ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  subf Unicode version

Theorem subf 8309
Description: Subtraction is an operation on the complex numbers. (Contributed by NM, 4-Aug-2007.) (Revised by Mario Carneiro, 16-Nov-2013.)
Assertion
Ref Expression
subf  |-  -  :
( CC  X.  CC )
--> CC

Proof of Theorem subf
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 subval 8299 . . . 4  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( x  -  y
)  =  ( iota_ z  e.  CC  ( y  +  z )  =  x ) )
2 subcl 8306 . . . 4  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( x  -  y
)  e.  CC )
31, 2eqeltrrd 2285 . . 3  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( iota_ z  e.  CC  ( y  +  z )  =  x )  e.  CC )
43rgen2a 2562 . 2  |-  A. x  e.  CC  A. y  e.  CC  ( iota_ z  e.  CC  ( y  +  z )  =  x )  e.  CC
5 df-sub 8280 . . 3  |-  -  =  ( x  e.  CC ,  y  e.  CC  |->  ( iota_ z  e.  CC  ( y  +  z )  =  x ) )
65fmpo 6310 . 2  |-  ( A. x  e.  CC  A. y  e.  CC  ( iota_ z  e.  CC  ( y  +  z )  =  x )  e.  CC  <->  -  : ( CC  X.  CC ) --> CC )
74, 6mpbi 145 1  |-  -  :
( CC  X.  CC )
--> CC
Colors of variables: wff set class
Syntax hints:    /\ wa 104    = wceq 1373    e. wcel 2178   A.wral 2486    X. cxp 4691   -->wf 5286   iota_crio 5921  (class class class)co 5967   CCcc 7958    + caddc 7963    - cmin 8278
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-resscn 8052  ax-1cn 8053  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-addcom 8060  ax-addass 8062  ax-distr 8064  ax-i2m1 8065  ax-0id 8068  ax-rnegex 8069  ax-cnre 8071
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-ral 2491  df-rex 2492  df-reu 2493  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-fv 5298  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-sub 8280
This theorem is referenced by:  dfz2  9480  cnfldsub  14452  cnmetdval  15116  cnmet  15117  cnfldms  15123  subcncntop  15150
  Copyright terms: Public domain W3C validator