ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  imasex Unicode version

Theorem imasex 12891
Description: Existence of the image structure. (Contributed by Jim Kingdon, 13-Mar-2025.)
Assertion
Ref Expression
imasex  |-  ( ( F  e.  V  /\  R  e.  W )  ->  ( F  "s  R )  e.  _V )

Proof of Theorem imasex
Dummy variables  f  p  q  r  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 2771 . . . 4  |-  ( F  e.  V  ->  F  e.  _V )
21adantr 276 . . 3  |-  ( ( F  e.  V  /\  R  e.  W )  ->  F  e.  _V )
3 elex 2771 . . . 4  |-  ( R  e.  W  ->  R  e.  _V )
43adantl 277 . . 3  |-  ( ( F  e.  V  /\  R  e.  W )  ->  R  e.  _V )
5 basfn 12679 . . . . . 6  |-  Base  Fn  _V
6 funfvex 5572 . . . . . . 7  |-  ( ( Fun  Base  /\  R  e. 
dom  Base )  ->  ( Base `  R )  e. 
_V )
76funfni 5355 . . . . . 6  |-  ( (
Base  Fn  _V  /\  R  e.  _V )  ->  ( Base `  R )  e. 
_V )
85, 3, 7sylancr 414 . . . . 5  |-  ( R  e.  W  ->  ( Base `  R )  e. 
_V )
98adantl 277 . . . 4  |-  ( ( F  e.  V  /\  R  e.  W )  ->  ( Base `  R
)  e.  _V )
10 basendxnn 12677 . . . . . . 7  |-  ( Base `  ndx )  e.  NN
11 rnexg 4928 . . . . . . . 8  |-  ( F  e.  V  ->  ran  F  e.  _V )
1211adantr 276 . . . . . . 7  |-  ( ( F  e.  V  /\  R  e.  W )  ->  ran  F  e.  _V )
13 opexg 4258 . . . . . . 7  |-  ( ( ( Base `  ndx )  e.  NN  /\  ran  F  e.  _V )  ->  <. ( Base `  ndx ) ,  ran  F >.  e. 
_V )
1410, 12, 13sylancr 414 . . . . . 6  |-  ( ( F  e.  V  /\  R  e.  W )  -> 
<. ( Base `  ndx ) ,  ran  F >.  e. 
_V )
15 plusgndxnn 12732 . . . . . . 7  |-  ( +g  ` 
ndx )  e.  NN
16 vex 2763 . . . . . . . 8  |-  v  e. 
_V
17 vex 2763 . . . . . . . . . . . . . . . 16  |-  p  e. 
_V
1817a1i 9 . . . . . . . . . . . . . . 15  |-  ( ( F  e.  V  /\  R  e.  W )  ->  p  e.  _V )
19 fvexg 5574 . . . . . . . . . . . . . . 15  |-  ( ( F  e.  V  /\  p  e.  _V )  ->  ( F `  p
)  e.  _V )
2018, 19syldan 282 . . . . . . . . . . . . . 14  |-  ( ( F  e.  V  /\  R  e.  W )  ->  ( F `  p
)  e.  _V )
21 vex 2763 . . . . . . . . . . . . . . . 16  |-  q  e. 
_V
2221a1i 9 . . . . . . . . . . . . . . 15  |-  ( ( F  e.  V  /\  R  e.  W )  ->  q  e.  _V )
23 fvexg 5574 . . . . . . . . . . . . . . 15  |-  ( ( F  e.  V  /\  q  e.  _V )  ->  ( F `  q
)  e.  _V )
2422, 23syldan 282 . . . . . . . . . . . . . 14  |-  ( ( F  e.  V  /\  R  e.  W )  ->  ( F `  q
)  e.  _V )
25 opexg 4258 . . . . . . . . . . . . . 14  |-  ( ( ( F `  p
)  e.  _V  /\  ( F `  q )  e.  _V )  ->  <. ( F `  p
) ,  ( F `
 q ) >.  e.  _V )
2620, 24, 25syl2anc 411 . . . . . . . . . . . . 13  |-  ( ( F  e.  V  /\  R  e.  W )  -> 
<. ( F `  p
) ,  ( F `
 q ) >.  e.  _V )
27 plusgslid 12733 . . . . . . . . . . . . . . . . 17  |-  ( +g  = Slot  ( +g  `  ndx )  /\  ( +g  `  ndx )  e.  NN )
2827slotex 12648 . . . . . . . . . . . . . . . 16  |-  ( R  e.  W  ->  ( +g  `  R )  e. 
_V )
2928adantl 277 . . . . . . . . . . . . . . 15  |-  ( ( F  e.  V  /\  R  e.  W )  ->  ( +g  `  R
)  e.  _V )
30 ovexg 5953 . . . . . . . . . . . . . . 15  |-  ( ( p  e.  _V  /\  ( +g  `  R )  e.  _V  /\  q  e.  _V )  ->  (
p ( +g  `  R
) q )  e. 
_V )
3118, 29, 22, 30syl3anc 1249 . . . . . . . . . . . . . 14  |-  ( ( F  e.  V  /\  R  e.  W )  ->  ( p ( +g  `  R ) q )  e.  _V )
32 fvexg 5574 . . . . . . . . . . . . . 14  |-  ( ( F  e.  V  /\  ( p ( +g  `  R ) q )  e.  _V )  -> 
( F `  (
p ( +g  `  R
) q ) )  e.  _V )
3331, 32syldan 282 . . . . . . . . . . . . 13  |-  ( ( F  e.  V  /\  R  e.  W )  ->  ( F `  (
p ( +g  `  R
) q ) )  e.  _V )
34 opexg 4258 . . . . . . . . . . . . 13  |-  ( (
<. ( F `  p
) ,  ( F `
 q ) >.  e.  _V  /\  ( F `
 ( p ( +g  `  R ) q ) )  e. 
_V )  ->  <. <. ( F `  p ) ,  ( F `  q ) >. ,  ( F `  ( p ( +g  `  R
) q ) )
>.  e.  _V )
3526, 33, 34syl2anc 411 . . . . . . . . . . . 12  |-  ( ( F  e.  V  /\  R  e.  W )  -> 
<. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p ( +g  `  R ) q ) ) >.  e.  _V )
36 snexg 4214 . . . . . . . . . . . 12  |-  ( <. <. ( F `  p
) ,  ( F `
 q ) >. ,  ( F `  ( p ( +g  `  R ) q ) ) >.  e.  _V  ->  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p ( +g  `  R ) q ) ) >. }  e.  _V )
3735, 36syl 14 . . . . . . . . . . 11  |-  ( ( F  e.  V  /\  R  e.  W )  ->  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p ( +g  `  R ) q ) ) >. }  e.  _V )
3837ralrimivw 2568 . . . . . . . . . 10  |-  ( ( F  e.  V  /\  R  e.  W )  ->  A. q  e.  v  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p ( +g  `  R ) q ) ) >. }  e.  _V )
39 iunexg 6173 . . . . . . . . . 10  |-  ( ( v  e.  _V  /\  A. q  e.  v  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p ( +g  `  R ) q ) ) >. }  e.  _V )  ->  U_ q  e.  v  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p ( +g  `  R ) q ) ) >. }  e.  _V )
4016, 38, 39sylancr 414 . . . . . . . . 9  |-  ( ( F  e.  V  /\  R  e.  W )  ->  U_ q  e.  v  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p ( +g  `  R ) q ) ) >. }  e.  _V )
4140ralrimivw 2568 . . . . . . . 8  |-  ( ( F  e.  V  /\  R  e.  W )  ->  A. p  e.  v 
U_ q  e.  v  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p ( +g  `  R ) q ) ) >. }  e.  _V )
42 iunexg 6173 . . . . . . . 8  |-  ( ( v  e.  _V  /\  A. p  e.  v  U_ q  e.  v  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p ( +g  `  R ) q ) ) >. }  e.  _V )  ->  U_ p  e.  v 
U_ q  e.  v  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p ( +g  `  R ) q ) ) >. }  e.  _V )
4316, 41, 42sylancr 414 . . . . . . 7  |-  ( ( F  e.  V  /\  R  e.  W )  ->  U_ p  e.  v 
U_ q  e.  v  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p ( +g  `  R ) q ) ) >. }  e.  _V )
44 opexg 4258 . . . . . . 7  |-  ( ( ( +g  `  ndx )  e.  NN  /\  U_ p  e.  v  U_ q  e.  v  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p ( +g  `  R ) q ) ) >. }  e.  _V )  ->  <. ( +g  `  ndx ) ,  U_ p  e.  v  U_ q  e.  v  { <. <. ( F `  p ) ,  ( F `  q ) >. ,  ( F `  ( p ( +g  `  R
) q ) )
>. } >.  e.  _V )
4515, 43, 44sylancr 414 . . . . . 6  |-  ( ( F  e.  V  /\  R  e.  W )  -> 
<. ( +g  `  ndx ) ,  U_ p  e.  v  U_ q  e.  v  { <. <. ( F `  p ) ,  ( F `  q ) >. ,  ( F `  ( p ( +g  `  R
) q ) )
>. } >.  e.  _V )
46 mulrslid 12752 . . . . . . . 8  |-  ( .r  = Slot  ( .r `  ndx )  /\  ( .r `  ndx )  e.  NN )
4746simpri 113 . . . . . . 7  |-  ( .r
`  ndx )  e.  NN
4846slotex 12648 . . . . . . . . . . . . . . . 16  |-  ( R  e.  W  ->  ( .r `  R )  e. 
_V )
4948adantl 277 . . . . . . . . . . . . . . 15  |-  ( ( F  e.  V  /\  R  e.  W )  ->  ( .r `  R
)  e.  _V )
50 ovexg 5953 . . . . . . . . . . . . . . 15  |-  ( ( p  e.  _V  /\  ( .r `  R )  e.  _V  /\  q  e.  _V )  ->  (
p ( .r `  R ) q )  e.  _V )
5118, 49, 22, 50syl3anc 1249 . . . . . . . . . . . . . 14  |-  ( ( F  e.  V  /\  R  e.  W )  ->  ( p ( .r
`  R ) q )  e.  _V )
52 fvexg 5574 . . . . . . . . . . . . . 14  |-  ( ( F  e.  V  /\  ( p ( .r
`  R ) q )  e.  _V )  ->  ( F `  (
p ( .r `  R ) q ) )  e.  _V )
5351, 52syldan 282 . . . . . . . . . . . . 13  |-  ( ( F  e.  V  /\  R  e.  W )  ->  ( F `  (
p ( .r `  R ) q ) )  e.  _V )
54 opexg 4258 . . . . . . . . . . . . 13  |-  ( (
<. ( F `  p
) ,  ( F `
 q ) >.  e.  _V  /\  ( F `
 ( p ( .r `  R ) q ) )  e. 
_V )  ->  <. <. ( F `  p ) ,  ( F `  q ) >. ,  ( F `  ( p ( .r `  R
) q ) )
>.  e.  _V )
5526, 53, 54syl2anc 411 . . . . . . . . . . . 12  |-  ( ( F  e.  V  /\  R  e.  W )  -> 
<. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p ( .r
`  R ) q ) ) >.  e.  _V )
56 snexg 4214 . . . . . . . . . . . 12  |-  ( <. <. ( F `  p
) ,  ( F `
 q ) >. ,  ( F `  ( p ( .r
`  R ) q ) ) >.  e.  _V  ->  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p ( .r
`  R ) q ) ) >. }  e.  _V )
5755, 56syl 14 . . . . . . . . . . 11  |-  ( ( F  e.  V  /\  R  e.  W )  ->  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p ( .r
`  R ) q ) ) >. }  e.  _V )
5857ralrimivw 2568 . . . . . . . . . 10  |-  ( ( F  e.  V  /\  R  e.  W )  ->  A. q  e.  v  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p ( .r
`  R ) q ) ) >. }  e.  _V )
59 iunexg 6173 . . . . . . . . . 10  |-  ( ( v  e.  _V  /\  A. q  e.  v  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p ( .r
`  R ) q ) ) >. }  e.  _V )  ->  U_ q  e.  v  { <. <. ( F `  p ) ,  ( F `  q ) >. ,  ( F `  ( p ( .r `  R
) q ) )
>. }  e.  _V )
6016, 58, 59sylancr 414 . . . . . . . . 9  |-  ( ( F  e.  V  /\  R  e.  W )  ->  U_ q  e.  v  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p ( .r
`  R ) q ) ) >. }  e.  _V )
6160ralrimivw 2568 . . . . . . . 8  |-  ( ( F  e.  V  /\  R  e.  W )  ->  A. p  e.  v 
U_ q  e.  v  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p ( .r
`  R ) q ) ) >. }  e.  _V )
62 iunexg 6173 . . . . . . . 8  |-  ( ( v  e.  _V  /\  A. p  e.  v  U_ q  e.  v  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p ( .r
`  R ) q ) ) >. }  e.  _V )  ->  U_ p  e.  v  U_ q  e.  v  { <. <. ( F `  p ) ,  ( F `  q ) >. ,  ( F `  ( p ( .r `  R
) q ) )
>. }  e.  _V )
6316, 61, 62sylancr 414 . . . . . . 7  |-  ( ( F  e.  V  /\  R  e.  W )  ->  U_ p  e.  v 
U_ q  e.  v  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p ( .r
`  R ) q ) ) >. }  e.  _V )
64 opexg 4258 . . . . . . 7  |-  ( ( ( .r `  ndx )  e.  NN  /\  U_ p  e.  v  U_ q  e.  v  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p ( .r
`  R ) q ) ) >. }  e.  _V )  ->  <. ( .r `  ndx ) , 
U_ p  e.  v 
U_ q  e.  v  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p ( .r
`  R ) q ) ) >. } >.  e. 
_V )
6547, 63, 64sylancr 414 . . . . . 6  |-  ( ( F  e.  V  /\  R  e.  W )  -> 
<. ( .r `  ndx ) ,  U_ p  e.  v  U_ q  e.  v  { <. <. ( F `  p ) ,  ( F `  q ) >. ,  ( F `  ( p ( .r `  R
) q ) )
>. } >.  e.  _V )
66 tpexg 4476 . . . . . 6  |-  ( (
<. ( Base `  ndx ) ,  ran  F >.  e. 
_V  /\  <. ( +g  ` 
ndx ) ,  U_ p  e.  v  U_ q  e.  v  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p ( +g  `  R ) q ) ) >. } >.  e.  _V  /\ 
<. ( .r `  ndx ) ,  U_ p  e.  v  U_ q  e.  v  { <. <. ( F `  p ) ,  ( F `  q ) >. ,  ( F `  ( p ( .r `  R
) q ) )
>. } >.  e.  _V )  ->  { <. ( Base `  ndx ) ,  ran  F >. ,  <. ( +g  `  ndx ) ,  U_ p  e.  v 
U_ q  e.  v  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p ( +g  `  R ) q ) ) >. } >. ,  <. ( .r `  ndx ) ,  U_ p  e.  v 
U_ q  e.  v  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p ( .r
`  R ) q ) ) >. } >. }  e.  _V )
6714, 45, 65, 66syl3anc 1249 . . . . 5  |-  ( ( F  e.  V  /\  R  e.  W )  ->  { <. ( Base `  ndx ) ,  ran  F >. , 
<. ( +g  `  ndx ) ,  U_ p  e.  v  U_ q  e.  v  { <. <. ( F `  p ) ,  ( F `  q ) >. ,  ( F `  ( p ( +g  `  R
) q ) )
>. } >. ,  <. ( .r `  ndx ) , 
U_ p  e.  v 
U_ q  e.  v  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p ( .r
`  R ) q ) ) >. } >. }  e.  _V )
6867alrimiv 1885 . . . 4  |-  ( ( F  e.  V  /\  R  e.  W )  ->  A. v { <. (
Base `  ndx ) ,  ran  F >. ,  <. ( +g  `  ndx ) ,  U_ p  e.  v 
U_ q  e.  v  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p ( +g  `  R ) q ) ) >. } >. ,  <. ( .r `  ndx ) ,  U_ p  e.  v 
U_ q  e.  v  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p ( .r
`  R ) q ) ) >. } >. }  e.  _V )
69 csbexga 4158 . . . 4  |-  ( ( ( Base `  R
)  e.  _V  /\  A. v { <. ( Base `  ndx ) ,  ran  F >. ,  <. ( +g  `  ndx ) ,  U_ p  e.  v 
U_ q  e.  v  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p ( +g  `  R ) q ) ) >. } >. ,  <. ( .r `  ndx ) ,  U_ p  e.  v 
U_ q  e.  v  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p ( .r
`  R ) q ) ) >. } >. }  e.  _V )  ->  [_ ( Base `  R
)  /  v ]_ { <. ( Base `  ndx ) ,  ran  F >. , 
<. ( +g  `  ndx ) ,  U_ p  e.  v  U_ q  e.  v  { <. <. ( F `  p ) ,  ( F `  q ) >. ,  ( F `  ( p ( +g  `  R
) q ) )
>. } >. ,  <. ( .r `  ndx ) , 
U_ p  e.  v 
U_ q  e.  v  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p ( .r
`  R ) q ) ) >. } >. }  e.  _V )
709, 68, 69syl2anc 411 . . 3  |-  ( ( F  e.  V  /\  R  e.  W )  ->  [_ ( Base `  R
)  /  v ]_ { <. ( Base `  ndx ) ,  ran  F >. , 
<. ( +g  `  ndx ) ,  U_ p  e.  v  U_ q  e.  v  { <. <. ( F `  p ) ,  ( F `  q ) >. ,  ( F `  ( p ( +g  `  R
) q ) )
>. } >. ,  <. ( .r `  ndx ) , 
U_ p  e.  v 
U_ q  e.  v  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p ( .r
`  R ) q ) ) >. } >. }  e.  _V )
71 rneq 4890 . . . . . . 7  |-  ( f  =  F  ->  ran  f  =  ran  F )
7271opeq2d 3812 . . . . . 6  |-  ( f  =  F  ->  <. ( Base `  ndx ) ,  ran  f >.  =  <. (
Base `  ndx ) ,  ran  F >. )
73 fveq1 5554 . . . . . . . . . . . 12  |-  ( f  =  F  ->  (
f `  p )  =  ( F `  p ) )
74 fveq1 5554 . . . . . . . . . . . 12  |-  ( f  =  F  ->  (
f `  q )  =  ( F `  q ) )
7573, 74opeq12d 3813 . . . . . . . . . . 11  |-  ( f  =  F  ->  <. (
f `  p ) ,  ( f `  q ) >.  =  <. ( F `  p ) ,  ( F `  q ) >. )
76 fveq1 5554 . . . . . . . . . . 11  |-  ( f  =  F  ->  (
f `  ( p
( +g  `  r ) q ) )  =  ( F `  (
p ( +g  `  r
) q ) ) )
7775, 76opeq12d 3813 . . . . . . . . . 10  |-  ( f  =  F  ->  <. <. (
f `  p ) ,  ( f `  q ) >. ,  ( f `  ( p ( +g  `  r
) q ) )
>.  =  <. <. ( F `  p ) ,  ( F `  q ) >. ,  ( F `  ( p ( +g  `  r
) q ) )
>. )
7877sneqd 3632 . . . . . . . . 9  |-  ( f  =  F  ->  { <. <.
( f `  p
) ,  ( f `
 q ) >. ,  ( f `  ( p ( +g  `  r ) q ) ) >. }  =  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p ( +g  `  r ) q ) ) >. } )
7978iuneq2d 3938 . . . . . . . 8  |-  ( f  =  F  ->  U_ q  e.  v  { <. <. (
f `  p ) ,  ( f `  q ) >. ,  ( f `  ( p ( +g  `  r
) q ) )
>. }  =  U_ q  e.  v  { <. <. ( F `  p ) ,  ( F `  q ) >. ,  ( F `  ( p ( +g  `  r
) q ) )
>. } )
8079iuneq2d 3938 . . . . . . 7  |-  ( f  =  F  ->  U_ p  e.  v  U_ q  e.  v  { <. <. (
f `  p ) ,  ( f `  q ) >. ,  ( f `  ( p ( +g  `  r
) q ) )
>. }  =  U_ p  e.  v  U_ q  e.  v  { <. <. ( F `  p ) ,  ( F `  q ) >. ,  ( F `  ( p ( +g  `  r
) q ) )
>. } )
8180opeq2d 3812 . . . . . 6  |-  ( f  =  F  ->  <. ( +g  `  ndx ) , 
U_ p  e.  v 
U_ q  e.  v  { <. <. ( f `  p ) ,  ( f `  q )
>. ,  ( f `  ( p ( +g  `  r ) q ) ) >. } >.  =  <. ( +g  `  ndx ) ,  U_ p  e.  v 
U_ q  e.  v  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p ( +g  `  r ) q ) ) >. } >. )
82 fveq1 5554 . . . . . . . . . . 11  |-  ( f  =  F  ->  (
f `  ( p
( .r `  r
) q ) )  =  ( F `  ( p ( .r
`  r ) q ) ) )
8375, 82opeq12d 3813 . . . . . . . . . 10  |-  ( f  =  F  ->  <. <. (
f `  p ) ,  ( f `  q ) >. ,  ( f `  ( p ( .r `  r
) q ) )
>.  =  <. <. ( F `  p ) ,  ( F `  q ) >. ,  ( F `  ( p ( .r `  r
) q ) )
>. )
8483sneqd 3632 . . . . . . . . 9  |-  ( f  =  F  ->  { <. <.
( f `  p
) ,  ( f `
 q ) >. ,  ( f `  ( p ( .r
`  r ) q ) ) >. }  =  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p ( .r
`  r ) q ) ) >. } )
8584iuneq2d 3938 . . . . . . . 8  |-  ( f  =  F  ->  U_ q  e.  v  { <. <. (
f `  p ) ,  ( f `  q ) >. ,  ( f `  ( p ( .r `  r
) q ) )
>. }  =  U_ q  e.  v  { <. <. ( F `  p ) ,  ( F `  q ) >. ,  ( F `  ( p ( .r `  r
) q ) )
>. } )
8685iuneq2d 3938 . . . . . . 7  |-  ( f  =  F  ->  U_ p  e.  v  U_ q  e.  v  { <. <. (
f `  p ) ,  ( f `  q ) >. ,  ( f `  ( p ( .r `  r
) q ) )
>. }  =  U_ p  e.  v  U_ q  e.  v  { <. <. ( F `  p ) ,  ( F `  q ) >. ,  ( F `  ( p ( .r `  r
) q ) )
>. } )
8786opeq2d 3812 . . . . . 6  |-  ( f  =  F  ->  <. ( .r `  ndx ) , 
U_ p  e.  v 
U_ q  e.  v  { <. <. ( f `  p ) ,  ( f `  q )
>. ,  ( f `  ( p ( .r
`  r ) q ) ) >. } >.  = 
<. ( .r `  ndx ) ,  U_ p  e.  v  U_ q  e.  v  { <. <. ( F `  p ) ,  ( F `  q ) >. ,  ( F `  ( p ( .r `  r
) q ) )
>. } >. )
8872, 81, 87tpeq123d 3711 . . . . 5  |-  ( f  =  F  ->  { <. (
Base `  ndx ) ,  ran  f >. ,  <. ( +g  `  ndx ) ,  U_ p  e.  v 
U_ q  e.  v  { <. <. ( f `  p ) ,  ( f `  q )
>. ,  ( f `  ( p ( +g  `  r ) q ) ) >. } >. ,  <. ( .r `  ndx ) ,  U_ p  e.  v 
U_ q  e.  v  { <. <. ( f `  p ) ,  ( f `  q )
>. ,  ( f `  ( p ( .r
`  r ) q ) ) >. } >. }  =  { <. ( Base `  ndx ) ,  ran  F >. ,  <. ( +g  `  ndx ) ,  U_ p  e.  v 
U_ q  e.  v  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p ( +g  `  r ) q ) ) >. } >. ,  <. ( .r `  ndx ) ,  U_ p  e.  v 
U_ q  e.  v  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p ( .r
`  r ) q ) ) >. } >. } )
8988csbeq2dv 3107 . . . 4  |-  ( f  =  F  ->  [_ ( Base `  r )  / 
v ]_ { <. ( Base `  ndx ) ,  ran  f >. ,  <. ( +g  `  ndx ) ,  U_ p  e.  v 
U_ q  e.  v  { <. <. ( f `  p ) ,  ( f `  q )
>. ,  ( f `  ( p ( +g  `  r ) q ) ) >. } >. ,  <. ( .r `  ndx ) ,  U_ p  e.  v 
U_ q  e.  v  { <. <. ( f `  p ) ,  ( f `  q )
>. ,  ( f `  ( p ( .r
`  r ) q ) ) >. } >. }  =  [_ ( Base `  r )  /  v ]_ { <. ( Base `  ndx ) ,  ran  F >. , 
<. ( +g  `  ndx ) ,  U_ p  e.  v  U_ q  e.  v  { <. <. ( F `  p ) ,  ( F `  q ) >. ,  ( F `  ( p ( +g  `  r
) q ) )
>. } >. ,  <. ( .r `  ndx ) , 
U_ p  e.  v 
U_ q  e.  v  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p ( .r
`  r ) q ) ) >. } >. } )
90 fveq2 5555 . . . . . 6  |-  ( r  =  R  ->  ( Base `  r )  =  ( Base `  R
) )
9190csbeq1d 3088 . . . . 5  |-  ( r  =  R  ->  [_ ( Base `  r )  / 
v ]_ { <. ( Base `  ndx ) ,  ran  F >. ,  <. ( +g  `  ndx ) ,  U_ p  e.  v 
U_ q  e.  v  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p ( +g  `  r ) q ) ) >. } >. ,  <. ( .r `  ndx ) ,  U_ p  e.  v 
U_ q  e.  v  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p ( .r
`  r ) q ) ) >. } >. }  =  [_ ( Base `  R )  /  v ]_ { <. ( Base `  ndx ) ,  ran  F >. , 
<. ( +g  `  ndx ) ,  U_ p  e.  v  U_ q  e.  v  { <. <. ( F `  p ) ,  ( F `  q ) >. ,  ( F `  ( p ( +g  `  r
) q ) )
>. } >. ,  <. ( .r `  ndx ) , 
U_ p  e.  v 
U_ q  e.  v  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p ( .r
`  r ) q ) ) >. } >. } )
92 eqidd 2194 . . . . . . 7  |-  ( r  =  R  ->  <. ( Base `  ndx ) ,  ran  F >.  =  <. (
Base `  ndx ) ,  ran  F >. )
93 fveq2 5555 . . . . . . . . . . . . . 14  |-  ( r  =  R  ->  ( +g  `  r )  =  ( +g  `  R
) )
9493oveqd 5936 . . . . . . . . . . . . 13  |-  ( r  =  R  ->  (
p ( +g  `  r
) q )  =  ( p ( +g  `  R ) q ) )
9594fveq2d 5559 . . . . . . . . . . . 12  |-  ( r  =  R  ->  ( F `  ( p
( +g  `  r ) q ) )  =  ( F `  (
p ( +g  `  R
) q ) ) )
9695opeq2d 3812 . . . . . . . . . . 11  |-  ( r  =  R  ->  <. <. ( F `  p ) ,  ( F `  q ) >. ,  ( F `  ( p ( +g  `  r
) q ) )
>.  =  <. <. ( F `  p ) ,  ( F `  q ) >. ,  ( F `  ( p ( +g  `  R
) q ) )
>. )
9796sneqd 3632 . . . . . . . . . 10  |-  ( r  =  R  ->  { <. <.
( F `  p
) ,  ( F `
 q ) >. ,  ( F `  ( p ( +g  `  r ) q ) ) >. }  =  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p ( +g  `  R ) q ) ) >. } )
9897iuneq2d 3938 . . . . . . . . 9  |-  ( r  =  R  ->  U_ q  e.  v  { <. <. ( F `  p ) ,  ( F `  q ) >. ,  ( F `  ( p ( +g  `  r
) q ) )
>. }  =  U_ q  e.  v  { <. <. ( F `  p ) ,  ( F `  q ) >. ,  ( F `  ( p ( +g  `  R
) q ) )
>. } )
9998iuneq2d 3938 . . . . . . . 8  |-  ( r  =  R  ->  U_ p  e.  v  U_ q  e.  v  { <. <. ( F `  p ) ,  ( F `  q ) >. ,  ( F `  ( p ( +g  `  r
) q ) )
>. }  =  U_ p  e.  v  U_ q  e.  v  { <. <. ( F `  p ) ,  ( F `  q ) >. ,  ( F `  ( p ( +g  `  R
) q ) )
>. } )
10099opeq2d 3812 . . . . . . 7  |-  ( r  =  R  ->  <. ( +g  `  ndx ) , 
U_ p  e.  v 
U_ q  e.  v  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p ( +g  `  r ) q ) ) >. } >.  =  <. ( +g  `  ndx ) ,  U_ p  e.  v 
U_ q  e.  v  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p ( +g  `  R ) q ) ) >. } >. )
101 fveq2 5555 . . . . . . . . . . . . . 14  |-  ( r  =  R  ->  ( .r `  r )  =  ( .r `  R
) )
102101oveqd 5936 . . . . . . . . . . . . 13  |-  ( r  =  R  ->  (
p ( .r `  r ) q )  =  ( p ( .r `  R ) q ) )
103102fveq2d 5559 . . . . . . . . . . . 12  |-  ( r  =  R  ->  ( F `  ( p
( .r `  r
) q ) )  =  ( F `  ( p ( .r
`  R ) q ) ) )
104103opeq2d 3812 . . . . . . . . . . 11  |-  ( r  =  R  ->  <. <. ( F `  p ) ,  ( F `  q ) >. ,  ( F `  ( p ( .r `  r
) q ) )
>.  =  <. <. ( F `  p ) ,  ( F `  q ) >. ,  ( F `  ( p ( .r `  R
) q ) )
>. )
105104sneqd 3632 . . . . . . . . . 10  |-  ( r  =  R  ->  { <. <.
( F `  p
) ,  ( F `
 q ) >. ,  ( F `  ( p ( .r
`  r ) q ) ) >. }  =  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p ( .r
`  R ) q ) ) >. } )
106105iuneq2d 3938 . . . . . . . . 9  |-  ( r  =  R  ->  U_ q  e.  v  { <. <. ( F `  p ) ,  ( F `  q ) >. ,  ( F `  ( p ( .r `  r
) q ) )
>. }  =  U_ q  e.  v  { <. <. ( F `  p ) ,  ( F `  q ) >. ,  ( F `  ( p ( .r `  R
) q ) )
>. } )
107106iuneq2d 3938 . . . . . . . 8  |-  ( r  =  R  ->  U_ p  e.  v  U_ q  e.  v  { <. <. ( F `  p ) ,  ( F `  q ) >. ,  ( F `  ( p ( .r `  r
) q ) )
>. }  =  U_ p  e.  v  U_ q  e.  v  { <. <. ( F `  p ) ,  ( F `  q ) >. ,  ( F `  ( p ( .r `  R
) q ) )
>. } )
108107opeq2d 3812 . . . . . . 7  |-  ( r  =  R  ->  <. ( .r `  ndx ) , 
U_ p  e.  v 
U_ q  e.  v  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p ( .r
`  r ) q ) ) >. } >.  = 
<. ( .r `  ndx ) ,  U_ p  e.  v  U_ q  e.  v  { <. <. ( F `  p ) ,  ( F `  q ) >. ,  ( F `  ( p ( .r `  R
) q ) )
>. } >. )
10992, 100, 108tpeq123d 3711 . . . . . 6  |-  ( r  =  R  ->  { <. (
Base `  ndx ) ,  ran  F >. ,  <. ( +g  `  ndx ) ,  U_ p  e.  v 
U_ q  e.  v  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p ( +g  `  r ) q ) ) >. } >. ,  <. ( .r `  ndx ) ,  U_ p  e.  v 
U_ q  e.  v  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p ( .r
`  r ) q ) ) >. } >. }  =  { <. ( Base `  ndx ) ,  ran  F >. ,  <. ( +g  `  ndx ) ,  U_ p  e.  v 
U_ q  e.  v  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p ( +g  `  R ) q ) ) >. } >. ,  <. ( .r `  ndx ) ,  U_ p  e.  v 
U_ q  e.  v  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p ( .r
`  R ) q ) ) >. } >. } )
110109csbeq2dv 3107 . . . . 5  |-  ( r  =  R  ->  [_ ( Base `  R )  / 
v ]_ { <. ( Base `  ndx ) ,  ran  F >. ,  <. ( +g  `  ndx ) ,  U_ p  e.  v 
U_ q  e.  v  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p ( +g  `  r ) q ) ) >. } >. ,  <. ( .r `  ndx ) ,  U_ p  e.  v 
U_ q  e.  v  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p ( .r
`  r ) q ) ) >. } >. }  =  [_ ( Base `  R )  /  v ]_ { <. ( Base `  ndx ) ,  ran  F >. , 
<. ( +g  `  ndx ) ,  U_ p  e.  v  U_ q  e.  v  { <. <. ( F `  p ) ,  ( F `  q ) >. ,  ( F `  ( p ( +g  `  R
) q ) )
>. } >. ,  <. ( .r `  ndx ) , 
U_ p  e.  v 
U_ q  e.  v  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p ( .r
`  R ) q ) ) >. } >. } )
11191, 110eqtrd 2226 . . . 4  |-  ( r  =  R  ->  [_ ( Base `  r )  / 
v ]_ { <. ( Base `  ndx ) ,  ran  F >. ,  <. ( +g  `  ndx ) ,  U_ p  e.  v 
U_ q  e.  v  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p ( +g  `  r ) q ) ) >. } >. ,  <. ( .r `  ndx ) ,  U_ p  e.  v 
U_ q  e.  v  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p ( .r
`  r ) q ) ) >. } >. }  =  [_ ( Base `  R )  /  v ]_ { <. ( Base `  ndx ) ,  ran  F >. , 
<. ( +g  `  ndx ) ,  U_ p  e.  v  U_ q  e.  v  { <. <. ( F `  p ) ,  ( F `  q ) >. ,  ( F `  ( p ( +g  `  R
) q ) )
>. } >. ,  <. ( .r `  ndx ) , 
U_ p  e.  v 
U_ q  e.  v  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p ( .r
`  R ) q ) ) >. } >. } )
112 df-iimas 12888 . . . 4  |-  "s  =  (
f  e.  _V , 
r  e.  _V  |->  [_ ( Base `  r )  /  v ]_ { <. ( Base `  ndx ) ,  ran  f >. ,  <. ( +g  `  ndx ) ,  U_ p  e.  v  U_ q  e.  v  { <. <. (
f `  p ) ,  ( f `  q ) >. ,  ( f `  ( p ( +g  `  r
) q ) )
>. } >. ,  <. ( .r `  ndx ) , 
U_ p  e.  v 
U_ q  e.  v  { <. <. ( f `  p ) ,  ( f `  q )
>. ,  ( f `  ( p ( .r
`  r ) q ) ) >. } >. } )
11389, 111, 112ovmpog 6054 . . 3  |-  ( ( F  e.  _V  /\  R  e.  _V  /\  [_ ( Base `  R )  / 
v ]_ { <. ( Base `  ndx ) ,  ran  F >. ,  <. ( +g  `  ndx ) ,  U_ p  e.  v 
U_ q  e.  v  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p ( +g  `  R ) q ) ) >. } >. ,  <. ( .r `  ndx ) ,  U_ p  e.  v 
U_ q  e.  v  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p ( .r
`  R ) q ) ) >. } >. }  e.  _V )  -> 
( F  "s  R )  =  [_ ( Base `  R
)  /  v ]_ { <. ( Base `  ndx ) ,  ran  F >. , 
<. ( +g  `  ndx ) ,  U_ p  e.  v  U_ q  e.  v  { <. <. ( F `  p ) ,  ( F `  q ) >. ,  ( F `  ( p ( +g  `  R
) q ) )
>. } >. ,  <. ( .r `  ndx ) , 
U_ p  e.  v 
U_ q  e.  v  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p ( .r
`  R ) q ) ) >. } >. } )
1142, 4, 70, 113syl3anc 1249 . 2  |-  ( ( F  e.  V  /\  R  e.  W )  ->  ( F  "s  R )  =  [_ ( Base `  R
)  /  v ]_ { <. ( Base `  ndx ) ,  ran  F >. , 
<. ( +g  `  ndx ) ,  U_ p  e.  v  U_ q  e.  v  { <. <. ( F `  p ) ,  ( F `  q ) >. ,  ( F `  ( p ( +g  `  R
) q ) )
>. } >. ,  <. ( .r `  ndx ) , 
U_ p  e.  v 
U_ q  e.  v  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p ( .r
`  R ) q ) ) >. } >. } )
115114, 70eqeltrd 2270 1  |-  ( ( F  e.  V  /\  R  e.  W )  ->  ( F  "s  R )  e.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104   A.wal 1362    = wceq 1364    e. wcel 2164   A.wral 2472   _Vcvv 2760   [_csb 3081   {csn 3619   {ctp 3621   <.cop 3622   U_ciun 3913   ran crn 4661    Fn wfn 5250   ` cfv 5255  (class class class)co 5919   NNcn 8984   ndxcnx 12618  Slot cslot 12620   Basecbs 12621   +g cplusg 12698   .rcmulr 12699    "s cimas 12885
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-cnex 7965  ax-resscn 7966  ax-1re 7968  ax-addrcl 7971
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-tp 3627  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5922  df-oprab 5923  df-mpo 5924  df-inn 8985  df-2 9043  df-3 9044  df-ndx 12624  df-slot 12625  df-base 12627  df-plusg 12711  df-mulr 12712  df-iimas 12888
This theorem is referenced by:  imasmulr  12895  qusval  12909  qusex  12911  xpsval  12938
  Copyright terms: Public domain W3C validator