ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  subval Unicode version

Theorem subval 7978
Description: Value of subtraction, which is the (unique) element  x such that  B  +  x  =  A. (Contributed by NM, 4-Aug-2007.) (Revised by Mario Carneiro, 2-Nov-2013.)
Assertion
Ref Expression
subval  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  -  B
)  =  ( iota_ x  e.  CC  ( B  +  x )  =  A ) )
Distinct variable groups:    x, A    x, B

Proof of Theorem subval
Dummy variables  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 negeu 7977 . . . 4  |-  ( ( B  e.  CC  /\  A  e.  CC )  ->  E! x  e.  CC  ( B  +  x
)  =  A )
2 riotacl 5752 . . . 4  |-  ( E! x  e.  CC  ( B  +  x )  =  A  ->  ( iota_ x  e.  CC  ( B  +  x )  =  A )  e.  CC )
31, 2syl 14 . . 3  |-  ( ( B  e.  CC  /\  A  e.  CC )  ->  ( iota_ x  e.  CC  ( B  +  x
)  =  A )  e.  CC )
43ancoms 266 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( iota_ x  e.  CC  ( B  +  x
)  =  A )  e.  CC )
5 eqeq2 2150 . . . 4  |-  ( y  =  A  ->  (
( z  +  x
)  =  y  <->  ( z  +  x )  =  A ) )
65riotabidv 5740 . . 3  |-  ( y  =  A  ->  ( iota_ x  e.  CC  (
z  +  x )  =  y )  =  ( iota_ x  e.  CC  ( z  +  x
)  =  A ) )
7 oveq1 5789 . . . . 5  |-  ( z  =  B  ->  (
z  +  x )  =  ( B  +  x ) )
87eqeq1d 2149 . . . 4  |-  ( z  =  B  ->  (
( z  +  x
)  =  A  <->  ( B  +  x )  =  A ) )
98riotabidv 5740 . . 3  |-  ( z  =  B  ->  ( iota_ x  e.  CC  (
z  +  x )  =  A )  =  ( iota_ x  e.  CC  ( B  +  x
)  =  A ) )
10 df-sub 7959 . . 3  |-  -  =  ( y  e.  CC ,  z  e.  CC  |->  ( iota_ x  e.  CC  ( z  +  x
)  =  y ) )
116, 9, 10ovmpog 5913 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  ( iota_ x  e.  CC  ( B  +  x )  =  A )  e.  CC )  ->  ( A  -  B )  =  (
iota_ x  e.  CC  ( B  +  x
)  =  A ) )
124, 11mpd3an3 1317 1  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  -  B
)  =  ( iota_ x  e.  CC  ( B  +  x )  =  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1332    e. wcel 1481   E!wreu 2419   iota_crio 5737  (class class class)co 5782   CCcc 7642    + caddc 7647    - cmin 7957
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-pow 4106  ax-pr 4139  ax-setind 4460  ax-resscn 7736  ax-1cn 7737  ax-icn 7739  ax-addcl 7740  ax-addrcl 7741  ax-mulcl 7742  ax-addcom 7744  ax-addass 7746  ax-distr 7748  ax-i2m1 7749  ax-0id 7752  ax-rnegex 7753  ax-cnre 7755
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-ral 2422  df-rex 2423  df-reu 2424  df-rab 2426  df-v 2691  df-sbc 2914  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-br 3938  df-opab 3998  df-id 4223  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-iota 5096  df-fun 5133  df-fv 5139  df-riota 5738  df-ov 5785  df-oprab 5786  df-mpo 5787  df-sub 7959
This theorem is referenced by:  subcl  7985  subf  7988  subadd  7989
  Copyright terms: Public domain W3C validator