M )
 )  ->  ( F `  k )  <_  ( G `  k ) )   =>    |-  ( ph  ->  (  seq M (  +  ,  F ) `  N )  <_  (  seq M (  +  ,  G ) `  N ) )
 
4.6.6  Integer powers
 
Syntaxcexp 10323 Extend class notation to include exponentiation of a complex number to an integer power.
 class  ^
 
Definitiondf-exp 10324* Define exponentiation to nonnegative integer powers. For example,  ( 5 ^ 2 )  =  2 5 (ex-exp 13110).

This definition is not meant to be used directly; instead, exp0 10328 and expp1 10331 provide the standard recursive definition. The up-arrow notation is used by Donald Knuth for iterated exponentiation (Science 194, 1235-1242, 1976) and is convenient for us since we don't have superscripts.

10-Jun-2005: The definition was extended to include zero exponents, so that  0 ^ 0  =  1 per the convention of Definition 10-4.1 of [Gleason] p. 134 (0exp0e1 10329).

4-Jun-2014: The definition was extended to include negative integer exponents. For example,  ( -u 3 ^
-u 2 )  =  ( 1  /  9
) (ex-exp 13110). The case  x  =  0 ,  y  <  0 gives the value  ( 1  /  0 ), so we will avoid this case in our theorems. (Contributed by Raph Levien, 20-May-2004.) (Revised by NM, 15-Oct-2004.)

 |- 
 ^  =  ( x  e.  CC ,  y  e.  ZZ  |->  if ( y  =  0 ,  1 ,  if ( 0  < 
 y ,  (  seq 1 (  x.  ,  ( NN  X.  { x }
 ) ) `  y
 ) ,  ( 1 
 /  (  seq 1
 (  x.  ,  ( NN  X.  { x }
 ) ) `  -u y
 ) ) ) ) )
 
Theoremexp3vallem 10325 Lemma for exp3val 10326. If we take a complex number apart from zero and raise it to a positive integer power, the result is apart from zero. (Contributed by Jim Kingdon, 7-Jun-2020.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  A #  0 )   &    |-  ( ph  ->  N  e.  NN )   =>    |-  ( ph  ->  ( 
 seq 1 (  x. 
 ,  ( NN  X.  { A } ) ) `
  N ) #  0 )
 
Theoremexp3val 10326 Value of exponentiation to integer powers. (Contributed by Jim Kingdon, 7-Jun-2020.)
 |-  ( ( A  e.  CC  /\  N  e.  ZZ  /\  ( A #  0  \/  0  <_  N )
 )  ->  ( A ^ N )  =  if ( N  =  0 ,  1 ,  if ( 0  <  N ,  (  seq 1
 (  x.  ,  ( NN  X.  { A }
 ) ) `  N ) ,  ( 1  /  (  seq 1
 (  x.  ,  ( NN  X.  { A }
 ) ) `  -u N ) ) ) ) )
 
Theoremexpnnval 10327 Value of exponentiation to positive integer powers. (Contributed by Mario Carneiro, 4-Jun-2014.)
 |-  ( ( A  e.  CC  /\  N  e.  NN )  ->  ( A ^ N )  =  (  seq 1 (  x.  ,  ( NN  X.  { A } ) ) `  N ) )
 
Theoremexp0 10328 Value of a complex number raised to the 0th power. Note that under our definition,  0 ^ 0  =  1, following the convention used by Gleason. Part of Definition 10-4.1 of [Gleason] p. 134. (Contributed by NM, 20-May-2004.) (Revised by Mario Carneiro, 4-Jun-2014.)
 |-  ( A  e.  CC  ->  ( A ^ 0
 )  =  1 )
 
Theorem0exp0e1 10329  0 ^
0  =  1 (common case). This is our convention. It follows the convention used by Gleason; see Part of Definition 10-4.1 of [Gleason] p. 134. (Contributed by David A. Wheeler, 8-Dec-2018.)
 |-  ( 0 ^ 0
 )  =  1
 
Theoremexp1 10330 Value of a complex number raised to the first power. (Contributed by NM, 20-Oct-2004.) (Revised by Mario Carneiro, 2-Jul-2013.)
 |-  ( A  e.  CC  ->  ( A ^ 1
 )  =  A )
 
Theoremexpp1 10331 Value of a complex number raised to a nonnegative integer power plus one. Part of Definition 10-4.1 of [Gleason] p. 134. (Contributed by NM, 20-May-2005.) (Revised by Mario Carneiro, 2-Jul-2013.)
 |-  ( ( A  e.  CC  /\  N  e.  NN0 )  ->  ( A ^
 ( N  +  1 ) )  =  ( ( A ^ N )  x.  A ) )
 
Theoremexpnegap0 10332 Value of a complex number raised to a negative integer power. (Contributed by Jim Kingdon, 8-Jun-2020.)
 |-  ( ( A  e.  CC  /\  A #  0  /\  N  e.  NN0 )  ->  ( A ^ -u N )  =  ( 1  /  ( A ^ N ) ) )
 
Theoremexpineg2 10333 Value of a complex number raised to a negative integer power. (Contributed by Jim Kingdon, 8-Jun-2020.)
 |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( N  e.  CC  /\  -u N  e.  NN0 ) )  ->  ( A ^ N )  =  ( 1  /  ( A ^ -u N ) ) )
 
Theoremexpn1ap0 10334 A number to the negative one power is the reciprocal. (Contributed by Jim Kingdon, 8-Jun-2020.)
 |-  ( ( A  e.  CC  /\  A #  0 ) 
 ->  ( A ^ -u 1
 )  =  ( 1 
 /  A ) )
 
Theoremexpcllem 10335* Lemma for proving nonnegative integer exponentiation closure laws. (Contributed by NM, 14-Dec-2005.)
 |-  F  C_  CC   &    |-  ( ( x  e.  F  /\  y  e.  F )  ->  ( x  x.  y )  e.  F )   &    |-  1  e.  F   =>    |-  (
 ( A  e.  F  /\  B  e.  NN0 )  ->  ( A ^ B )  e.  F )
 
Theoremexpcl2lemap 10336* Lemma for proving integer exponentiation closure laws. (Contributed by Jim Kingdon, 8-Jun-2020.)
 |-  F  C_  CC   &    |-  ( ( x  e.  F  /\  y  e.  F )  ->  ( x  x.  y )  e.  F )   &    |-  1  e.  F   &    |-  (
 ( x  e.  F  /\  x #  0 )  ->  ( 1  /  x )  e.  F )   =>    |-  (
 ( A  e.  F  /\  A #  0  /\  B  e.  ZZ )  ->  ( A ^ B )  e.  F )
 
Theoremnnexpcl 10337 Closure of exponentiation of nonnegative integers. (Contributed by NM, 16-Dec-2005.)
 |-  ( ( A  e.  NN  /\  N  e.  NN0 )  ->  ( A ^ N )  e.  NN )
 
Theoremnn0expcl 10338 Closure of exponentiation of nonnegative integers. (Contributed by NM, 14-Dec-2005.)
 |-  ( ( A  e.  NN0  /\  N  e.  NN0 )  ->  ( A ^ N )  e.  NN0 )
 
Theoremzexpcl 10339 Closure of exponentiation of integers. (Contributed by NM, 16-Dec-2005.)
 |-  ( ( A  e.  ZZ  /\  N  e.  NN0 )  ->  ( A ^ N )  e.  ZZ )
 
Theoremqexpcl 10340 Closure of exponentiation of rationals. (Contributed by NM, 16-Dec-2005.)
 |-  ( ( A  e.  QQ  /\  N  e.  NN0 )  ->  ( A ^ N )  e.  QQ )
 
Theoremreexpcl 10341 Closure of exponentiation of reals. (Contributed by NM, 14-Dec-2005.)
 |-  ( ( A  e.  RR  /\  N  e.  NN0 )  ->  ( A ^ N )  e.  RR )
 
Theoremexpcl 10342 Closure law for nonnegative integer exponentiation. (Contributed by NM, 26-May-2005.)
 |-  ( ( A  e.  CC  /\  N  e.  NN0 )  ->  ( A ^ N )  e.  CC )
 
Theoremrpexpcl 10343 Closure law for exponentiation of positive reals. (Contributed by NM, 24-Feb-2008.) (Revised by Mario Carneiro, 9-Sep-2014.)
 |-  ( ( A  e.  RR+  /\  N  e.  ZZ )  ->  ( A ^ N )  e.  RR+ )
 
Theoremreexpclzap 10344 Closure of exponentiation of reals. (Contributed by Jim Kingdon, 9-Jun-2020.)
 |-  ( ( A  e.  RR  /\  A #  0  /\  N  e.  ZZ )  ->  ( A ^ N )  e.  RR )
 
Theoremqexpclz 10345 Closure of exponentiation of rational numbers. (Contributed by Mario Carneiro, 9-Sep-2014.)
 |-  ( ( A  e.  QQ  /\  A  =/=  0  /\  N  e.  ZZ )  ->  ( A ^ N )  e.  QQ )
 
Theoremm1expcl2 10346 Closure of exponentiation of negative one. (Contributed by Mario Carneiro, 18-Jun-2015.)
 |-  ( N  e.  ZZ  ->  ( -u 1 ^ N )  e.  { -u 1 ,  1 } )
 
Theoremm1expcl 10347 Closure of exponentiation of negative one. (Contributed by Mario Carneiro, 18-Jun-2015.)
 |-  ( N  e.  ZZ  ->  ( -u 1 ^ N )  e.  ZZ )
 
Theoremexpclzaplem 10348* Closure law for integer exponentiation. Lemma for expclzap 10349 and expap0i 10356. (Contributed by Jim Kingdon, 9-Jun-2020.)
 |-  ( ( A  e.  CC  /\  A #  0  /\  N  e.  ZZ )  ->  ( A ^ N )  e.  { z  e.  CC  |  z #  0 } )
 
Theoremexpclzap 10349 Closure law for integer exponentiation. (Contributed by Jim Kingdon, 9-Jun-2020.)
 |-  ( ( A  e.  CC  /\  A #  0  /\  N  e.  ZZ )  ->  ( A ^ N )  e.  CC )
 
Theoremnn0expcli 10350 Closure of exponentiation of nonnegative integers. (Contributed by Mario Carneiro, 17-Apr-2015.)
 |-  A  e.  NN0   &    |-  N  e.  NN0   =>    |-  ( A ^ N )  e.  NN0
 
Theoremnn0sqcl 10351 The square of a nonnegative integer is a nonnegative integer. (Contributed by Stefan O'Rear, 16-Oct-2014.)
 |-  ( A  e.  NN0  ->  ( A ^ 2 )  e.  NN0 )
 
Theoremexpm1t 10352 Exponentiation in terms of predecessor exponent. (Contributed by NM, 19-Dec-2005.)
 |-  ( ( A  e.  CC  /\  N  e.  NN )  ->  ( A ^ N )  =  (
 ( A ^ ( N  -  1 ) )  x.  A ) )
 
Theorem1exp 10353 Value of one raised to a nonnegative integer power. (Contributed by NM, 15-Dec-2005.) (Revised by Mario Carneiro, 4-Jun-2014.)
 |-  ( N  e.  ZZ  ->  ( 1 ^ N )  =  1 )
 
Theoremexpap0 10354 Positive integer exponentiation is apart from zero iff its mantissa is apart from zero. That it is easier to prove this first, and then prove expeq0 10355 in terms of it, rather than the other way around, is perhaps an illustration of the maxim "In constructive analysis, the apartness is more basic [ than ] equality." (Remark of [Geuvers], p. 1). (Contributed by Jim Kingdon, 10-Jun-2020.)
 |-  ( ( A  e.  CC  /\  N  e.  NN )  ->  ( ( A ^ N ) #  0  <->  A #  0 ) )
 
Theoremexpeq0 10355 Positive integer exponentiation is 0 iff its mantissa is 0. (Contributed by NM, 23-Feb-2005.)
 |-  ( ( A  e.  CC  /\  N  e.  NN )  ->  ( ( A ^ N )  =  0  <->  A  =  0
 ) )
 
Theoremexpap0i 10356 Integer exponentiation is apart from zero if its mantissa is apart from zero. (Contributed by Jim Kingdon, 10-Jun-2020.)
 |-  ( ( A  e.  CC  /\  A #  0  /\  N  e.  ZZ )  ->  ( A ^ N ) #  0 )
 
Theoremexpgt0 10357 Nonnegative integer exponentiation with a positive mantissa is positive. (Contributed by NM, 16-Dec-2005.) (Revised by Mario Carneiro, 4-Jun-2014.)
 |-  ( ( A  e.  RR  /\  N  e.  ZZ  /\  0  <  A ) 
 ->  0  <  ( A ^ N ) )
 
Theoremexpnegzap 10358 Value of a complex number raised to a negative power. (Contributed by Mario Carneiro, 4-Jun-2014.)
 |-  ( ( A  e.  CC  /\  A #  0  /\  N  e.  ZZ )  ->  ( A ^ -u N )  =  ( 1  /  ( A ^ N ) ) )
 
Theorem0exp 10359 Value of zero raised to a positive integer power. (Contributed by NM, 19-Aug-2004.)
 |-  ( N  e.  NN  ->  ( 0 ^ N )  =  0 )
 
Theoremexpge0 10360 Nonnegative integer exponentiation with a nonnegative mantissa is nonnegative. (Contributed by NM, 16-Dec-2005.) (Revised by Mario Carneiro, 4-Jun-2014.)
 |-  ( ( A  e.  RR  /\  N  e.  NN0  /\  0  <_  A )  ->  0  <_  ( A ^ N ) )
 
Theoremexpge1 10361 Nonnegative integer exponentiation with a mantissa greater than or equal to 1 is greater than or equal to 1. (Contributed by NM, 21-Feb-2005.) (Revised by Mario Carneiro, 4-Jun-2014.)
 |-  ( ( A  e.  RR  /\  N  e.  NN0  /\  1  <_  A )  ->  1  <_  ( A ^ N ) )
 
Theoremexpgt1 10362 Positive integer exponentiation with a mantissa greater than 1 is greater than 1. (Contributed by NM, 13-Feb-2005.) (Revised by Mario Carneiro, 4-Jun-2014.)
 |-  ( ( A  e.  RR  /\  N  e.  NN  /\  1  <  A ) 
 ->  1  <  ( A ^ N ) )
 
Theoremmulexp 10363 Positive integer exponentiation of a product. Proposition 10-4.2(c) of [Gleason] p. 135, restricted to nonnegative integer exponents. (Contributed by NM, 13-Feb-2005.)
 |-  ( ( A  e.  CC  /\  B  e.  CC  /\  N  e.  NN0 )  ->  ( ( A  x.  B ) ^ N )  =  ( ( A ^ N )  x.  ( B ^ N ) ) )
 
Theoremmulexpzap 10364 Integer exponentiation of a product. (Contributed by Jim Kingdon, 10-Jun-2020.)
 |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( B  e.  CC  /\  B #  0 )  /\  N  e.  ZZ )  ->  ( ( A  x.  B ) ^ N )  =  ( ( A ^ N )  x.  ( B ^ N ) ) )
 
Theoremexprecap 10365 Nonnegative integer exponentiation of a reciprocal. (Contributed by Jim Kingdon, 10-Jun-2020.)
 |-  ( ( A  e.  CC  /\  A #  0  /\  N  e.  ZZ )  ->  ( ( 1  /  A ) ^ N )  =  ( 1  /  ( A ^ N ) ) )
 
Theoremexpadd 10366 Sum of exponents law for nonnegative integer exponentiation. Proposition 10-4.2(a) of [Gleason] p. 135. (Contributed by NM, 30-Nov-2004.)
 |-  ( ( A  e.  CC  /\  M  e.  NN0  /\  N  e.  NN0 )  ->  ( A ^ ( M  +  N )
 )  =  ( ( A ^ M )  x.  ( A ^ N ) ) )
 
Theoremexpaddzaplem 10367 Lemma for expaddzap 10368. (Contributed by Jim Kingdon, 10-Jun-2020.)
 |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  ->  ( A ^ ( M  +  N ) )  =  ( ( A ^ M )  x.  ( A ^ N ) ) )
 
Theoremexpaddzap 10368 Sum of exponents law for integer exponentiation. (Contributed by Jim Kingdon, 10-Jun-2020.)
 |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) )  ->  ( A ^ ( M  +  N ) )  =  ( ( A ^ M )  x.  ( A ^ N ) ) )
 
Theoremexpmul 10369 Product of exponents law for positive integer exponentiation. Proposition 10-4.2(b) of [Gleason] p. 135, restricted to nonnegative integer exponents. (Contributed by NM, 4-Jan-2006.)
 |-  ( ( A  e.  CC  /\  M  e.  NN0  /\  N  e.  NN0 )  ->  ( A ^ ( M  x.  N ) )  =  ( ( A ^ M ) ^ N ) )
 
Theoremexpmulzap 10370 Product of exponents law for integer exponentiation. (Contributed by Jim Kingdon, 11-Jun-2020.)
 |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) )  ->  ( A ^ ( M  x.  N ) )  =  ( ( A ^ M ) ^ N ) )
 
Theoremm1expeven 10371 Exponentiation of negative one to an even power. (Contributed by Scott Fenton, 17-Jan-2018.)
 |-  ( N  e.  ZZ  ->  ( -u 1 ^ (
 2  x.  N ) )  =  1 )
 
Theoremexpsubap 10372 Exponent subtraction law for nonnegative integer exponentiation. (Contributed by Jim Kingdon, 11-Jun-2020.)
 |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) )  ->  ( A ^ ( M  -  N ) )  =  ( ( A ^ M )  /  ( A ^ N ) ) )
 
Theoremexpp1zap 10373 Value of a nonzero complex number raised to an integer power plus one. (Contributed by Jim Kingdon, 11-Jun-2020.)
 |-  ( ( A  e.  CC  /\  A #  0  /\  N  e.  ZZ )  ->  ( A ^ ( N  +  1 )
 )  =  ( ( A ^ N )  x.  A ) )
 
Theoremexpm1ap 10374 Value of a complex number raised to an integer power minus one. (Contributed by Jim Kingdon, 11-Jun-2020.)
 |-  ( ( A  e.  CC  /\  A #  0  /\  N  e.  ZZ )  ->  ( A ^ ( N  -  1 ) )  =  ( ( A ^ N )  /  A ) )
 
Theoremexpdivap 10375 Nonnegative integer exponentiation of a quotient. (Contributed by Jim Kingdon, 11-Jun-2020.)
 |-  ( ( A  e.  CC  /\  ( B  e.  CC  /\  B #  0 ) 
 /\  N  e.  NN0 )  ->  ( ( A 
 /  B ) ^ N )  =  (
 ( A ^ N )  /  ( B ^ N ) ) )
 
Theoremltexp2a 10376 Ordering relationship for exponentiation. (Contributed by NM, 2-Aug-2006.) (Revised by Mario Carneiro, 4-Jun-2014.)
 |-  ( ( ( A  e.  RR  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( 1  <  A  /\  M  <  N ) )  ->  ( A ^ M )  <  ( A ^ N ) )
 
Theoremleexp2a 10377 Weak ordering relationship for exponentiation. (Contributed by NM, 14-Dec-2005.) (Revised by Mario Carneiro, 5-Jun-2014.)
 |-  ( ( A  e.  RR  /\  1  <_  A  /\  N  e.  ( ZZ>= `  M ) )  ->  ( A ^ M ) 
 <_  ( A ^ N ) )
 
Theoremleexp2r 10378 Weak ordering relationship for exponentiation. (Contributed by Paul Chapman, 14-Jan-2008.) (Revised by Mario Carneiro, 29-Apr-2014.)
 |-  ( ( ( A  e.  RR  /\  M  e.  NN0  /\  N  e.  ( ZZ>= `  M )
 )  /\  ( 0  <_  A  /\  A  <_  1 ) )  ->  ( A ^ N )  <_  ( A ^ M ) )
 
Theoremleexp1a 10379 Weak mantissa ordering relationship for exponentiation. (Contributed by NM, 18-Dec-2005.)
 |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  N  e.  NN0 )  /\  ( 0 
 <_  A  /\  A  <_  B ) )  ->  ( A ^ N )  <_  ( B ^ N ) )
 
Theoremexple1 10380 Nonnegative integer exponentiation with a mantissa between 0 and 1 inclusive is less than or equal to 1. (Contributed by Paul Chapman, 29-Dec-2007.) (Revised by Mario Carneiro, 5-Jun-2014.)
 |-  ( ( ( A  e.  RR  /\  0  <_  A  /\  A  <_  1 )  /\  N  e.  NN0 )  ->  ( A ^ N )  <_  1
 )
 
Theoremexpubnd 10381 An upper bound on  A ^ N when  2  <_  A. (Contributed by NM, 19-Dec-2005.)
 |-  ( ( A  e.  RR  /\  N  e.  NN0  /\  2  <_  A )  ->  ( A ^ N )  <_  ( ( 2 ^ N )  x.  ( ( A  -  1 ) ^ N ) ) )
 
Theoremsqval 10382 Value of the square of a complex number. (Contributed by Raph Levien, 10-Apr-2004.)
 |-  ( A  e.  CC  ->  ( A ^ 2
 )  =  ( A  x.  A ) )
 
Theoremsqneg 10383 The square of the negative of a number.) (Contributed by NM, 15-Jan-2006.)
 |-  ( A  e.  CC  ->  ( -u A ^ 2
 )  =  ( A ^ 2 ) )
 
Theoremsqsubswap 10384 Swap the order of subtraction in a square. (Contributed by Scott Fenton, 10-Jun-2013.)
 |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  -  B ) ^
 2 )  =  ( ( B  -  A ) ^ 2 ) )
 
Theoremsqcl 10385 Closure of square. (Contributed by NM, 10-Aug-1999.)
 |-  ( A  e.  CC  ->  ( A ^ 2
 )  e.  CC )
 
Theoremsqmul 10386 Distribution of square over multiplication. (Contributed by NM, 21-Mar-2008.)
 |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  x.  B ) ^
 2 )  =  ( ( A ^ 2
 )  x.  ( B ^ 2 ) ) )
 
Theoremsqeq0 10387 A number is zero iff its square is zero. (Contributed by NM, 11-Mar-2006.)
 |-  ( A  e.  CC  ->  ( ( A ^
 2 )  =  0  <->  A  =  0 )
 )
 
Theoremsqdivap 10388 Distribution of square over division. (Contributed by Jim Kingdon, 11-Jun-2020.)
 |-  ( ( A  e.  CC  /\  B  e.  CC  /\  B #  0 )  ->  ( ( A  /  B ) ^ 2
 )  =  ( ( A ^ 2 ) 
 /  ( B ^
 2 ) ) )
 
Theoremsqne0 10389 A number is nonzero iff its square is nonzero. See also sqap0 10390 which is the same but with not equal changed to apart. (Contributed by NM, 11-Mar-2006.)
 |-  ( A  e.  CC  ->  ( ( A ^
 2 )  =/=  0  <->  A  =/=  0 ) )
 
Theoremsqap0 10390 A number is apart from zero iff its square is apart from zero. (Contributed by Jim Kingdon, 13-Aug-2021.)
 |-  ( A  e.  CC  ->  ( ( A ^
 2 ) #  0  <->  A #  0 )
 )
 
Theoremresqcl 10391 Closure of the square of a real number. (Contributed by NM, 18-Oct-1999.)
 |-  ( A  e.  RR  ->  ( A ^ 2
 )  e.  RR )
 
Theoremsqgt0ap 10392 The square of a nonzero real is positive. (Contributed by Jim Kingdon, 11-Jun-2020.)
 |-  ( ( A  e.  RR  /\  A #  0 ) 
 ->  0  <  ( A ^ 2 ) )
 
Theoremnnsqcl 10393 The naturals are closed under squaring. (Contributed by Scott Fenton, 29-Mar-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
 |-  ( A  e.  NN  ->  ( A ^ 2
 )  e.  NN )
 
Theoremzsqcl 10394 Integers are closed under squaring. (Contributed by Scott Fenton, 18-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
 |-  ( A  e.  ZZ  ->  ( A ^ 2
 )  e.  ZZ )
 
Theoremqsqcl 10395 The square of a rational is rational. (Contributed by Stefan O'Rear, 15-Sep-2014.)
 |-  ( A  e.  QQ  ->  ( A ^ 2
 )  e.  QQ )
 
Theoremsq11 10396 The square function is one-to-one for nonnegative reals. Also see sq11ap 10489 which would easily follow from this given excluded middle, but which for us is proved another way. (Contributed by NM, 8-Apr-2001.) (Proof shortened by Mario Carneiro, 28-May-2016.)
 |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B ) )  ->  ( ( A ^
 2 )  =  ( B ^ 2 )  <->  A  =  B )
 )
 
Theoremlt2sq 10397 The square function on nonnegative reals is strictly monotonic. (Contributed by NM, 24-Feb-2006.)
 |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B ) )  ->  ( A  <  B  <->  ( A ^
 2 )  <  ( B ^ 2 ) ) )
 
Theoremle2sq 10398 The square function on nonnegative reals is monotonic. (Contributed by NM, 18-Oct-1999.)
 |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B ) )  ->  ( A  <_  B  <->  ( A ^
 2 )  <_  ( B ^ 2 ) ) )
 
Theoremle2sq2 10399 The square of a 'less than or equal to' ordering. (Contributed by NM, 21-Mar-2008.)
 |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  A  <_  B ) )  ->  ( A ^ 2 ) 
 <_  ( B ^ 2
 ) )
 
Theoremsqge0 10400 A square of a real is nonnegative. (Contributed by NM, 18-Oct-1999.)
 |-  ( A  e.  RR  ->  0  <_  ( A ^ 2 ) )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13441
  Copyright terms: Public domain < Previous  Next >