ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reldmprds Unicode version

Theorem reldmprds 12939
Description: The structure product is a well-behaved binary operator. (Contributed by Stefan O'Rear, 7-Jan-2015.) (Revised by Thierry Arnoux, 15-Jun-2019.)
Assertion
Ref Expression
reldmprds  |-  Rel  dom  X_s

Proof of Theorem reldmprds
Dummy variables  a  c  d  e  f  g  h  s  r  x  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-prds 12938 . 2  |-  X_s  =  (
s  e.  _V , 
r  e.  _V  |->  [_ X_ x  e.  dom  r
( Base `  ( r `  x ) )  / 
v ]_ [_ ( f  e.  v ,  g  e.  v  |->  X_ x  e.  dom  r ( ( f `  x ) ( Hom  `  (
r `  x )
) ( g `  x ) ) )  /  h ]_ (
( { <. ( Base `  ndx ) ,  v >. ,  <. ( +g  `  ndx ) ,  ( f  e.  v ,  g  e.  v 
|->  ( x  e.  dom  r  |->  ( ( f `
 x ) ( +g  `  ( r `
 x ) ) ( g `  x
) ) ) )
>. ,  <. ( .r
`  ndx ) ,  ( f  e.  v ,  g  e.  v  |->  ( x  e.  dom  r  |->  ( ( f `  x ) ( .r
`  ( r `  x ) ) ( g `  x ) ) ) ) >. }  u.  { <. (Scalar ` 
ndx ) ,  s
>. ,  <. ( .s
`  ndx ) ,  ( f  e.  ( Base `  s ) ,  g  e.  v  |->  ( x  e.  dom  r  |->  ( f ( .s `  ( r `  x
) ) ( g `
 x ) ) ) ) >. ,  <. ( .i `  ndx ) ,  ( f  e.  v ,  g  e.  v  |->  ( s  gsumg  ( x  e.  dom  r  |->  ( ( f `  x
) ( .i `  ( r `  x
) ) ( g `
 x ) ) ) ) ) >. } )  u.  ( { <. (TopSet `  ndx ) ,  ( Xt_ `  ( TopOpen  o.  r )
) >. ,  <. ( le `  ndx ) ,  { <. f ,  g
>.  |  ( {
f ,  g } 
C_  v  /\  A. x  e.  dom  r ( f `  x ) ( le `  (
r `  x )
) ( g `  x ) ) }
>. ,  <. ( dist `  ndx ) ,  ( f  e.  v ,  g  e.  v  |->  sup ( ( ran  (
x  e.  dom  r  |->  ( ( f `  x ) ( dist `  ( r `  x
) ) ( g `
 x ) ) )  u.  { 0 } ) ,  RR* ,  <  ) ) >. }  u.  { <. ( Hom  `  ndx ) ,  h >. ,  <. (comp ` 
ndx ) ,  ( a  e.  ( v  X.  v ) ,  c  e.  v  |->  ( d  e.  ( c h ( 2nd `  a
) ) ,  e  e.  ( h `  a )  |->  ( x  e.  dom  r  |->  ( ( d `  x
) ( <. (
( 1st `  a
) `  x ) ,  ( ( 2nd `  a ) `  x
) >. (comp `  (
r `  x )
) ( c `  x ) ) ( e `  x ) ) ) ) )
>. } ) ) )
21reldmmpo 6034 1  |-  Rel  dom  X_s
Colors of variables: wff set class
Syntax hints:    /\ wa 104   A.wral 2475   _Vcvv 2763   [_csb 3084    u. cun 3155    C_ wss 3157   {csn 3622   {cpr 3623   {ctp 3624   <.cop 3625   class class class wbr 4033   {copab 4093    |-> cmpt 4094    X. cxp 4661   dom cdm 4663   ran crn 4664    o. ccom 4667   Rel wrel 4668   ` cfv 5258  (class class class)co 5922    e. cmpo 5924   1stc1st 6196   2ndc2nd 6197   X_cixp 6757   supcsup 7048   0cc0 7879   RR*cxr 8060    < clt 8061   ndxcnx 12675   Basecbs 12678   +g cplusg 12755   .rcmulr 12756  Scalarcsca 12758   .scvsca 12759   .icip 12760  TopSetcts 12761   lecple 12762   distcds 12764   Hom chom 12766  compcco 12767   TopOpenctopn 12911   Xt_cpt 12926    gsumg cgsu 12928   X_scprds 12936
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-br 4034  df-opab 4095  df-xp 4669  df-rel 4670  df-dm 4673  df-oprab 5926  df-mpo 5927  df-prds 12938
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator