ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-xps Unicode version

Definition df-xps 12725
Description: Define a binary product on structures. (Contributed by Mario Carneiro, 14-Aug-2015.) (Revised by Jim Kingdon, 25-Sep-2023.)
Assertion
Ref Expression
df-xps  |-  X.s  =  ( r  e.  _V , 
s  e.  _V  |->  ( `' ( x  e.  ( Base `  r
) ,  y  e.  ( Base `  s
)  |->  { <. (/) ,  x >. ,  <. 1o ,  y
>. } )  "s  ( (Scalar `  r ) X_s { <. (/) ,  r >. ,  <. 1o ,  s
>. } ) ) )
Distinct variable group:    s, r, x, y

Detailed syntax breakdown of Definition df-xps
StepHypRef Expression
1 cxps 12722 . 2  class  X.s
2 vr . . 3  setvar  r
3 vs . . 3  setvar  s
4 cvv 2738 . . 3  class  _V
5 vx . . . . . 6  setvar  x
6 vy . . . . . 6  setvar  y
72cv 1352 . . . . . . 7  class  r
8 cbs 12462 . . . . . . 7  class  Base
97, 8cfv 5217 . . . . . 6  class  ( Base `  r )
103cv 1352 . . . . . . 7  class  s
1110, 8cfv 5217 . . . . . 6  class  ( Base `  s )
12 c0 3423 . . . . . . . 8  class  (/)
135cv 1352 . . . . . . . 8  class  x
1412, 13cop 3596 . . . . . . 7  class  <. (/) ,  x >.
15 c1o 6410 . . . . . . . 8  class  1o
166cv 1352 . . . . . . . 8  class  y
1715, 16cop 3596 . . . . . . 7  class  <. 1o , 
y >.
1814, 17cpr 3594 . . . . . 6  class  { <. (/)
,  x >. ,  <. 1o ,  y >. }
195, 6, 9, 11, 18cmpo 5877 . . . . 5  class  ( x  e.  ( Base `  r
) ,  y  e.  ( Base `  s
)  |->  { <. (/) ,  x >. ,  <. 1o ,  y
>. } )
2019ccnv 4626 . . . 4  class  `' ( x  e.  ( Base `  r ) ,  y  e.  ( Base `  s
)  |->  { <. (/) ,  x >. ,  <. 1o ,  y
>. } )
21 csca 12539 . . . . . 6  class Scalar
227, 21cfv 5217 . . . . 5  class  (Scalar `  r )
2312, 7cop 3596 . . . . . 6  class  <. (/) ,  r
>.
2415, 10cop 3596 . . . . . 6  class  <. 1o , 
s >.
2523, 24cpr 3594 . . . . 5  class  { <. (/)
,  r >. ,  <. 1o ,  s >. }
26 cprds 12714 . . . . 5  class  X_s
2722, 25, 26co 5875 . . . 4  class  ( (Scalar `  r ) X_s { <. (/) ,  r >. ,  <. 1o ,  s
>. } )
28 cimas 12720 . . . 4  class  "s
2920, 27, 28co 5875 . . 3  class  ( `' ( x  e.  (
Base `  r ) ,  y  e.  ( Base `  s )  |->  {
<. (/) ,  x >. , 
<. 1o ,  y >. } )  "s  ( (Scalar `  r ) X_s { <. (/) ,  r >. ,  <. 1o ,  s
>. } ) )
302, 3, 4, 4, 29cmpo 5877 . 2  class  ( r  e.  _V ,  s  e.  _V  |->  ( `' ( x  e.  (
Base `  r ) ,  y  e.  ( Base `  s )  |->  {
<. (/) ,  x >. , 
<. 1o ,  y >. } )  "s  ( (Scalar `  r ) X_s { <. (/) ,  r >. ,  <. 1o ,  s
>. } ) ) )
311, 30wceq 1353 1  wff  X.s  =  ( r  e.  _V , 
s  e.  _V  |->  ( `' ( x  e.  ( Base `  r
) ,  y  e.  ( Base `  s
)  |->  { <. (/) ,  x >. ,  <. 1o ,  y
>. } )  "s  ( (Scalar `  r ) X_s { <. (/) ,  r >. ,  <. 1o ,  s
>. } ) ) )
Colors of variables: wff set class
This definition is referenced by:  xpsval  12771
  Copyright terms: Public domain W3C validator