Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > reldmprds | Unicode version |
Description: The structure product is a well-behaved binary operator. (Contributed by Stefan O'Rear, 7-Jan-2015.) (Revised by Thierry Arnoux, 15-Jun-2019.) |
Ref | Expression |
---|---|
reldmprds | s |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-prds 12581 | . 2 s Scalar g TopSet comp comp | |
2 | 1 | reldmmpo 5953 | 1 s |
Colors of variables: wff set class |
Syntax hints: wa 103 wral 2444 cvv 2726 csb 3045 cun 3114 wss 3116 csn 3576 cpr 3577 ctp 3578 cop 3579 class class class wbr 3982 copab 4042 cmpt 4043 cxp 4602 cdm 4604 crn 4605 ccom 4608 wrel 4609 cfv 5188 (class class class)co 5842 cmpo 5844 c1st 6106 c2nd 6107 cixp 6664 csup 6947 cc0 7753 cxr 7932 clt 7933 cnx 12391 cbs 12394 cplusg 12457 cmulr 12458 Scalarcsca 12460 cvsca 12461 cip 12462 TopSetcts 12463 cple 12464 cds 12466 chom 12468 compcco 12469 ctopn 12557 cpt 12572 g cgsu 12574 scprds 12579 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-br 3983 df-opab 4044 df-xp 4610 df-rel 4611 df-dm 4614 df-oprab 5846 df-mpo 5847 df-prds 12581 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |