ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  subval Unicode version

Theorem subval 8151
Description: Value of subtraction, which is the (unique) element  x such that  B  +  x  =  A. (Contributed by NM, 4-Aug-2007.) (Revised by Mario Carneiro, 2-Nov-2013.)
Assertion
Ref Expression
subval  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  -  B
)  =  ( iota_ x  e.  CC  ( B  +  x )  =  A ) )
Distinct variable groups:    x, A    x, B

Proof of Theorem subval
Dummy variables  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 negeu 8150 . . . 4  |-  ( ( B  e.  CC  /\  A  e.  CC )  ->  E! x  e.  CC  ( B  +  x
)  =  A )
2 riotacl 5847 . . . 4  |-  ( E! x  e.  CC  ( B  +  x )  =  A  ->  ( iota_ x  e.  CC  ( B  +  x )  =  A )  e.  CC )
31, 2syl 14 . . 3  |-  ( ( B  e.  CC  /\  A  e.  CC )  ->  ( iota_ x  e.  CC  ( B  +  x
)  =  A )  e.  CC )
43ancoms 268 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( iota_ x  e.  CC  ( B  +  x
)  =  A )  e.  CC )
5 eqeq2 2187 . . . 4  |-  ( y  =  A  ->  (
( z  +  x
)  =  y  <->  ( z  +  x )  =  A ) )
65riotabidv 5835 . . 3  |-  ( y  =  A  ->  ( iota_ x  e.  CC  (
z  +  x )  =  y )  =  ( iota_ x  e.  CC  ( z  +  x
)  =  A ) )
7 oveq1 5884 . . . . 5  |-  ( z  =  B  ->  (
z  +  x )  =  ( B  +  x ) )
87eqeq1d 2186 . . . 4  |-  ( z  =  B  ->  (
( z  +  x
)  =  A  <->  ( B  +  x )  =  A ) )
98riotabidv 5835 . . 3  |-  ( z  =  B  ->  ( iota_ x  e.  CC  (
z  +  x )  =  A )  =  ( iota_ x  e.  CC  ( B  +  x
)  =  A ) )
10 df-sub 8132 . . 3  |-  -  =  ( y  e.  CC ,  z  e.  CC  |->  ( iota_ x  e.  CC  ( z  +  x
)  =  y ) )
116, 9, 10ovmpog 6011 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  ( iota_ x  e.  CC  ( B  +  x )  =  A )  e.  CC )  ->  ( A  -  B )  =  (
iota_ x  e.  CC  ( B  +  x
)  =  A ) )
124, 11mpd3an3 1338 1  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  -  B
)  =  ( iota_ x  e.  CC  ( B  +  x )  =  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1353    e. wcel 2148   E!wreu 2457   iota_crio 5832  (class class class)co 5877   CCcc 7811    + caddc 7816    - cmin 8130
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-setind 4538  ax-resscn 7905  ax-1cn 7906  ax-icn 7908  ax-addcl 7909  ax-addrcl 7910  ax-mulcl 7911  ax-addcom 7913  ax-addass 7915  ax-distr 7917  ax-i2m1 7918  ax-0id 7921  ax-rnegex 7922  ax-cnre 7924
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2741  df-sbc 2965  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-br 4006  df-opab 4067  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-iota 5180  df-fun 5220  df-fv 5226  df-riota 5833  df-ov 5880  df-oprab 5881  df-mpo 5882  df-sub 8132
This theorem is referenced by:  subcl  8158  subf  8161  subadd  8162
  Copyright terms: Public domain W3C validator