ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-prds Unicode version

Definition df-prds 12581
Description: Define a structure product. This can be a product of groups, rings, modules, or ordered topological fields; any unused components will have garbage in them but this is usually not relevant for the purpose of inheriting the structures present in the factors. (Contributed by Stefan O'Rear, 3-Jan-2015.) (Revised by Thierry Arnoux, 15-Jun-2019.)
Assertion
Ref Expression
df-prds  |-  X_s  =  (
s  e.  _V , 
r  e.  _V  |->  [_ X_ x  e.  dom  r
( Base `  ( r `  x ) )  / 
v ]_ [_ ( f  e.  v ,  g  e.  v  |->  X_ x  e.  dom  r ( ( f `  x ) ( Hom  `  (
r `  x )
) ( g `  x ) ) )  /  h ]_ (
( { <. ( Base `  ndx ) ,  v >. ,  <. ( +g  `  ndx ) ,  ( f  e.  v ,  g  e.  v 
|->  ( x  e.  dom  r  |->  ( ( f `
 x ) ( +g  `  ( r `
 x ) ) ( g `  x
) ) ) )
>. ,  <. ( .r
`  ndx ) ,  ( f  e.  v ,  g  e.  v  |->  ( x  e.  dom  r  |->  ( ( f `  x ) ( .r
`  ( r `  x ) ) ( g `  x ) ) ) ) >. }  u.  { <. (Scalar ` 
ndx ) ,  s
>. ,  <. ( .s
`  ndx ) ,  ( f  e.  ( Base `  s ) ,  g  e.  v  |->  ( x  e.  dom  r  |->  ( f ( .s `  ( r `  x
) ) ( g `
 x ) ) ) ) >. ,  <. ( .i `  ndx ) ,  ( f  e.  v ,  g  e.  v  |->  ( s  gsumg  ( x  e.  dom  r  |->  ( ( f `  x
) ( .i `  ( r `  x
) ) ( g `
 x ) ) ) ) ) >. } )  u.  ( { <. (TopSet `  ndx ) ,  ( Xt_ `  ( TopOpen  o.  r )
) >. ,  <. ( le `  ndx ) ,  { <. f ,  g
>.  |  ( {
f ,  g } 
C_  v  /\  A. x  e.  dom  r ( f `  x ) ( le `  (
r `  x )
) ( g `  x ) ) }
>. ,  <. ( dist `  ndx ) ,  ( f  e.  v ,  g  e.  v  |->  sup ( ( ran  (
x  e.  dom  r  |->  ( ( f `  x ) ( dist `  ( r `  x
) ) ( g `
 x ) ) )  u.  { 0 } ) ,  RR* ,  <  ) ) >. }  u.  { <. ( Hom  `  ndx ) ,  h >. ,  <. (comp ` 
ndx ) ,  ( a  e.  ( v  X.  v ) ,  c  e.  v  |->  ( d  e.  ( c h ( 2nd `  a
) ) ,  e  e.  ( h `  a )  |->  ( x  e.  dom  r  |->  ( ( d `  x
) ( <. (
( 1st `  a
) `  x ) ,  ( ( 2nd `  a ) `  x
) >. (comp `  (
r `  x )
) ( c `  x ) ) ( e `  x ) ) ) ) )
>. } ) ) )
Distinct variable group:    a, c, d, e, f, g, h, s, r, x, v

Detailed syntax breakdown of Definition df-prds
StepHypRef Expression
1 cprds 12579 . 2  class  X_s
2 vs . . 3  setvar  s
3 vr . . 3  setvar  r
4 cvv 2726 . . 3  class  _V
5 vv . . . 4  setvar  v
6 vx . . . . 5  setvar  x
73cv 1342 . . . . . 6  class  r
87cdm 4604 . . . . 5  class  dom  r
96cv 1342 . . . . . . 7  class  x
109, 7cfv 5188 . . . . . 6  class  ( r `
 x )
11 cbs 12394 . . . . . 6  class  Base
1210, 11cfv 5188 . . . . 5  class  ( Base `  ( r `  x
) )
136, 8, 12cixp 6664 . . . 4  class  X_ x  e.  dom  r ( Base `  ( r `  x
) )
14 vh . . . . 5  setvar  h
15 vf . . . . . 6  setvar  f
16 vg . . . . . 6  setvar  g
175cv 1342 . . . . . 6  class  v
1815cv 1342 . . . . . . . . 9  class  f
199, 18cfv 5188 . . . . . . . 8  class  ( f `
 x )
2016cv 1342 . . . . . . . . 9  class  g
219, 20cfv 5188 . . . . . . . 8  class  ( g `
 x )
22 chom 12468 . . . . . . . . 9  class  Hom
2310, 22cfv 5188 . . . . . . . 8  class  ( Hom  `  ( r `  x
) )
2419, 21, 23co 5842 . . . . . . 7  class  ( ( f `  x ) ( Hom  `  (
r `  x )
) ( g `  x ) )
256, 8, 24cixp 6664 . . . . . 6  class  X_ x  e.  dom  r ( ( f `  x ) ( Hom  `  (
r `  x )
) ( g `  x ) )
2615, 16, 17, 17, 25cmpo 5844 . . . . 5  class  ( f  e.  v ,  g  e.  v  |->  X_ x  e.  dom  r ( ( f `  x ) ( Hom  `  (
r `  x )
) ( g `  x ) ) )
27 cnx 12391 . . . . . . . . . 10  class  ndx
2827, 11cfv 5188 . . . . . . . . 9  class  ( Base `  ndx )
2928, 17cop 3579 . . . . . . . 8  class  <. ( Base `  ndx ) ,  v >.
30 cplusg 12457 . . . . . . . . . 10  class  +g
3127, 30cfv 5188 . . . . . . . . 9  class  ( +g  ` 
ndx )
3210, 30cfv 5188 . . . . . . . . . . . 12  class  ( +g  `  ( r `  x
) )
3319, 21, 32co 5842 . . . . . . . . . . 11  class  ( ( f `  x ) ( +g  `  (
r `  x )
) ( g `  x ) )
346, 8, 33cmpt 4043 . . . . . . . . . 10  class  ( x  e.  dom  r  |->  ( ( f `  x
) ( +g  `  (
r `  x )
) ( g `  x ) ) )
3515, 16, 17, 17, 34cmpo 5844 . . . . . . . . 9  class  ( f  e.  v ,  g  e.  v  |->  ( x  e.  dom  r  |->  ( ( f `  x
) ( +g  `  (
r `  x )
) ( g `  x ) ) ) )
3631, 35cop 3579 . . . . . . . 8  class  <. ( +g  `  ndx ) ,  ( f  e.  v ,  g  e.  v 
|->  ( x  e.  dom  r  |->  ( ( f `
 x ) ( +g  `  ( r `
 x ) ) ( g `  x
) ) ) )
>.
37 cmulr 12458 . . . . . . . . . 10  class  .r
3827, 37cfv 5188 . . . . . . . . 9  class  ( .r
`  ndx )
3910, 37cfv 5188 . . . . . . . . . . . 12  class  ( .r
`  ( r `  x ) )
4019, 21, 39co 5842 . . . . . . . . . . 11  class  ( ( f `  x ) ( .r `  (
r `  x )
) ( g `  x ) )
416, 8, 40cmpt 4043 . . . . . . . . . 10  class  ( x  e.  dom  r  |->  ( ( f `  x
) ( .r `  ( r `  x
) ) ( g `
 x ) ) )
4215, 16, 17, 17, 41cmpo 5844 . . . . . . . . 9  class  ( f  e.  v ,  g  e.  v  |->  ( x  e.  dom  r  |->  ( ( f `  x
) ( .r `  ( r `  x
) ) ( g `
 x ) ) ) )
4338, 42cop 3579 . . . . . . . 8  class  <. ( .r `  ndx ) ,  ( f  e.  v ,  g  e.  v 
|->  ( x  e.  dom  r  |->  ( ( f `
 x ) ( .r `  ( r `
 x ) ) ( g `  x
) ) ) )
>.
4429, 36, 43ctp 3578 . . . . . . 7  class  { <. (
Base `  ndx ) ,  v >. ,  <. ( +g  `  ndx ) ,  ( f  e.  v ,  g  e.  v 
|->  ( x  e.  dom  r  |->  ( ( f `
 x ) ( +g  `  ( r `
 x ) ) ( g `  x
) ) ) )
>. ,  <. ( .r
`  ndx ) ,  ( f  e.  v ,  g  e.  v  |->  ( x  e.  dom  r  |->  ( ( f `  x ) ( .r
`  ( r `  x ) ) ( g `  x ) ) ) ) >. }
45 csca 12460 . . . . . . . . . 10  class Scalar
4627, 45cfv 5188 . . . . . . . . 9  class  (Scalar `  ndx )
472cv 1342 . . . . . . . . 9  class  s
4846, 47cop 3579 . . . . . . . 8  class  <. (Scalar ` 
ndx ) ,  s
>.
49 cvsca 12461 . . . . . . . . . 10  class  .s
5027, 49cfv 5188 . . . . . . . . 9  class  ( .s
`  ndx )
5147, 11cfv 5188 . . . . . . . . . 10  class  ( Base `  s )
5210, 49cfv 5188 . . . . . . . . . . . 12  class  ( .s
`  ( r `  x ) )
5318, 21, 52co 5842 . . . . . . . . . . 11  class  ( f ( .s `  (
r `  x )
) ( g `  x ) )
546, 8, 53cmpt 4043 . . . . . . . . . 10  class  ( x  e.  dom  r  |->  ( f ( .s `  ( r `  x
) ) ( g `
 x ) ) )
5515, 16, 51, 17, 54cmpo 5844 . . . . . . . . 9  class  ( f  e.  ( Base `  s
) ,  g  e.  v  |->  ( x  e. 
dom  r  |->  ( f ( .s `  (
r `  x )
) ( g `  x ) ) ) )
5650, 55cop 3579 . . . . . . . 8  class  <. ( .s `  ndx ) ,  ( f  e.  (
Base `  s ) ,  g  e.  v  |->  ( x  e.  dom  r  |->  ( f ( .s `  ( r `
 x ) ) ( g `  x
) ) ) )
>.
57 cip 12462 . . . . . . . . . 10  class  .i
5827, 57cfv 5188 . . . . . . . . 9  class  ( .i
`  ndx )
5910, 57cfv 5188 . . . . . . . . . . . . 13  class  ( .i
`  ( r `  x ) )
6019, 21, 59co 5842 . . . . . . . . . . . 12  class  ( ( f `  x ) ( .i `  (
r `  x )
) ( g `  x ) )
616, 8, 60cmpt 4043 . . . . . . . . . . 11  class  ( x  e.  dom  r  |->  ( ( f `  x
) ( .i `  ( r `  x
) ) ( g `
 x ) ) )
62 cgsu 12574 . . . . . . . . . . 11  class  gsumg
6347, 61, 62co 5842 . . . . . . . . . 10  class  ( s 
gsumg  ( x  e.  dom  r  |->  ( ( f `
 x ) ( .i `  ( r `
 x ) ) ( g `  x
) ) ) )
6415, 16, 17, 17, 63cmpo 5844 . . . . . . . . 9  class  ( f  e.  v ,  g  e.  v  |->  ( s 
gsumg  ( x  e.  dom  r  |->  ( ( f `
 x ) ( .i `  ( r `
 x ) ) ( g `  x
) ) ) ) )
6558, 64cop 3579 . . . . . . . 8  class  <. ( .i `  ndx ) ,  ( f  e.  v ,  g  e.  v 
|->  ( s  gsumg  ( x  e.  dom  r  |->  ( ( f `
 x ) ( .i `  ( r `
 x ) ) ( g `  x
) ) ) ) ) >.
6648, 56, 65ctp 3578 . . . . . . 7  class  { <. (Scalar `  ndx ) ,  s
>. ,  <. ( .s
`  ndx ) ,  ( f  e.  ( Base `  s ) ,  g  e.  v  |->  ( x  e.  dom  r  |->  ( f ( .s `  ( r `  x
) ) ( g `
 x ) ) ) ) >. ,  <. ( .i `  ndx ) ,  ( f  e.  v ,  g  e.  v  |->  ( s  gsumg  ( x  e.  dom  r  |->  ( ( f `  x
) ( .i `  ( r `  x
) ) ( g `
 x ) ) ) ) ) >. }
6744, 66cun 3114 . . . . . 6  class  ( {
<. ( Base `  ndx ) ,  v >. , 
<. ( +g  `  ndx ) ,  ( f  e.  v ,  g  e.  v  |->  ( x  e. 
dom  r  |->  ( ( f `  x ) ( +g  `  (
r `  x )
) ( g `  x ) ) ) ) >. ,  <. ( .r `  ndx ) ,  ( f  e.  v ,  g  e.  v 
|->  ( x  e.  dom  r  |->  ( ( f `
 x ) ( .r `  ( r `
 x ) ) ( g `  x
) ) ) )
>. }  u.  { <. (Scalar `  ndx ) ,  s
>. ,  <. ( .s
`  ndx ) ,  ( f  e.  ( Base `  s ) ,  g  e.  v  |->  ( x  e.  dom  r  |->  ( f ( .s `  ( r `  x
) ) ( g `
 x ) ) ) ) >. ,  <. ( .i `  ndx ) ,  ( f  e.  v ,  g  e.  v  |->  ( s  gsumg  ( x  e.  dom  r  |->  ( ( f `  x
) ( .i `  ( r `  x
) ) ( g `
 x ) ) ) ) ) >. } )
68 cts 12463 . . . . . . . . . 10  class TopSet
6927, 68cfv 5188 . . . . . . . . 9  class  (TopSet `  ndx )
70 ctopn 12557 . . . . . . . . . . 11  class  TopOpen
7170, 7ccom 4608 . . . . . . . . . 10  class  ( TopOpen  o.  r )
72 cpt 12572 . . . . . . . . . 10  class  Xt_
7371, 72cfv 5188 . . . . . . . . 9  class  ( Xt_ `  ( TopOpen  o.  r )
)
7469, 73cop 3579 . . . . . . . 8  class  <. (TopSet ` 
ndx ) ,  (
Xt_ `  ( TopOpen  o.  r
) ) >.
75 cple 12464 . . . . . . . . . 10  class  le
7627, 75cfv 5188 . . . . . . . . 9  class  ( le
`  ndx )
7718, 20cpr 3577 . . . . . . . . . . . 12  class  { f ,  g }
7877, 17wss 3116 . . . . . . . . . . 11  wff  { f ,  g }  C_  v
7910, 75cfv 5188 . . . . . . . . . . . . 13  class  ( le
`  ( r `  x ) )
8019, 21, 79wbr 3982 . . . . . . . . . . . 12  wff  ( f `
 x ) ( le `  ( r `
 x ) ) ( g `  x
)
8180, 6, 8wral 2444 . . . . . . . . . . 11  wff  A. x  e.  dom  r ( f `
 x ) ( le `  ( r `
 x ) ) ( g `  x
)
8278, 81wa 103 . . . . . . . . . 10  wff  ( { f ,  g } 
C_  v  /\  A. x  e.  dom  r ( f `  x ) ( le `  (
r `  x )
) ( g `  x ) )
8382, 15, 16copab 4042 . . . . . . . . 9  class  { <. f ,  g >.  |  ( { f ,  g }  C_  v  /\  A. x  e.  dom  r
( f `  x
) ( le `  ( r `  x
) ) ( g `
 x ) ) }
8476, 83cop 3579 . . . . . . . 8  class  <. ( le `  ndx ) ,  { <. f ,  g
>.  |  ( {
f ,  g } 
C_  v  /\  A. x  e.  dom  r ( f `  x ) ( le `  (
r `  x )
) ( g `  x ) ) }
>.
85 cds 12466 . . . . . . . . . 10  class  dist
8627, 85cfv 5188 . . . . . . . . 9  class  ( dist `  ndx )
8710, 85cfv 5188 . . . . . . . . . . . . . . 15  class  ( dist `  ( r `  x
) )
8819, 21, 87co 5842 . . . . . . . . . . . . . 14  class  ( ( f `  x ) ( dist `  (
r `  x )
) ( g `  x ) )
896, 8, 88cmpt 4043 . . . . . . . . . . . . 13  class  ( x  e.  dom  r  |->  ( ( f `  x
) ( dist `  (
r `  x )
) ( g `  x ) ) )
9089crn 4605 . . . . . . . . . . . 12  class  ran  (
x  e.  dom  r  |->  ( ( f `  x ) ( dist `  ( r `  x
) ) ( g `
 x ) ) )
91 cc0 7753 . . . . . . . . . . . . 13  class  0
9291csn 3576 . . . . . . . . . . . 12  class  { 0 }
9390, 92cun 3114 . . . . . . . . . . 11  class  ( ran  ( x  e.  dom  r  |->  ( ( f `
 x ) (
dist `  ( r `  x ) ) ( g `  x ) ) )  u.  {
0 } )
94 cxr 7932 . . . . . . . . . . 11  class  RR*
95 clt 7933 . . . . . . . . . . 11  class  <
9693, 94, 95csup 6947 . . . . . . . . . 10  class  sup (
( ran  ( x  e.  dom  r  |->  ( ( f `  x ) ( dist `  (
r `  x )
) ( g `  x ) ) )  u.  { 0 } ) ,  RR* ,  <  )
9715, 16, 17, 17, 96cmpo 5844 . . . . . . . . 9  class  ( f  e.  v ,  g  e.  v  |->  sup (
( ran  ( x  e.  dom  r  |->  ( ( f `  x ) ( dist `  (
r `  x )
) ( g `  x ) ) )  u.  { 0 } ) ,  RR* ,  <  ) )
9886, 97cop 3579 . . . . . . . 8  class  <. ( dist `  ndx ) ,  ( f  e.  v ,  g  e.  v 
|->  sup ( ( ran  ( x  e.  dom  r  |->  ( ( f `
 x ) (
dist `  ( r `  x ) ) ( g `  x ) ) )  u.  {
0 } ) , 
RR* ,  <  ) )
>.
9974, 84, 98ctp 3578 . . . . . . 7  class  { <. (TopSet `  ndx ) ,  (
Xt_ `  ( TopOpen  o.  r
) ) >. ,  <. ( le `  ndx ) ,  { <. f ,  g
>.  |  ( {
f ,  g } 
C_  v  /\  A. x  e.  dom  r ( f `  x ) ( le `  (
r `  x )
) ( g `  x ) ) }
>. ,  <. ( dist `  ndx ) ,  ( f  e.  v ,  g  e.  v  |->  sup ( ( ran  (
x  e.  dom  r  |->  ( ( f `  x ) ( dist `  ( r `  x
) ) ( g `
 x ) ) )  u.  { 0 } ) ,  RR* ,  <  ) ) >. }
10027, 22cfv 5188 . . . . . . . . 9  class  ( Hom  `  ndx )
10114cv 1342 . . . . . . . . 9  class  h
102100, 101cop 3579 . . . . . . . 8  class  <. ( Hom  `  ndx ) ,  h >.
103 cco 12469 . . . . . . . . . 10  class comp
10427, 103cfv 5188 . . . . . . . . 9  class  (comp `  ndx )
105 va . . . . . . . . . 10  setvar  a
106 vc . . . . . . . . . 10  setvar  c
10717, 17cxp 4602 . . . . . . . . . 10  class  ( v  X.  v )
108 vd . . . . . . . . . . 11  setvar  d
109 ve . . . . . . . . . . 11  setvar  e
110106cv 1342 . . . . . . . . . . . 12  class  c
111105cv 1342 . . . . . . . . . . . . 13  class  a
112 c2nd 6107 . . . . . . . . . . . . 13  class  2nd
113111, 112cfv 5188 . . . . . . . . . . . 12  class  ( 2nd `  a )
114110, 113, 101co 5842 . . . . . . . . . . 11  class  ( c h ( 2nd `  a
) )
115111, 101cfv 5188 . . . . . . . . . . 11  class  ( h `
 a )
116108cv 1342 . . . . . . . . . . . . . 14  class  d
1179, 116cfv 5188 . . . . . . . . . . . . 13  class  ( d `
 x )
118109cv 1342 . . . . . . . . . . . . . 14  class  e
1199, 118cfv 5188 . . . . . . . . . . . . 13  class  ( e `
 x )
120 c1st 6106 . . . . . . . . . . . . . . . . 17  class  1st
121111, 120cfv 5188 . . . . . . . . . . . . . . . 16  class  ( 1st `  a )
1229, 121cfv 5188 . . . . . . . . . . . . . . 15  class  ( ( 1st `  a ) `
 x )
1239, 113cfv 5188 . . . . . . . . . . . . . . 15  class  ( ( 2nd `  a ) `
 x )
124122, 123cop 3579 . . . . . . . . . . . . . 14  class  <. (
( 1st `  a
) `  x ) ,  ( ( 2nd `  a ) `  x
) >.
1259, 110cfv 5188 . . . . . . . . . . . . . 14  class  ( c `
 x )
12610, 103cfv 5188 . . . . . . . . . . . . . 14  class  (comp `  ( r `  x
) )
127124, 125, 126co 5842 . . . . . . . . . . . . 13  class  ( <.
( ( 1st `  a
) `  x ) ,  ( ( 2nd `  a ) `  x
) >. (comp `  (
r `  x )
) ( c `  x ) )
128117, 119, 127co 5842 . . . . . . . . . . . 12  class  ( ( d `  x ) ( <. ( ( 1st `  a ) `  x
) ,  ( ( 2nd `  a ) `
 x ) >.
(comp `  ( r `  x ) ) ( c `  x ) ) ( e `  x ) )
1296, 8, 128cmpt 4043 . . . . . . . . . . 11  class  ( x  e.  dom  r  |->  ( ( d `  x
) ( <. (
( 1st `  a
) `  x ) ,  ( ( 2nd `  a ) `  x
) >. (comp `  (
r `  x )
) ( c `  x ) ) ( e `  x ) ) )
130108, 109, 114, 115, 129cmpo 5844 . . . . . . . . . 10  class  ( d  e.  ( c h ( 2nd `  a
) ) ,  e  e.  ( h `  a )  |->  ( x  e.  dom  r  |->  ( ( d `  x
) ( <. (
( 1st `  a
) `  x ) ,  ( ( 2nd `  a ) `  x
) >. (comp `  (
r `  x )
) ( c `  x ) ) ( e `  x ) ) ) )
131105, 106, 107, 17, 130cmpo 5844 . . . . . . . . 9  class  ( a  e.  ( v  X.  v ) ,  c  e.  v  |->  ( d  e.  ( c h ( 2nd `  a
) ) ,  e  e.  ( h `  a )  |->  ( x  e.  dom  r  |->  ( ( d `  x
) ( <. (
( 1st `  a
) `  x ) ,  ( ( 2nd `  a ) `  x
) >. (comp `  (
r `  x )
) ( c `  x ) ) ( e `  x ) ) ) ) )
132104, 131cop 3579 . . . . . . . 8  class  <. (comp ` 
ndx ) ,  ( a  e.  ( v  X.  v ) ,  c  e.  v  |->  ( d  e.  ( c h ( 2nd `  a
) ) ,  e  e.  ( h `  a )  |->  ( x  e.  dom  r  |->  ( ( d `  x
) ( <. (
( 1st `  a
) `  x ) ,  ( ( 2nd `  a ) `  x
) >. (comp `  (
r `  x )
) ( c `  x ) ) ( e `  x ) ) ) ) )
>.
133102, 132cpr 3577 . . . . . . 7  class  { <. ( Hom  `  ndx ) ,  h >. ,  <. (comp ` 
ndx ) ,  ( a  e.  ( v  X.  v ) ,  c  e.  v  |->  ( d  e.  ( c h ( 2nd `  a
) ) ,  e  e.  ( h `  a )  |->  ( x  e.  dom  r  |->  ( ( d `  x
) ( <. (
( 1st `  a
) `  x ) ,  ( ( 2nd `  a ) `  x
) >. (comp `  (
r `  x )
) ( c `  x ) ) ( e `  x ) ) ) ) )
>. }
13499, 133cun 3114 . . . . . 6  class  ( {
<. (TopSet `  ndx ) ,  ( Xt_ `  ( TopOpen  o.  r ) )
>. ,  <. ( le
`  ndx ) ,  { <. f ,  g >.  |  ( { f ,  g }  C_  v  /\  A. x  e. 
dom  r ( f `
 x ) ( le `  ( r `
 x ) ) ( g `  x
) ) } >. , 
<. ( dist `  ndx ) ,  ( f  e.  v ,  g  e.  v  |->  sup ( ( ran  ( x  e.  dom  r  |->  ( ( f `
 x ) (
dist `  ( r `  x ) ) ( g `  x ) ) )  u.  {
0 } ) , 
RR* ,  <  ) )
>. }  u.  { <. ( Hom  `  ndx ) ,  h >. ,  <. (comp ` 
ndx ) ,  ( a  e.  ( v  X.  v ) ,  c  e.  v  |->  ( d  e.  ( c h ( 2nd `  a
) ) ,  e  e.  ( h `  a )  |->  ( x  e.  dom  r  |->  ( ( d `  x
) ( <. (
( 1st `  a
) `  x ) ,  ( ( 2nd `  a ) `  x
) >. (comp `  (
r `  x )
) ( c `  x ) ) ( e `  x ) ) ) ) )
>. } )
13567, 134cun 3114 . . . . 5  class  ( ( { <. ( Base `  ndx ) ,  v >. , 
<. ( +g  `  ndx ) ,  ( f  e.  v ,  g  e.  v  |->  ( x  e. 
dom  r  |->  ( ( f `  x ) ( +g  `  (
r `  x )
) ( g `  x ) ) ) ) >. ,  <. ( .r `  ndx ) ,  ( f  e.  v ,  g  e.  v 
|->  ( x  e.  dom  r  |->  ( ( f `
 x ) ( .r `  ( r `
 x ) ) ( g `  x
) ) ) )
>. }  u.  { <. (Scalar `  ndx ) ,  s
>. ,  <. ( .s
`  ndx ) ,  ( f  e.  ( Base `  s ) ,  g  e.  v  |->  ( x  e.  dom  r  |->  ( f ( .s `  ( r `  x
) ) ( g `
 x ) ) ) ) >. ,  <. ( .i `  ndx ) ,  ( f  e.  v ,  g  e.  v  |->  ( s  gsumg  ( x  e.  dom  r  |->  ( ( f `  x
) ( .i `  ( r `  x
) ) ( g `
 x ) ) ) ) ) >. } )  u.  ( { <. (TopSet `  ndx ) ,  ( Xt_ `  ( TopOpen  o.  r )
) >. ,  <. ( le `  ndx ) ,  { <. f ,  g
>.  |  ( {
f ,  g } 
C_  v  /\  A. x  e.  dom  r ( f `  x ) ( le `  (
r `  x )
) ( g `  x ) ) }
>. ,  <. ( dist `  ndx ) ,  ( f  e.  v ,  g  e.  v  |->  sup ( ( ran  (
x  e.  dom  r  |->  ( ( f `  x ) ( dist `  ( r `  x
) ) ( g `
 x ) ) )  u.  { 0 } ) ,  RR* ,  <  ) ) >. }  u.  { <. ( Hom  `  ndx ) ,  h >. ,  <. (comp ` 
ndx ) ,  ( a  e.  ( v  X.  v ) ,  c  e.  v  |->  ( d  e.  ( c h ( 2nd `  a
) ) ,  e  e.  ( h `  a )  |->  ( x  e.  dom  r  |->  ( ( d `  x
) ( <. (
( 1st `  a
) `  x ) ,  ( ( 2nd `  a ) `  x
) >. (comp `  (
r `  x )
) ( c `  x ) ) ( e `  x ) ) ) ) )
>. } ) )
13614, 26, 135csb 3045 . . . 4  class  [_ (
f  e.  v ,  g  e.  v  |->  X_ x  e.  dom  r ( ( f `  x
) ( Hom  `  (
r `  x )
) ( g `  x ) ) )  /  h ]_ (
( { <. ( Base `  ndx ) ,  v >. ,  <. ( +g  `  ndx ) ,  ( f  e.  v ,  g  e.  v 
|->  ( x  e.  dom  r  |->  ( ( f `
 x ) ( +g  `  ( r `
 x ) ) ( g `  x
) ) ) )
>. ,  <. ( .r
`  ndx ) ,  ( f  e.  v ,  g  e.  v  |->  ( x  e.  dom  r  |->  ( ( f `  x ) ( .r
`  ( r `  x ) ) ( g `  x ) ) ) ) >. }  u.  { <. (Scalar ` 
ndx ) ,  s
>. ,  <. ( .s
`  ndx ) ,  ( f  e.  ( Base `  s ) ,  g  e.  v  |->  ( x  e.  dom  r  |->  ( f ( .s `  ( r `  x
) ) ( g `
 x ) ) ) ) >. ,  <. ( .i `  ndx ) ,  ( f  e.  v ,  g  e.  v  |->  ( s  gsumg  ( x  e.  dom  r  |->  ( ( f `  x
) ( .i `  ( r `  x
) ) ( g `
 x ) ) ) ) ) >. } )  u.  ( { <. (TopSet `  ndx ) ,  ( Xt_ `  ( TopOpen  o.  r )
) >. ,  <. ( le `  ndx ) ,  { <. f ,  g
>.  |  ( {
f ,  g } 
C_  v  /\  A. x  e.  dom  r ( f `  x ) ( le `  (
r `  x )
) ( g `  x ) ) }
>. ,  <. ( dist `  ndx ) ,  ( f  e.  v ,  g  e.  v  |->  sup ( ( ran  (
x  e.  dom  r  |->  ( ( f `  x ) ( dist `  ( r `  x
) ) ( g `
 x ) ) )  u.  { 0 } ) ,  RR* ,  <  ) ) >. }  u.  { <. ( Hom  `  ndx ) ,  h >. ,  <. (comp ` 
ndx ) ,  ( a  e.  ( v  X.  v ) ,  c  e.  v  |->  ( d  e.  ( c h ( 2nd `  a
) ) ,  e  e.  ( h `  a )  |->  ( x  e.  dom  r  |->  ( ( d `  x
) ( <. (
( 1st `  a
) `  x ) ,  ( ( 2nd `  a ) `  x
) >. (comp `  (
r `  x )
) ( c `  x ) ) ( e `  x ) ) ) ) )
>. } ) )
1375, 13, 136csb 3045 . . 3  class  [_ X_ x  e.  dom  r ( Base `  ( r `  x
) )  /  v ]_ [_ ( f  e.  v ,  g  e.  v  |->  X_ x  e.  dom  r ( ( f `
 x ) ( Hom  `  ( r `  x ) ) ( g `  x ) ) )  /  h ]_ ( ( { <. (
Base `  ndx ) ,  v >. ,  <. ( +g  `  ndx ) ,  ( f  e.  v ,  g  e.  v 
|->  ( x  e.  dom  r  |->  ( ( f `
 x ) ( +g  `  ( r `
 x ) ) ( g `  x
) ) ) )
>. ,  <. ( .r
`  ndx ) ,  ( f  e.  v ,  g  e.  v  |->  ( x  e.  dom  r  |->  ( ( f `  x ) ( .r
`  ( r `  x ) ) ( g `  x ) ) ) ) >. }  u.  { <. (Scalar ` 
ndx ) ,  s
>. ,  <. ( .s
`  ndx ) ,  ( f  e.  ( Base `  s ) ,  g  e.  v  |->  ( x  e.  dom  r  |->  ( f ( .s `  ( r `  x
) ) ( g `
 x ) ) ) ) >. ,  <. ( .i `  ndx ) ,  ( f  e.  v ,  g  e.  v  |->  ( s  gsumg  ( x  e.  dom  r  |->  ( ( f `  x
) ( .i `  ( r `  x
) ) ( g `
 x ) ) ) ) ) >. } )  u.  ( { <. (TopSet `  ndx ) ,  ( Xt_ `  ( TopOpen  o.  r )
) >. ,  <. ( le `  ndx ) ,  { <. f ,  g
>.  |  ( {
f ,  g } 
C_  v  /\  A. x  e.  dom  r ( f `  x ) ( le `  (
r `  x )
) ( g `  x ) ) }
>. ,  <. ( dist `  ndx ) ,  ( f  e.  v ,  g  e.  v  |->  sup ( ( ran  (
x  e.  dom  r  |->  ( ( f `  x ) ( dist `  ( r `  x
) ) ( g `
 x ) ) )  u.  { 0 } ) ,  RR* ,  <  ) ) >. }  u.  { <. ( Hom  `  ndx ) ,  h >. ,  <. (comp ` 
ndx ) ,  ( a  e.  ( v  X.  v ) ,  c  e.  v  |->  ( d  e.  ( c h ( 2nd `  a
) ) ,  e  e.  ( h `  a )  |->  ( x  e.  dom  r  |->  ( ( d `  x
) ( <. (
( 1st `  a
) `  x ) ,  ( ( 2nd `  a ) `  x
) >. (comp `  (
r `  x )
) ( c `  x ) ) ( e `  x ) ) ) ) )
>. } ) )
1382, 3, 4, 4, 137cmpo 5844 . 2  class  ( s  e.  _V ,  r  e.  _V  |->  [_ X_ x  e.  dom  r ( Base `  ( r `  x
) )  /  v ]_ [_ ( f  e.  v ,  g  e.  v  |->  X_ x  e.  dom  r ( ( f `
 x ) ( Hom  `  ( r `  x ) ) ( g `  x ) ) )  /  h ]_ ( ( { <. (
Base `  ndx ) ,  v >. ,  <. ( +g  `  ndx ) ,  ( f  e.  v ,  g  e.  v 
|->  ( x  e.  dom  r  |->  ( ( f `
 x ) ( +g  `  ( r `
 x ) ) ( g `  x
) ) ) )
>. ,  <. ( .r
`  ndx ) ,  ( f  e.  v ,  g  e.  v  |->  ( x  e.  dom  r  |->  ( ( f `  x ) ( .r
`  ( r `  x ) ) ( g `  x ) ) ) ) >. }  u.  { <. (Scalar ` 
ndx ) ,  s
>. ,  <. ( .s
`  ndx ) ,  ( f  e.  ( Base `  s ) ,  g  e.  v  |->  ( x  e.  dom  r  |->  ( f ( .s `  ( r `  x
) ) ( g `
 x ) ) ) ) >. ,  <. ( .i `  ndx ) ,  ( f  e.  v ,  g  e.  v  |->  ( s  gsumg  ( x  e.  dom  r  |->  ( ( f `  x
) ( .i `  ( r `  x
) ) ( g `
 x ) ) ) ) ) >. } )  u.  ( { <. (TopSet `  ndx ) ,  ( Xt_ `  ( TopOpen  o.  r )
) >. ,  <. ( le `  ndx ) ,  { <. f ,  g
>.  |  ( {
f ,  g } 
C_  v  /\  A. x  e.  dom  r ( f `  x ) ( le `  (
r `  x )
) ( g `  x ) ) }
>. ,  <. ( dist `  ndx ) ,  ( f  e.  v ,  g  e.  v  |->  sup ( ( ran  (
x  e.  dom  r  |->  ( ( f `  x ) ( dist `  ( r `  x
) ) ( g `
 x ) ) )  u.  { 0 } ) ,  RR* ,  <  ) ) >. }  u.  { <. ( Hom  `  ndx ) ,  h >. ,  <. (comp ` 
ndx ) ,  ( a  e.  ( v  X.  v ) ,  c  e.  v  |->  ( d  e.  ( c h ( 2nd `  a
) ) ,  e  e.  ( h `  a )  |->  ( x  e.  dom  r  |->  ( ( d `  x
) ( <. (
( 1st `  a
) `  x ) ,  ( ( 2nd `  a ) `  x
) >. (comp `  (
r `  x )
) ( c `  x ) ) ( e `  x ) ) ) ) )
>. } ) ) )
1391, 138wceq 1343 1  wff  X_s  =  (
s  e.  _V , 
r  e.  _V  |->  [_ X_ x  e.  dom  r
( Base `  ( r `  x ) )  / 
v ]_ [_ ( f  e.  v ,  g  e.  v  |->  X_ x  e.  dom  r ( ( f `  x ) ( Hom  `  (
r `  x )
) ( g `  x ) ) )  /  h ]_ (
( { <. ( Base `  ndx ) ,  v >. ,  <. ( +g  `  ndx ) ,  ( f  e.  v ,  g  e.  v 
|->  ( x  e.  dom  r  |->  ( ( f `
 x ) ( +g  `  ( r `
 x ) ) ( g `  x
) ) ) )
>. ,  <. ( .r
`  ndx ) ,  ( f  e.  v ,  g  e.  v  |->  ( x  e.  dom  r  |->  ( ( f `  x ) ( .r
`  ( r `  x ) ) ( g `  x ) ) ) ) >. }  u.  { <. (Scalar ` 
ndx ) ,  s
>. ,  <. ( .s
`  ndx ) ,  ( f  e.  ( Base `  s ) ,  g  e.  v  |->  ( x  e.  dom  r  |->  ( f ( .s `  ( r `  x
) ) ( g `
 x ) ) ) ) >. ,  <. ( .i `  ndx ) ,  ( f  e.  v ,  g  e.  v  |->  ( s  gsumg  ( x  e.  dom  r  |->  ( ( f `  x
) ( .i `  ( r `  x
) ) ( g `
 x ) ) ) ) ) >. } )  u.  ( { <. (TopSet `  ndx ) ,  ( Xt_ `  ( TopOpen  o.  r )
) >. ,  <. ( le `  ndx ) ,  { <. f ,  g
>.  |  ( {
f ,  g } 
C_  v  /\  A. x  e.  dom  r ( f `  x ) ( le `  (
r `  x )
) ( g `  x ) ) }
>. ,  <. ( dist `  ndx ) ,  ( f  e.  v ,  g  e.  v  |->  sup ( ( ran  (
x  e.  dom  r  |->  ( ( f `  x ) ( dist `  ( r `  x
) ) ( g `
 x ) ) )  u.  { 0 } ) ,  RR* ,  <  ) ) >. }  u.  { <. ( Hom  `  ndx ) ,  h >. ,  <. (comp ` 
ndx ) ,  ( a  e.  ( v  X.  v ) ,  c  e.  v  |->  ( d  e.  ( c h ( 2nd `  a
) ) ,  e  e.  ( h `  a )  |->  ( x  e.  dom  r  |->  ( ( d `  x
) ( <. (
( 1st `  a
) `  x ) ,  ( ( 2nd `  a ) `  x
) >. (comp `  (
r `  x )
) ( c `  x ) ) ( e `  x ) ) ) ) )
>. } ) ) )
Colors of variables: wff set class
This definition is referenced by:  reldmprds  12582
  Copyright terms: Public domain W3C validator