ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  subval Unicode version

Theorem subval 8284
Description: Value of subtraction, which is the (unique) element  x such that  B  +  x  =  A. (Contributed by NM, 4-Aug-2007.) (Revised by Mario Carneiro, 2-Nov-2013.)
Assertion
Ref Expression
subval  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  -  B
)  =  ( iota_ x  e.  CC  ( B  +  x )  =  A ) )
Distinct variable groups:    x, A    x, B

Proof of Theorem subval
Dummy variables  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 negeu 8283 . . . 4  |-  ( ( B  e.  CC  /\  A  e.  CC )  ->  E! x  e.  CC  ( B  +  x
)  =  A )
2 riotacl 5927 . . . 4  |-  ( E! x  e.  CC  ( B  +  x )  =  A  ->  ( iota_ x  e.  CC  ( B  +  x )  =  A )  e.  CC )
31, 2syl 14 . . 3  |-  ( ( B  e.  CC  /\  A  e.  CC )  ->  ( iota_ x  e.  CC  ( B  +  x
)  =  A )  e.  CC )
43ancoms 268 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( iota_ x  e.  CC  ( B  +  x
)  =  A )  e.  CC )
5 eqeq2 2216 . . . 4  |-  ( y  =  A  ->  (
( z  +  x
)  =  y  <->  ( z  +  x )  =  A ) )
65riotabidv 5914 . . 3  |-  ( y  =  A  ->  ( iota_ x  e.  CC  (
z  +  x )  =  y )  =  ( iota_ x  e.  CC  ( z  +  x
)  =  A ) )
7 oveq1 5964 . . . . 5  |-  ( z  =  B  ->  (
z  +  x )  =  ( B  +  x ) )
87eqeq1d 2215 . . . 4  |-  ( z  =  B  ->  (
( z  +  x
)  =  A  <->  ( B  +  x )  =  A ) )
98riotabidv 5914 . . 3  |-  ( z  =  B  ->  ( iota_ x  e.  CC  (
z  +  x )  =  A )  =  ( iota_ x  e.  CC  ( B  +  x
)  =  A ) )
10 df-sub 8265 . . 3  |-  -  =  ( y  e.  CC ,  z  e.  CC  |->  ( iota_ x  e.  CC  ( z  +  x
)  =  y ) )
116, 9, 10ovmpog 6093 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  ( iota_ x  e.  CC  ( B  +  x )  =  A )  e.  CC )  ->  ( A  -  B )  =  (
iota_ x  e.  CC  ( B  +  x
)  =  A ) )
124, 11mpd3an3 1351 1  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  -  B
)  =  ( iota_ x  e.  CC  ( B  +  x )  =  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2177   E!wreu 2487   iota_crio 5911  (class class class)co 5957   CCcc 7943    + caddc 7948    - cmin 8263
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2180  ax-ext 2188  ax-sep 4170  ax-pow 4226  ax-pr 4261  ax-setind 4593  ax-resscn 8037  ax-1cn 8038  ax-icn 8040  ax-addcl 8041  ax-addrcl 8042  ax-mulcl 8043  ax-addcom 8045  ax-addass 8047  ax-distr 8049  ax-i2m1 8050  ax-0id 8053  ax-rnegex 8054  ax-cnre 8056
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3003  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-br 4052  df-opab 4114  df-id 4348  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-iota 5241  df-fun 5282  df-fv 5288  df-riota 5912  df-ov 5960  df-oprab 5961  df-mpo 5962  df-sub 8265
This theorem is referenced by:  subcl  8291  subf  8294  subadd  8295
  Copyright terms: Public domain W3C validator