ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resubcli Unicode version

Theorem resubcli 8397
Description: Closure law for subtraction of reals. (Contributed by NM, 17-Jan-1997.) (Revised by Mario Carneiro, 27-May-2016.)
Hypotheses
Ref Expression
renegcl.1  |-  A  e.  RR
resubcl.2  |-  B  e.  RR
Assertion
Ref Expression
resubcli  |-  ( A  -  B )  e.  RR

Proof of Theorem resubcli
StepHypRef Expression
1 renegcl.1 . . . 4  |-  A  e.  RR
21recni 8146 . . 3  |-  A  e.  CC
3 resubcl.2 . . . 4  |-  B  e.  RR
43recni 8146 . . 3  |-  B  e.  CC
5 negsub 8382 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  +  -u B )  =  ( A  -  B ) )
62, 4, 5mp2an 426 . 2  |-  ( A  +  -u B )  =  ( A  -  B
)
73renegcli 8396 . . 3  |-  -u B  e.  RR
81, 7readdcli 8147 . 2  |-  ( A  +  -u B )  e.  RR
96, 8eqeltrri 2303 1  |-  ( A  -  B )  e.  RR
Colors of variables: wff set class
Syntax hints:    = wceq 1395    e. wcel 2200  (class class class)co 5994   CCcc 7985   RRcr 7986    + caddc 7990    - cmin 8305   -ucneg 8306
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-setind 4626  ax-resscn 8079  ax-1cn 8080  ax-icn 8082  ax-addcl 8083  ax-addrcl 8084  ax-mulcl 8085  ax-addcom 8087  ax-addass 8089  ax-distr 8091  ax-i2m1 8092  ax-0id 8095  ax-rnegex 8096  ax-cnre 8098
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-opab 4145  df-id 4381  df-xp 4722  df-rel 4723  df-cnv 4724  df-co 4725  df-dm 4726  df-iota 5274  df-fun 5316  df-fv 5322  df-riota 5947  df-ov 5997  df-oprab 5998  df-mpo 5999  df-sub 8307  df-neg 8308
This theorem is referenced by:  0reALT  8431
  Copyright terms: Public domain W3C validator