ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xpsval Unicode version

Theorem xpsval 12776
Description: Value of the binary structure product function. (Contributed by Mario Carneiro, 14-Aug-2015.) (Revised by Jim Kingdon, 25-Sep-2023.)
Hypotheses
Ref Expression
xpsval.t  |-  T  =  ( R  X.s  S )
xpsval.x  |-  X  =  ( Base `  R
)
xpsval.y  |-  Y  =  ( Base `  S
)
xpsval.1  |-  ( ph  ->  R  e.  V )
xpsval.2  |-  ( ph  ->  S  e.  W )
xpsval.f  |-  F  =  ( x  e.  X ,  y  e.  Y  |->  { <. (/) ,  x >. , 
<. 1o ,  y >. } )
xpsval.k  |-  G  =  (Scalar `  R )
xpsval.u  |-  U  =  ( G X_s { <. (/) ,  R >. , 
<. 1o ,  S >. } )
Assertion
Ref Expression
xpsval  |-  ( ph  ->  T  =  ( `' F  "s  U ) )
Distinct variable groups:    x, y    x, W    x, X, y    x, R    x, Y, y
Allowed substitution hints:    ph( x, y)    R( y)    S( x, y)    T( x, y)    U( x, y)    F( x, y)    G( x, y)    V( x, y)    W( y)

Proof of Theorem xpsval
Dummy variables  s  r are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xpsval.t . 2  |-  T  =  ( R  X.s  S )
2 xpsval.1 . . . 4  |-  ( ph  ->  R  e.  V )
32elexd 2752 . . 3  |-  ( ph  ->  R  e.  _V )
4 xpsval.2 . . . 4  |-  ( ph  ->  S  e.  W )
54elexd 2752 . . 3  |-  ( ph  ->  S  e.  _V )
6 xpsval.x . . . . . . 7  |-  X  =  ( Base `  R
)
7 basfn 12522 . . . . . . . 8  |-  Base  Fn  _V
8 funfvex 5534 . . . . . . . . 9  |-  ( ( Fun  Base  /\  R  e. 
dom  Base )  ->  ( Base `  R )  e. 
_V )
98funfni 5318 . . . . . . . 8  |-  ( (
Base  Fn  _V  /\  R  e.  _V )  ->  ( Base `  R )  e. 
_V )
107, 3, 9sylancr 414 . . . . . . 7  |-  ( ph  ->  ( Base `  R
)  e.  _V )
116, 10eqeltrid 2264 . . . . . 6  |-  ( ph  ->  X  e.  _V )
12 xpsval.y . . . . . . 7  |-  Y  =  ( Base `  S
)
13 funfvex 5534 . . . . . . . . 9  |-  ( ( Fun  Base  /\  S  e. 
dom  Base )  ->  ( Base `  S )  e. 
_V )
1413funfni 5318 . . . . . . . 8  |-  ( (
Base  Fn  _V  /\  S  e.  _V )  ->  ( Base `  S )  e. 
_V )
157, 5, 14sylancr 414 . . . . . . 7  |-  ( ph  ->  ( Base `  S
)  e.  _V )
1612, 15eqeltrid 2264 . . . . . 6  |-  ( ph  ->  Y  e.  _V )
17 xpsval.f . . . . . . 7  |-  F  =  ( x  e.  X ,  y  e.  Y  |->  { <. (/) ,  x >. , 
<. 1o ,  y >. } )
1817mpoexg 6214 . . . . . 6  |-  ( ( X  e.  _V  /\  Y  e.  _V )  ->  F  e.  _V )
1911, 16, 18syl2anc 411 . . . . 5  |-  ( ph  ->  F  e.  _V )
20 cnvexg 5168 . . . . 5  |-  ( F  e.  _V  ->  `' F  e.  _V )
2119, 20syl 14 . . . 4  |-  ( ph  ->  `' F  e.  _V )
22 xpsval.u . . . . 5  |-  U  =  ( G X_s { <. (/) ,  R >. , 
<. 1o ,  S >. } )
23 xpsval.k . . . . . . 7  |-  G  =  (Scalar `  R )
24 scaslid 12613 . . . . . . . . 9  |-  (Scalar  = Slot  (Scalar `  ndx )  /\  (Scalar `  ndx )  e.  NN )
2524slotex 12491 . . . . . . . 8  |-  ( R  e.  V  ->  (Scalar `  R )  e.  _V )
262, 25syl 14 . . . . . . 7  |-  ( ph  ->  (Scalar `  R )  e.  _V )
2723, 26eqeltrid 2264 . . . . . 6  |-  ( ph  ->  G  e.  _V )
28 0lt2o 6444 . . . . . . . 8  |-  (/)  e.  2o
29 opexg 4230 . . . . . . . 8  |-  ( (
(/)  e.  2o  /\  R  e.  V )  ->  <. (/) ,  R >.  e.  _V )
3028, 2, 29sylancr 414 . . . . . . 7  |-  ( ph  -> 
<. (/) ,  R >.  e. 
_V )
31 1lt2o 6445 . . . . . . . 8  |-  1o  e.  2o
32 opexg 4230 . . . . . . . 8  |-  ( ( 1o  e.  2o  /\  S  e.  W )  -> 
<. 1o ,  S >.  e. 
_V )
3331, 4, 32sylancr 414 . . . . . . 7  |-  ( ph  -> 
<. 1o ,  S >.  e. 
_V )
34 prexg 4213 . . . . . . 7  |-  ( (
<. (/) ,  R >.  e. 
_V  /\  <. 1o ,  S >.  e.  _V )  ->  { <. (/) ,  R >. , 
<. 1o ,  S >. }  e.  _V )
3530, 33, 34syl2anc 411 . . . . . 6  |-  ( ph  ->  { <. (/) ,  R >. , 
<. 1o ,  S >. }  e.  _V )
36 prdsex 12723 . . . . . 6  |-  ( ( G  e.  _V  /\  {
<. (/) ,  R >. , 
<. 1o ,  S >. }  e.  _V )  -> 
( G X_s { <. (/) ,  R >. , 
<. 1o ,  S >. } )  e.  _V )
3727, 35, 36syl2anc 411 . . . . 5  |-  ( ph  ->  ( G X_s { <. (/) ,  R >. , 
<. 1o ,  S >. } )  e.  _V )
3822, 37eqeltrid 2264 . . . 4  |-  ( ph  ->  U  e.  _V )
39 imasex 12731 . . . 4  |-  ( ( `' F  e.  _V  /\  U  e.  _V )  ->  ( `' F  "s  U
)  e.  _V )
4021, 38, 39syl2anc 411 . . 3  |-  ( ph  ->  ( `' F  "s  U
)  e.  _V )
41 fveq2 5517 . . . . . . . . 9  |-  ( r  =  R  ->  ( Base `  r )  =  ( Base `  R
) )
4241, 6eqtr4di 2228 . . . . . . . 8  |-  ( r  =  R  ->  ( Base `  r )  =  X )
43 fveq2 5517 . . . . . . . . 9  |-  ( s  =  S  ->  ( Base `  s )  =  ( Base `  S
) )
4443, 12eqtr4di 2228 . . . . . . . 8  |-  ( s  =  S  ->  ( Base `  s )  =  Y )
45 mpoeq12 5937 . . . . . . . 8  |-  ( ( ( Base `  r
)  =  X  /\  ( Base `  s )  =  Y )  ->  (
x  e.  ( Base `  r ) ,  y  e.  ( Base `  s
)  |->  { <. (/) ,  x >. ,  <. 1o ,  y
>. } )  =  ( x  e.  X , 
y  e.  Y  |->  {
<. (/) ,  x >. , 
<. 1o ,  y >. } ) )
4642, 44, 45syl2an 289 . . . . . . 7  |-  ( ( r  =  R  /\  s  =  S )  ->  ( x  e.  (
Base `  r ) ,  y  e.  ( Base `  s )  |->  {
<. (/) ,  x >. , 
<. 1o ,  y >. } )  =  ( x  e.  X , 
y  e.  Y  |->  {
<. (/) ,  x >. , 
<. 1o ,  y >. } ) )
4746, 17eqtr4di 2228 . . . . . 6  |-  ( ( r  =  R  /\  s  =  S )  ->  ( x  e.  (
Base `  r ) ,  y  e.  ( Base `  s )  |->  {
<. (/) ,  x >. , 
<. 1o ,  y >. } )  =  F )
4847cnveqd 4805 . . . . 5  |-  ( ( r  =  R  /\  s  =  S )  ->  `' ( x  e.  ( Base `  r
) ,  y  e.  ( Base `  s
)  |->  { <. (/) ,  x >. ,  <. 1o ,  y
>. } )  =  `' F )
49 fveq2 5517 . . . . . . . . 9  |-  ( r  =  R  ->  (Scalar `  r )  =  (Scalar `  R ) )
5049adantr 276 . . . . . . . 8  |-  ( ( r  =  R  /\  s  =  S )  ->  (Scalar `  r )  =  (Scalar `  R )
)
5150, 23eqtr4di 2228 . . . . . . 7  |-  ( ( r  =  R  /\  s  =  S )  ->  (Scalar `  r )  =  G )
52 simpl 109 . . . . . . . . 9  |-  ( ( r  =  R  /\  s  =  S )  ->  r  =  R )
5352opeq2d 3787 . . . . . . . 8  |-  ( ( r  =  R  /\  s  =  S )  -> 
<. (/) ,  r >.  =  <. (/) ,  R >. )
54 simpr 110 . . . . . . . . 9  |-  ( ( r  =  R  /\  s  =  S )  ->  s  =  S )
5554opeq2d 3787 . . . . . . . 8  |-  ( ( r  =  R  /\  s  =  S )  -> 
<. 1o ,  s >.  =  <. 1o ,  S >. )
5653, 55preq12d 3679 . . . . . . 7  |-  ( ( r  =  R  /\  s  =  S )  ->  { <. (/) ,  r >. ,  <. 1o ,  s
>. }  =  { <. (/)
,  R >. ,  <. 1o ,  S >. } )
5751, 56oveq12d 5895 . . . . . 6  |-  ( ( r  =  R  /\  s  =  S )  ->  ( (Scalar `  r
) X_s { <. (/) ,  r >. ,  <. 1o ,  s
>. } )  =  ( G X_s { <. (/) ,  R >. , 
<. 1o ,  S >. } ) )
5857, 22eqtr4di 2228 . . . . 5  |-  ( ( r  =  R  /\  s  =  S )  ->  ( (Scalar `  r
) X_s { <. (/) ,  r >. ,  <. 1o ,  s
>. } )  =  U )
5948, 58oveq12d 5895 . . . 4  |-  ( ( r  =  R  /\  s  =  S )  ->  ( `' ( x  e.  ( Base `  r
) ,  y  e.  ( Base `  s
)  |->  { <. (/) ,  x >. ,  <. 1o ,  y
>. } )  "s  ( (Scalar `  r ) X_s { <. (/) ,  r >. ,  <. 1o ,  s
>. } ) )  =  ( `' F  "s  U
) )
60 df-xps 12730 . . . 4  |-  X.s  =  ( r  e.  _V , 
s  e.  _V  |->  ( `' ( x  e.  ( Base `  r
) ,  y  e.  ( Base `  s
)  |->  { <. (/) ,  x >. ,  <. 1o ,  y
>. } )  "s  ( (Scalar `  r ) X_s { <. (/) ,  r >. ,  <. 1o ,  s
>. } ) ) )
6159, 60ovmpoga 6006 . . 3  |-  ( ( R  e.  _V  /\  S  e.  _V  /\  ( `' F  "s  U )  e.  _V )  ->  ( R  X.s  S
)  =  ( `' F  "s  U ) )
623, 5, 40, 61syl3anc 1238 . 2  |-  ( ph  ->  ( R  X.s  S )  =  ( `' F  "s  U ) )
631, 62eqtrid 2222 1  |-  ( ph  ->  T  =  ( `' F  "s  U ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1353    e. wcel 2148   _Vcvv 2739   (/)c0 3424   {cpr 3595   <.cop 3597   `'ccnv 4627    Fn wfn 5213   ` cfv 5218  (class class class)co 5877    e. cmpo 5879   1oc1o 6412   2oc2o 6413   Basecbs 12464  Scalarcsca 12541   X_scprds 12719    "s cimas 12725    X.s cxps 12727
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-cnex 7904  ax-resscn 7905  ax-1cn 7906  ax-1re 7907  ax-icn 7908  ax-addcl 7909  ax-addrcl 7910  ax-mulcl 7911  ax-addcom 7913  ax-mulcom 7914  ax-addass 7915  ax-mulass 7916  ax-distr 7917  ax-i2m1 7918  ax-1rid 7920  ax-0id 7921  ax-rnegex 7922  ax-cnre 7924
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-pw 3579  df-sn 3600  df-pr 3601  df-tp 3602  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-tr 4104  df-id 4295  df-iord 4368  df-on 4370  df-suc 4373  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-riota 5833  df-ov 5880  df-oprab 5881  df-mpo 5882  df-1st 6143  df-2nd 6144  df-1o 6419  df-2o 6420  df-map 6652  df-ixp 6701  df-sup 6985  df-sub 8132  df-inn 8922  df-2 8980  df-3 8981  df-4 8982  df-5 8983  df-6 8984  df-7 8985  df-8 8986  df-9 8987  df-n0 9179  df-dec 9387  df-ndx 12467  df-slot 12468  df-base 12470  df-plusg 12551  df-mulr 12552  df-sca 12554  df-vsca 12555  df-ip 12556  df-tset 12557  df-ple 12558  df-ds 12560  df-hom 12562  df-cco 12563  df-rest 12695  df-topn 12696  df-topgen 12714  df-pt 12715  df-prds 12721  df-iimas 12728  df-xps 12730
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator