Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > reldmprds | Unicode version |
Description: The structure product is a well-behaved binary operator. (Contributed by Stefan O'Rear, 7-Jan-2015.) (Revised by Thierry Arnoux, 15-Jun-2019.) |
Ref | Expression |
---|---|
reldmprds | s |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-prds 12604 | . 2 s Scalar g TopSet comp comp | |
2 | 1 | reldmmpo 5964 | 1 s |
Colors of variables: wff set class |
Syntax hints: wa 103 wral 2448 cvv 2730 csb 3049 cun 3119 wss 3121 csn 3583 cpr 3584 ctp 3585 cop 3586 class class class wbr 3989 copab 4049 cmpt 4050 cxp 4609 cdm 4611 crn 4612 ccom 4615 wrel 4616 cfv 5198 (class class class)co 5853 cmpo 5855 c1st 6117 c2nd 6118 cixp 6676 csup 6959 cc0 7774 cxr 7953 clt 7954 cnx 12413 cbs 12416 cplusg 12480 cmulr 12481 Scalarcsca 12483 cvsca 12484 cip 12485 TopSetcts 12486 cple 12487 cds 12489 chom 12491 compcco 12492 ctopn 12580 cpt 12595 g cgsu 12597 scprds 12602 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-br 3990 df-opab 4051 df-xp 4617 df-rel 4618 df-dm 4621 df-oprab 5857 df-mpo 5858 df-prds 12604 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |