Detailed syntax breakdown of Definition df-prds
Step | Hyp | Ref
| Expression |
1 | | cprds 12579 |
. 2
class Xs |
2 | | vs |
. . 3
setvar 𝑠 |
3 | | vr |
. . 3
setvar 𝑟 |
4 | | cvv 2726 |
. . 3
class
V |
5 | | vv |
. . . 4
setvar 𝑣 |
6 | | vx |
. . . . 5
setvar 𝑥 |
7 | 3 | cv 1342 |
. . . . . 6
class 𝑟 |
8 | 7 | cdm 4604 |
. . . . 5
class dom 𝑟 |
9 | 6 | cv 1342 |
. . . . . . 7
class 𝑥 |
10 | 9, 7 | cfv 5188 |
. . . . . 6
class (𝑟‘𝑥) |
11 | | cbs 12394 |
. . . . . 6
class
Base |
12 | 10, 11 | cfv 5188 |
. . . . 5
class
(Base‘(𝑟‘𝑥)) |
13 | 6, 8, 12 | cixp 6664 |
. . . 4
class X𝑥 ∈
dom 𝑟(Base‘(𝑟‘𝑥)) |
14 | | vh |
. . . . 5
setvar ℎ |
15 | | vf |
. . . . . 6
setvar 𝑓 |
16 | | vg |
. . . . . 6
setvar 𝑔 |
17 | 5 | cv 1342 |
. . . . . 6
class 𝑣 |
18 | 15 | cv 1342 |
. . . . . . . . 9
class 𝑓 |
19 | 9, 18 | cfv 5188 |
. . . . . . . 8
class (𝑓‘𝑥) |
20 | 16 | cv 1342 |
. . . . . . . . 9
class 𝑔 |
21 | 9, 20 | cfv 5188 |
. . . . . . . 8
class (𝑔‘𝑥) |
22 | | chom 12468 |
. . . . . . . . 9
class
Hom |
23 | 10, 22 | cfv 5188 |
. . . . . . . 8
class (Hom
‘(𝑟‘𝑥)) |
24 | 19, 21, 23 | co 5842 |
. . . . . . 7
class ((𝑓‘𝑥)(Hom ‘(𝑟‘𝑥))(𝑔‘𝑥)) |
25 | 6, 8, 24 | cixp 6664 |
. . . . . 6
class X𝑥 ∈
dom 𝑟((𝑓‘𝑥)(Hom ‘(𝑟‘𝑥))(𝑔‘𝑥)) |
26 | 15, 16, 17, 17, 25 | cmpo 5844 |
. . . . 5
class (𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↦ X𝑥 ∈ dom 𝑟((𝑓‘𝑥)(Hom ‘(𝑟‘𝑥))(𝑔‘𝑥))) |
27 | | cnx 12391 |
. . . . . . . . . 10
class
ndx |
28 | 27, 11 | cfv 5188 |
. . . . . . . . 9
class
(Base‘ndx) |
29 | 28, 17 | cop 3579 |
. . . . . . . 8
class
〈(Base‘ndx), 𝑣〉 |
30 | | cplusg 12457 |
. . . . . . . . . 10
class
+g |
31 | 27, 30 | cfv 5188 |
. . . . . . . . 9
class
(+g‘ndx) |
32 | 10, 30 | cfv 5188 |
. . . . . . . . . . . 12
class
(+g‘(𝑟‘𝑥)) |
33 | 19, 21, 32 | co 5842 |
. . . . . . . . . . 11
class ((𝑓‘𝑥)(+g‘(𝑟‘𝑥))(𝑔‘𝑥)) |
34 | 6, 8, 33 | cmpt 4043 |
. . . . . . . . . 10
class (𝑥 ∈ dom 𝑟 ↦ ((𝑓‘𝑥)(+g‘(𝑟‘𝑥))(𝑔‘𝑥))) |
35 | 15, 16, 17, 17, 34 | cmpo 5844 |
. . . . . . . . 9
class (𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↦ (𝑥 ∈ dom 𝑟 ↦ ((𝑓‘𝑥)(+g‘(𝑟‘𝑥))(𝑔‘𝑥)))) |
36 | 31, 35 | cop 3579 |
. . . . . . . 8
class
〈(+g‘ndx), (𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↦ (𝑥 ∈ dom 𝑟 ↦ ((𝑓‘𝑥)(+g‘(𝑟‘𝑥))(𝑔‘𝑥))))〉 |
37 | | cmulr 12458 |
. . . . . . . . . 10
class
.r |
38 | 27, 37 | cfv 5188 |
. . . . . . . . 9
class
(.r‘ndx) |
39 | 10, 37 | cfv 5188 |
. . . . . . . . . . . 12
class
(.r‘(𝑟‘𝑥)) |
40 | 19, 21, 39 | co 5842 |
. . . . . . . . . . 11
class ((𝑓‘𝑥)(.r‘(𝑟‘𝑥))(𝑔‘𝑥)) |
41 | 6, 8, 40 | cmpt 4043 |
. . . . . . . . . 10
class (𝑥 ∈ dom 𝑟 ↦ ((𝑓‘𝑥)(.r‘(𝑟‘𝑥))(𝑔‘𝑥))) |
42 | 15, 16, 17, 17, 41 | cmpo 5844 |
. . . . . . . . 9
class (𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↦ (𝑥 ∈ dom 𝑟 ↦ ((𝑓‘𝑥)(.r‘(𝑟‘𝑥))(𝑔‘𝑥)))) |
43 | 38, 42 | cop 3579 |
. . . . . . . 8
class
〈(.r‘ndx), (𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↦ (𝑥 ∈ dom 𝑟 ↦ ((𝑓‘𝑥)(.r‘(𝑟‘𝑥))(𝑔‘𝑥))))〉 |
44 | 29, 36, 43 | ctp 3578 |
. . . . . . 7
class
{〈(Base‘ndx), 𝑣〉, 〈(+g‘ndx),
(𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↦ (𝑥 ∈ dom 𝑟 ↦ ((𝑓‘𝑥)(+g‘(𝑟‘𝑥))(𝑔‘𝑥))))〉, 〈(.r‘ndx),
(𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↦ (𝑥 ∈ dom 𝑟 ↦ ((𝑓‘𝑥)(.r‘(𝑟‘𝑥))(𝑔‘𝑥))))〉} |
45 | | csca 12460 |
. . . . . . . . . 10
class
Scalar |
46 | 27, 45 | cfv 5188 |
. . . . . . . . 9
class
(Scalar‘ndx) |
47 | 2 | cv 1342 |
. . . . . . . . 9
class 𝑠 |
48 | 46, 47 | cop 3579 |
. . . . . . . 8
class
〈(Scalar‘ndx), 𝑠〉 |
49 | | cvsca 12461 |
. . . . . . . . . 10
class
·𝑠 |
50 | 27, 49 | cfv 5188 |
. . . . . . . . 9
class (
·𝑠 ‘ndx) |
51 | 47, 11 | cfv 5188 |
. . . . . . . . . 10
class
(Base‘𝑠) |
52 | 10, 49 | cfv 5188 |
. . . . . . . . . . . 12
class (
·𝑠 ‘(𝑟‘𝑥)) |
53 | 18, 21, 52 | co 5842 |
. . . . . . . . . . 11
class (𝑓(
·𝑠 ‘(𝑟‘𝑥))(𝑔‘𝑥)) |
54 | 6, 8, 53 | cmpt 4043 |
. . . . . . . . . 10
class (𝑥 ∈ dom 𝑟 ↦ (𝑓( ·𝑠
‘(𝑟‘𝑥))(𝑔‘𝑥))) |
55 | 15, 16, 51, 17, 54 | cmpo 5844 |
. . . . . . . . 9
class (𝑓 ∈ (Base‘𝑠), 𝑔 ∈ 𝑣 ↦ (𝑥 ∈ dom 𝑟 ↦ (𝑓( ·𝑠
‘(𝑟‘𝑥))(𝑔‘𝑥)))) |
56 | 50, 55 | cop 3579 |
. . . . . . . 8
class 〈(
·𝑠 ‘ndx), (𝑓 ∈ (Base‘𝑠), 𝑔 ∈ 𝑣 ↦ (𝑥 ∈ dom 𝑟 ↦ (𝑓( ·𝑠
‘(𝑟‘𝑥))(𝑔‘𝑥))))〉 |
57 | | cip 12462 |
. . . . . . . . . 10
class
·𝑖 |
58 | 27, 57 | cfv 5188 |
. . . . . . . . 9
class
(·𝑖‘ndx) |
59 | 10, 57 | cfv 5188 |
. . . . . . . . . . . . 13
class
(·𝑖‘(𝑟‘𝑥)) |
60 | 19, 21, 59 | co 5842 |
. . . . . . . . . . . 12
class ((𝑓‘𝑥)(·𝑖‘(𝑟‘𝑥))(𝑔‘𝑥)) |
61 | 6, 8, 60 | cmpt 4043 |
. . . . . . . . . . 11
class (𝑥 ∈ dom 𝑟 ↦ ((𝑓‘𝑥)(·𝑖‘(𝑟‘𝑥))(𝑔‘𝑥))) |
62 | | cgsu 12574 |
. . . . . . . . . . 11
class
Σg |
63 | 47, 61, 62 | co 5842 |
. . . . . . . . . 10
class (𝑠 Σg
(𝑥 ∈ dom 𝑟 ↦ ((𝑓‘𝑥)(·𝑖‘(𝑟‘𝑥))(𝑔‘𝑥)))) |
64 | 15, 16, 17, 17, 63 | cmpo 5844 |
. . . . . . . . 9
class (𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↦ (𝑠 Σg (𝑥 ∈ dom 𝑟 ↦ ((𝑓‘𝑥)(·𝑖‘(𝑟‘𝑥))(𝑔‘𝑥))))) |
65 | 58, 64 | cop 3579 |
. . . . . . . 8
class
〈(·𝑖‘ndx), (𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↦ (𝑠 Σg (𝑥 ∈ dom 𝑟 ↦ ((𝑓‘𝑥)(·𝑖‘(𝑟‘𝑥))(𝑔‘𝑥)))))〉 |
66 | 48, 56, 65 | ctp 3578 |
. . . . . . 7
class
{〈(Scalar‘ndx), 𝑠〉, 〈(
·𝑠 ‘ndx), (𝑓 ∈ (Base‘𝑠), 𝑔 ∈ 𝑣 ↦ (𝑥 ∈ dom 𝑟 ↦ (𝑓( ·𝑠
‘(𝑟‘𝑥))(𝑔‘𝑥))))〉,
〈(·𝑖‘ndx), (𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↦ (𝑠 Σg (𝑥 ∈ dom 𝑟 ↦ ((𝑓‘𝑥)(·𝑖‘(𝑟‘𝑥))(𝑔‘𝑥)))))〉} |
67 | 44, 66 | cun 3114 |
. . . . . 6
class
({〈(Base‘ndx), 𝑣〉, 〈(+g‘ndx),
(𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↦ (𝑥 ∈ dom 𝑟 ↦ ((𝑓‘𝑥)(+g‘(𝑟‘𝑥))(𝑔‘𝑥))))〉, 〈(.r‘ndx),
(𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↦ (𝑥 ∈ dom 𝑟 ↦ ((𝑓‘𝑥)(.r‘(𝑟‘𝑥))(𝑔‘𝑥))))〉} ∪ {〈(Scalar‘ndx),
𝑠〉, 〈(
·𝑠 ‘ndx), (𝑓 ∈ (Base‘𝑠), 𝑔 ∈ 𝑣 ↦ (𝑥 ∈ dom 𝑟 ↦ (𝑓( ·𝑠
‘(𝑟‘𝑥))(𝑔‘𝑥))))〉,
〈(·𝑖‘ndx), (𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↦ (𝑠 Σg (𝑥 ∈ dom 𝑟 ↦ ((𝑓‘𝑥)(·𝑖‘(𝑟‘𝑥))(𝑔‘𝑥)))))〉}) |
68 | | cts 12463 |
. . . . . . . . . 10
class
TopSet |
69 | 27, 68 | cfv 5188 |
. . . . . . . . 9
class
(TopSet‘ndx) |
70 | | ctopn 12557 |
. . . . . . . . . . 11
class
TopOpen |
71 | 70, 7 | ccom 4608 |
. . . . . . . . . 10
class (TopOpen
∘ 𝑟) |
72 | | cpt 12572 |
. . . . . . . . . 10
class
∏t |
73 | 71, 72 | cfv 5188 |
. . . . . . . . 9
class
(∏t‘(TopOpen ∘ 𝑟)) |
74 | 69, 73 | cop 3579 |
. . . . . . . 8
class
〈(TopSet‘ndx), (∏t‘(TopOpen ∘
𝑟))〉 |
75 | | cple 12464 |
. . . . . . . . . 10
class
le |
76 | 27, 75 | cfv 5188 |
. . . . . . . . 9
class
(le‘ndx) |
77 | 18, 20 | cpr 3577 |
. . . . . . . . . . . 12
class {𝑓, 𝑔} |
78 | 77, 17 | wss 3116 |
. . . . . . . . . . 11
wff {𝑓, 𝑔} ⊆ 𝑣 |
79 | 10, 75 | cfv 5188 |
. . . . . . . . . . . . 13
class
(le‘(𝑟‘𝑥)) |
80 | 19, 21, 79 | wbr 3982 |
. . . . . . . . . . . 12
wff (𝑓‘𝑥)(le‘(𝑟‘𝑥))(𝑔‘𝑥) |
81 | 80, 6, 8 | wral 2444 |
. . . . . . . . . . 11
wff
∀𝑥 ∈ dom
𝑟(𝑓‘𝑥)(le‘(𝑟‘𝑥))(𝑔‘𝑥) |
82 | 78, 81 | wa 103 |
. . . . . . . . . 10
wff ({𝑓, 𝑔} ⊆ 𝑣 ∧ ∀𝑥 ∈ dom 𝑟(𝑓‘𝑥)(le‘(𝑟‘𝑥))(𝑔‘𝑥)) |
83 | 82, 15, 16 | copab 4042 |
. . . . . . . . 9
class
{〈𝑓, 𝑔〉 ∣ ({𝑓, 𝑔} ⊆ 𝑣 ∧ ∀𝑥 ∈ dom 𝑟(𝑓‘𝑥)(le‘(𝑟‘𝑥))(𝑔‘𝑥))} |
84 | 76, 83 | cop 3579 |
. . . . . . . 8
class
〈(le‘ndx), {〈𝑓, 𝑔〉 ∣ ({𝑓, 𝑔} ⊆ 𝑣 ∧ ∀𝑥 ∈ dom 𝑟(𝑓‘𝑥)(le‘(𝑟‘𝑥))(𝑔‘𝑥))}〉 |
85 | | cds 12466 |
. . . . . . . . . 10
class
dist |
86 | 27, 85 | cfv 5188 |
. . . . . . . . 9
class
(dist‘ndx) |
87 | 10, 85 | cfv 5188 |
. . . . . . . . . . . . . . 15
class
(dist‘(𝑟‘𝑥)) |
88 | 19, 21, 87 | co 5842 |
. . . . . . . . . . . . . 14
class ((𝑓‘𝑥)(dist‘(𝑟‘𝑥))(𝑔‘𝑥)) |
89 | 6, 8, 88 | cmpt 4043 |
. . . . . . . . . . . . 13
class (𝑥 ∈ dom 𝑟 ↦ ((𝑓‘𝑥)(dist‘(𝑟‘𝑥))(𝑔‘𝑥))) |
90 | 89 | crn 4605 |
. . . . . . . . . . . 12
class ran
(𝑥 ∈ dom 𝑟 ↦ ((𝑓‘𝑥)(dist‘(𝑟‘𝑥))(𝑔‘𝑥))) |
91 | | cc0 7753 |
. . . . . . . . . . . . 13
class
0 |
92 | 91 | csn 3576 |
. . . . . . . . . . . 12
class
{0} |
93 | 90, 92 | cun 3114 |
. . . . . . . . . . 11
class (ran
(𝑥 ∈ dom 𝑟 ↦ ((𝑓‘𝑥)(dist‘(𝑟‘𝑥))(𝑔‘𝑥))) ∪ {0}) |
94 | | cxr 7932 |
. . . . . . . . . . 11
class
ℝ* |
95 | | clt 7933 |
. . . . . . . . . . 11
class
< |
96 | 93, 94, 95 | csup 6947 |
. . . . . . . . . 10
class sup((ran
(𝑥 ∈ dom 𝑟 ↦ ((𝑓‘𝑥)(dist‘(𝑟‘𝑥))(𝑔‘𝑥))) ∪ {0}), ℝ*, <
) |
97 | 15, 16, 17, 17, 96 | cmpo 5844 |
. . . . . . . . 9
class (𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↦ sup((ran (𝑥 ∈ dom 𝑟 ↦ ((𝑓‘𝑥)(dist‘(𝑟‘𝑥))(𝑔‘𝑥))) ∪ {0}), ℝ*, <
)) |
98 | 86, 97 | cop 3579 |
. . . . . . . 8
class
〈(dist‘ndx), (𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↦ sup((ran (𝑥 ∈ dom 𝑟 ↦ ((𝑓‘𝑥)(dist‘(𝑟‘𝑥))(𝑔‘𝑥))) ∪ {0}), ℝ*, <
))〉 |
99 | 74, 84, 98 | ctp 3578 |
. . . . . . 7
class
{〈(TopSet‘ndx), (∏t‘(TopOpen ∘
𝑟))〉,
〈(le‘ndx), {〈𝑓, 𝑔〉 ∣ ({𝑓, 𝑔} ⊆ 𝑣 ∧ ∀𝑥 ∈ dom 𝑟(𝑓‘𝑥)(le‘(𝑟‘𝑥))(𝑔‘𝑥))}〉, 〈(dist‘ndx), (𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↦ sup((ran (𝑥 ∈ dom 𝑟 ↦ ((𝑓‘𝑥)(dist‘(𝑟‘𝑥))(𝑔‘𝑥))) ∪ {0}), ℝ*, <
))〉} |
100 | 27, 22 | cfv 5188 |
. . . . . . . . 9
class (Hom
‘ndx) |
101 | 14 | cv 1342 |
. . . . . . . . 9
class ℎ |
102 | 100, 101 | cop 3579 |
. . . . . . . 8
class
〈(Hom ‘ndx), ℎ〉 |
103 | | cco 12469 |
. . . . . . . . . 10
class
comp |
104 | 27, 103 | cfv 5188 |
. . . . . . . . 9
class
(comp‘ndx) |
105 | | va |
. . . . . . . . . 10
setvar 𝑎 |
106 | | vc |
. . . . . . . . . 10
setvar 𝑐 |
107 | 17, 17 | cxp 4602 |
. . . . . . . . . 10
class (𝑣 × 𝑣) |
108 | | vd |
. . . . . . . . . . 11
setvar 𝑑 |
109 | | ve |
. . . . . . . . . . 11
setvar 𝑒 |
110 | 106 | cv 1342 |
. . . . . . . . . . . 12
class 𝑐 |
111 | 105 | cv 1342 |
. . . . . . . . . . . . 13
class 𝑎 |
112 | | c2nd 6107 |
. . . . . . . . . . . . 13
class
2nd |
113 | 111, 112 | cfv 5188 |
. . . . . . . . . . . 12
class
(2nd ‘𝑎) |
114 | 110, 113,
101 | co 5842 |
. . . . . . . . . . 11
class (𝑐ℎ(2nd ‘𝑎)) |
115 | 111, 101 | cfv 5188 |
. . . . . . . . . . 11
class (ℎ‘𝑎) |
116 | 108 | cv 1342 |
. . . . . . . . . . . . . 14
class 𝑑 |
117 | 9, 116 | cfv 5188 |
. . . . . . . . . . . . 13
class (𝑑‘𝑥) |
118 | 109 | cv 1342 |
. . . . . . . . . . . . . 14
class 𝑒 |
119 | 9, 118 | cfv 5188 |
. . . . . . . . . . . . 13
class (𝑒‘𝑥) |
120 | | c1st 6106 |
. . . . . . . . . . . . . . . . 17
class
1st |
121 | 111, 120 | cfv 5188 |
. . . . . . . . . . . . . . . 16
class
(1st ‘𝑎) |
122 | 9, 121 | cfv 5188 |
. . . . . . . . . . . . . . 15
class
((1st ‘𝑎)‘𝑥) |
123 | 9, 113 | cfv 5188 |
. . . . . . . . . . . . . . 15
class
((2nd ‘𝑎)‘𝑥) |
124 | 122, 123 | cop 3579 |
. . . . . . . . . . . . . 14
class
〈((1st ‘𝑎)‘𝑥), ((2nd ‘𝑎)‘𝑥)〉 |
125 | 9, 110 | cfv 5188 |
. . . . . . . . . . . . . 14
class (𝑐‘𝑥) |
126 | 10, 103 | cfv 5188 |
. . . . . . . . . . . . . 14
class
(comp‘(𝑟‘𝑥)) |
127 | 124, 125,
126 | co 5842 |
. . . . . . . . . . . . 13
class
(〈((1st ‘𝑎)‘𝑥), ((2nd ‘𝑎)‘𝑥)〉(comp‘(𝑟‘𝑥))(𝑐‘𝑥)) |
128 | 117, 119,
127 | co 5842 |
. . . . . . . . . . . 12
class ((𝑑‘𝑥)(〈((1st ‘𝑎)‘𝑥), ((2nd ‘𝑎)‘𝑥)〉(comp‘(𝑟‘𝑥))(𝑐‘𝑥))(𝑒‘𝑥)) |
129 | 6, 8, 128 | cmpt 4043 |
. . . . . . . . . . 11
class (𝑥 ∈ dom 𝑟 ↦ ((𝑑‘𝑥)(〈((1st ‘𝑎)‘𝑥), ((2nd ‘𝑎)‘𝑥)〉(comp‘(𝑟‘𝑥))(𝑐‘𝑥))(𝑒‘𝑥))) |
130 | 108, 109,
114, 115, 129 | cmpo 5844 |
. . . . . . . . . 10
class (𝑑 ∈ (𝑐ℎ(2nd ‘𝑎)), 𝑒 ∈ (ℎ‘𝑎) ↦ (𝑥 ∈ dom 𝑟 ↦ ((𝑑‘𝑥)(〈((1st ‘𝑎)‘𝑥), ((2nd ‘𝑎)‘𝑥)〉(comp‘(𝑟‘𝑥))(𝑐‘𝑥))(𝑒‘𝑥)))) |
131 | 105, 106,
107, 17, 130 | cmpo 5844 |
. . . . . . . . 9
class (𝑎 ∈ (𝑣 × 𝑣), 𝑐 ∈ 𝑣 ↦ (𝑑 ∈ (𝑐ℎ(2nd ‘𝑎)), 𝑒 ∈ (ℎ‘𝑎) ↦ (𝑥 ∈ dom 𝑟 ↦ ((𝑑‘𝑥)(〈((1st ‘𝑎)‘𝑥), ((2nd ‘𝑎)‘𝑥)〉(comp‘(𝑟‘𝑥))(𝑐‘𝑥))(𝑒‘𝑥))))) |
132 | 104, 131 | cop 3579 |
. . . . . . . 8
class
〈(comp‘ndx), (𝑎 ∈ (𝑣 × 𝑣), 𝑐 ∈ 𝑣 ↦ (𝑑 ∈ (𝑐ℎ(2nd ‘𝑎)), 𝑒 ∈ (ℎ‘𝑎) ↦ (𝑥 ∈ dom 𝑟 ↦ ((𝑑‘𝑥)(〈((1st ‘𝑎)‘𝑥), ((2nd ‘𝑎)‘𝑥)〉(comp‘(𝑟‘𝑥))(𝑐‘𝑥))(𝑒‘𝑥)))))〉 |
133 | 102, 132 | cpr 3577 |
. . . . . . 7
class
{〈(Hom ‘ndx), ℎ〉, 〈(comp‘ndx), (𝑎 ∈ (𝑣 × 𝑣), 𝑐 ∈ 𝑣 ↦ (𝑑 ∈ (𝑐ℎ(2nd ‘𝑎)), 𝑒 ∈ (ℎ‘𝑎) ↦ (𝑥 ∈ dom 𝑟 ↦ ((𝑑‘𝑥)(〈((1st ‘𝑎)‘𝑥), ((2nd ‘𝑎)‘𝑥)〉(comp‘(𝑟‘𝑥))(𝑐‘𝑥))(𝑒‘𝑥)))))〉} |
134 | 99, 133 | cun 3114 |
. . . . . 6
class
({〈(TopSet‘ndx), (∏t‘(TopOpen ∘
𝑟))〉,
〈(le‘ndx), {〈𝑓, 𝑔〉 ∣ ({𝑓, 𝑔} ⊆ 𝑣 ∧ ∀𝑥 ∈ dom 𝑟(𝑓‘𝑥)(le‘(𝑟‘𝑥))(𝑔‘𝑥))}〉, 〈(dist‘ndx), (𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↦ sup((ran (𝑥 ∈ dom 𝑟 ↦ ((𝑓‘𝑥)(dist‘(𝑟‘𝑥))(𝑔‘𝑥))) ∪ {0}), ℝ*, <
))〉} ∪ {〈(Hom ‘ndx), ℎ〉, 〈(comp‘ndx), (𝑎 ∈ (𝑣 × 𝑣), 𝑐 ∈ 𝑣 ↦ (𝑑 ∈ (𝑐ℎ(2nd ‘𝑎)), 𝑒 ∈ (ℎ‘𝑎) ↦ (𝑥 ∈ dom 𝑟 ↦ ((𝑑‘𝑥)(〈((1st ‘𝑎)‘𝑥), ((2nd ‘𝑎)‘𝑥)〉(comp‘(𝑟‘𝑥))(𝑐‘𝑥))(𝑒‘𝑥)))))〉}) |
135 | 67, 134 | cun 3114 |
. . . . 5
class
(({〈(Base‘ndx), 𝑣〉, 〈(+g‘ndx),
(𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↦ (𝑥 ∈ dom 𝑟 ↦ ((𝑓‘𝑥)(+g‘(𝑟‘𝑥))(𝑔‘𝑥))))〉, 〈(.r‘ndx),
(𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↦ (𝑥 ∈ dom 𝑟 ↦ ((𝑓‘𝑥)(.r‘(𝑟‘𝑥))(𝑔‘𝑥))))〉} ∪ {〈(Scalar‘ndx),
𝑠〉, 〈(
·𝑠 ‘ndx), (𝑓 ∈ (Base‘𝑠), 𝑔 ∈ 𝑣 ↦ (𝑥 ∈ dom 𝑟 ↦ (𝑓( ·𝑠
‘(𝑟‘𝑥))(𝑔‘𝑥))))〉,
〈(·𝑖‘ndx), (𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↦ (𝑠 Σg (𝑥 ∈ dom 𝑟 ↦ ((𝑓‘𝑥)(·𝑖‘(𝑟‘𝑥))(𝑔‘𝑥)))))〉}) ∪ ({〈(TopSet‘ndx),
(∏t‘(TopOpen ∘ 𝑟))〉, 〈(le‘ndx), {〈𝑓, 𝑔〉 ∣ ({𝑓, 𝑔} ⊆ 𝑣 ∧ ∀𝑥 ∈ dom 𝑟(𝑓‘𝑥)(le‘(𝑟‘𝑥))(𝑔‘𝑥))}〉, 〈(dist‘ndx), (𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↦ sup((ran (𝑥 ∈ dom 𝑟 ↦ ((𝑓‘𝑥)(dist‘(𝑟‘𝑥))(𝑔‘𝑥))) ∪ {0}), ℝ*, <
))〉} ∪ {〈(Hom ‘ndx), ℎ〉, 〈(comp‘ndx), (𝑎 ∈ (𝑣 × 𝑣), 𝑐 ∈ 𝑣 ↦ (𝑑 ∈ (𝑐ℎ(2nd ‘𝑎)), 𝑒 ∈ (ℎ‘𝑎) ↦ (𝑥 ∈ dom 𝑟 ↦ ((𝑑‘𝑥)(〈((1st ‘𝑎)‘𝑥), ((2nd ‘𝑎)‘𝑥)〉(comp‘(𝑟‘𝑥))(𝑐‘𝑥))(𝑒‘𝑥)))))〉})) |
136 | 14, 26, 135 | csb 3045 |
. . . 4
class
⦋(𝑓
∈ 𝑣, 𝑔 ∈ 𝑣 ↦ X𝑥 ∈ dom 𝑟((𝑓‘𝑥)(Hom ‘(𝑟‘𝑥))(𝑔‘𝑥))) / ℎ⦌(({〈(Base‘ndx),
𝑣〉,
〈(+g‘ndx), (𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↦ (𝑥 ∈ dom 𝑟 ↦ ((𝑓‘𝑥)(+g‘(𝑟‘𝑥))(𝑔‘𝑥))))〉, 〈(.r‘ndx),
(𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↦ (𝑥 ∈ dom 𝑟 ↦ ((𝑓‘𝑥)(.r‘(𝑟‘𝑥))(𝑔‘𝑥))))〉} ∪ {〈(Scalar‘ndx),
𝑠〉, 〈(
·𝑠 ‘ndx), (𝑓 ∈ (Base‘𝑠), 𝑔 ∈ 𝑣 ↦ (𝑥 ∈ dom 𝑟 ↦ (𝑓( ·𝑠
‘(𝑟‘𝑥))(𝑔‘𝑥))))〉,
〈(·𝑖‘ndx), (𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↦ (𝑠 Σg (𝑥 ∈ dom 𝑟 ↦ ((𝑓‘𝑥)(·𝑖‘(𝑟‘𝑥))(𝑔‘𝑥)))))〉}) ∪ ({〈(TopSet‘ndx),
(∏t‘(TopOpen ∘ 𝑟))〉, 〈(le‘ndx), {〈𝑓, 𝑔〉 ∣ ({𝑓, 𝑔} ⊆ 𝑣 ∧ ∀𝑥 ∈ dom 𝑟(𝑓‘𝑥)(le‘(𝑟‘𝑥))(𝑔‘𝑥))}〉, 〈(dist‘ndx), (𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↦ sup((ran (𝑥 ∈ dom 𝑟 ↦ ((𝑓‘𝑥)(dist‘(𝑟‘𝑥))(𝑔‘𝑥))) ∪ {0}), ℝ*, <
))〉} ∪ {〈(Hom ‘ndx), ℎ〉, 〈(comp‘ndx), (𝑎 ∈ (𝑣 × 𝑣), 𝑐 ∈ 𝑣 ↦ (𝑑 ∈ (𝑐ℎ(2nd ‘𝑎)), 𝑒 ∈ (ℎ‘𝑎) ↦ (𝑥 ∈ dom 𝑟 ↦ ((𝑑‘𝑥)(〈((1st ‘𝑎)‘𝑥), ((2nd ‘𝑎)‘𝑥)〉(comp‘(𝑟‘𝑥))(𝑐‘𝑥))(𝑒‘𝑥)))))〉})) |
137 | 5, 13, 136 | csb 3045 |
. . 3
class
⦋X𝑥 ∈ dom 𝑟(Base‘(𝑟‘𝑥)) / 𝑣⦌⦋(𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↦ X𝑥 ∈ dom 𝑟((𝑓‘𝑥)(Hom ‘(𝑟‘𝑥))(𝑔‘𝑥))) / ℎ⦌(({〈(Base‘ndx),
𝑣〉,
〈(+g‘ndx), (𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↦ (𝑥 ∈ dom 𝑟 ↦ ((𝑓‘𝑥)(+g‘(𝑟‘𝑥))(𝑔‘𝑥))))〉, 〈(.r‘ndx),
(𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↦ (𝑥 ∈ dom 𝑟 ↦ ((𝑓‘𝑥)(.r‘(𝑟‘𝑥))(𝑔‘𝑥))))〉} ∪ {〈(Scalar‘ndx),
𝑠〉, 〈(
·𝑠 ‘ndx), (𝑓 ∈ (Base‘𝑠), 𝑔 ∈ 𝑣 ↦ (𝑥 ∈ dom 𝑟 ↦ (𝑓( ·𝑠
‘(𝑟‘𝑥))(𝑔‘𝑥))))〉,
〈(·𝑖‘ndx), (𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↦ (𝑠 Σg (𝑥 ∈ dom 𝑟 ↦ ((𝑓‘𝑥)(·𝑖‘(𝑟‘𝑥))(𝑔‘𝑥)))))〉}) ∪ ({〈(TopSet‘ndx),
(∏t‘(TopOpen ∘ 𝑟))〉, 〈(le‘ndx), {〈𝑓, 𝑔〉 ∣ ({𝑓, 𝑔} ⊆ 𝑣 ∧ ∀𝑥 ∈ dom 𝑟(𝑓‘𝑥)(le‘(𝑟‘𝑥))(𝑔‘𝑥))}〉, 〈(dist‘ndx), (𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↦ sup((ran (𝑥 ∈ dom 𝑟 ↦ ((𝑓‘𝑥)(dist‘(𝑟‘𝑥))(𝑔‘𝑥))) ∪ {0}), ℝ*, <
))〉} ∪ {〈(Hom ‘ndx), ℎ〉, 〈(comp‘ndx), (𝑎 ∈ (𝑣 × 𝑣), 𝑐 ∈ 𝑣 ↦ (𝑑 ∈ (𝑐ℎ(2nd ‘𝑎)), 𝑒 ∈ (ℎ‘𝑎) ↦ (𝑥 ∈ dom 𝑟 ↦ ((𝑑‘𝑥)(〈((1st ‘𝑎)‘𝑥), ((2nd ‘𝑎)‘𝑥)〉(comp‘(𝑟‘𝑥))(𝑐‘𝑥))(𝑒‘𝑥)))))〉})) |
138 | 2, 3, 4, 4, 137 | cmpo 5844 |
. 2
class (𝑠 ∈ V, 𝑟 ∈ V ↦ ⦋X𝑥 ∈
dom 𝑟(Base‘(𝑟‘𝑥)) / 𝑣⦌⦋(𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↦ X𝑥 ∈ dom 𝑟((𝑓‘𝑥)(Hom ‘(𝑟‘𝑥))(𝑔‘𝑥))) / ℎ⦌(({〈(Base‘ndx),
𝑣〉,
〈(+g‘ndx), (𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↦ (𝑥 ∈ dom 𝑟 ↦ ((𝑓‘𝑥)(+g‘(𝑟‘𝑥))(𝑔‘𝑥))))〉, 〈(.r‘ndx),
(𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↦ (𝑥 ∈ dom 𝑟 ↦ ((𝑓‘𝑥)(.r‘(𝑟‘𝑥))(𝑔‘𝑥))))〉} ∪ {〈(Scalar‘ndx),
𝑠〉, 〈(
·𝑠 ‘ndx), (𝑓 ∈ (Base‘𝑠), 𝑔 ∈ 𝑣 ↦ (𝑥 ∈ dom 𝑟 ↦ (𝑓( ·𝑠
‘(𝑟‘𝑥))(𝑔‘𝑥))))〉,
〈(·𝑖‘ndx), (𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↦ (𝑠 Σg (𝑥 ∈ dom 𝑟 ↦ ((𝑓‘𝑥)(·𝑖‘(𝑟‘𝑥))(𝑔‘𝑥)))))〉}) ∪ ({〈(TopSet‘ndx),
(∏t‘(TopOpen ∘ 𝑟))〉, 〈(le‘ndx), {〈𝑓, 𝑔〉 ∣ ({𝑓, 𝑔} ⊆ 𝑣 ∧ ∀𝑥 ∈ dom 𝑟(𝑓‘𝑥)(le‘(𝑟‘𝑥))(𝑔‘𝑥))}〉, 〈(dist‘ndx), (𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↦ sup((ran (𝑥 ∈ dom 𝑟 ↦ ((𝑓‘𝑥)(dist‘(𝑟‘𝑥))(𝑔‘𝑥))) ∪ {0}), ℝ*, <
))〉} ∪ {〈(Hom ‘ndx), ℎ〉, 〈(comp‘ndx), (𝑎 ∈ (𝑣 × 𝑣), 𝑐 ∈ 𝑣 ↦ (𝑑 ∈ (𝑐ℎ(2nd ‘𝑎)), 𝑒 ∈ (ℎ‘𝑎) ↦ (𝑥 ∈ dom 𝑟 ↦ ((𝑑‘𝑥)(〈((1st ‘𝑎)‘𝑥), ((2nd ‘𝑎)‘𝑥)〉(comp‘(𝑟‘𝑥))(𝑐‘𝑥))(𝑒‘𝑥)))))〉}))) |
139 | 1, 138 | wceq 1343 |
1
wff Xs = (𝑠 ∈ V, 𝑟 ∈ V ↦ ⦋X𝑥 ∈
dom 𝑟(Base‘(𝑟‘𝑥)) / 𝑣⦌⦋(𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↦ X𝑥 ∈ dom 𝑟((𝑓‘𝑥)(Hom ‘(𝑟‘𝑥))(𝑔‘𝑥))) / ℎ⦌(({〈(Base‘ndx),
𝑣〉,
〈(+g‘ndx), (𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↦ (𝑥 ∈ dom 𝑟 ↦ ((𝑓‘𝑥)(+g‘(𝑟‘𝑥))(𝑔‘𝑥))))〉, 〈(.r‘ndx),
(𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↦ (𝑥 ∈ dom 𝑟 ↦ ((𝑓‘𝑥)(.r‘(𝑟‘𝑥))(𝑔‘𝑥))))〉} ∪ {〈(Scalar‘ndx),
𝑠〉, 〈(
·𝑠 ‘ndx), (𝑓 ∈ (Base‘𝑠), 𝑔 ∈ 𝑣 ↦ (𝑥 ∈ dom 𝑟 ↦ (𝑓( ·𝑠
‘(𝑟‘𝑥))(𝑔‘𝑥))))〉,
〈(·𝑖‘ndx), (𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↦ (𝑠 Σg (𝑥 ∈ dom 𝑟 ↦ ((𝑓‘𝑥)(·𝑖‘(𝑟‘𝑥))(𝑔‘𝑥)))))〉}) ∪ ({〈(TopSet‘ndx),
(∏t‘(TopOpen ∘ 𝑟))〉, 〈(le‘ndx), {〈𝑓, 𝑔〉 ∣ ({𝑓, 𝑔} ⊆ 𝑣 ∧ ∀𝑥 ∈ dom 𝑟(𝑓‘𝑥)(le‘(𝑟‘𝑥))(𝑔‘𝑥))}〉, 〈(dist‘ndx), (𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↦ sup((ran (𝑥 ∈ dom 𝑟 ↦ ((𝑓‘𝑥)(dist‘(𝑟‘𝑥))(𝑔‘𝑥))) ∪ {0}), ℝ*, <
))〉} ∪ {〈(Hom ‘ndx), ℎ〉, 〈(comp‘ndx), (𝑎 ∈ (𝑣 × 𝑣), 𝑐 ∈ 𝑣 ↦ (𝑑 ∈ (𝑐ℎ(2nd ‘𝑎)), 𝑒 ∈ (ℎ‘𝑎) ↦ (𝑥 ∈ dom 𝑟 ↦ ((𝑑‘𝑥)(〈((1st ‘𝑎)‘𝑥), ((2nd ‘𝑎)‘𝑥)〉(comp‘(𝑟‘𝑥))(𝑐‘𝑥))(𝑒‘𝑥)))))〉}))) |